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Summary

The rise in aging population worldwide is increasing death from cancer, including glioblastoma.
Here, we explore the impact of brain aging on glioma tumorigenesis. We find that glioblastoma in
older patients and older mice displayed reduced neuronal signaling, including a decline of NTRK-
like family member 6 (SLITRK®6), a receptor for neurotrophic factor BDNF. This reduction was
linked to the systemic decline of nicotinamide adenine dinucleotide (NAD*) with aging, as old mice
exposed to young blood via parabiosis or supplemented with the NAD*" precursor NMN
(nicotinamide mononucleotide) reverted phenotypically to young-brain responses to glioma, with
reactivated neuronal signaling and reduced death from tumor burden. Interestingly, the
phenotypic reversal by NMN was largely absent in old mice undergoing parabiosis with BDNF*"
young mice and in BDNF*" mice undergoing tumor challenge, supporting the notion that the lower
NAD*-BDNF signaling in the aging brain aggravated glioma tumorigenesis. We propose that the
aging-associated decline in brain NAD* worsens glioma outcomes at least in part by decreasing

neuronal/synaptic activity and increasing neuroinflammation.
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Introduction

Aging is the biggest risk factor for glioblastoma, the most devastating form of the intra-
parenchymal cancer glioma (1-3). Given the rapid global increase in the aging population,
establishing more efficacious treatments for glioma patients is a social need and an area of great
biomedical interest (2-4).

Glioblastoma cells were recently found capable of forming synaptic connections with
neighboring neurons, thereby accelerating tumor growth (5-7). This striking discovery highlights
a mechanism operating in young gliomagenesis, given that the data were largely collected in
young mouse tumor models. In aging brains, on the other hand, marked decreases of neuronal
number and activity trigger initiate and promote many diseases, often exacerbated by chronic
inflammation (8, 9). Importantly, the rise in chronic inflammation is more apparent in the cerebral
cortex and white matter, frequent locations where glioma arises in adults, and may play a causal
role in glioma as it does in a variety of other human cancers (10, 11). Of note, resistance to
therapy in gliomas is further accelerated by local chronic inflammation, which creates a harsh
tumor microenvironment following surgery, chemotherapy, or radiotherapy, and worsens the
prognosis for patients. Despite many advances in the knowledge of glioma development and
therapy, our understanding of aging-related molecular and phenotypic changes remains shallow,
preventing the implementation of practice-changing discoveries in the clinic, particularly for older
glioblastoma patients.

The aging-associated decline in the activity of nicotinamide adenine dinucleotide (NAD™)
has been implicated in pathologies including cancer (12, 13). NAD" is an essential metabolite in
the brain, primarily involved in energy homeostasis and DNA repair (13). Elevating NAD" levels
through administration of its precursor nicotinamide mononucleotide (NMN) had beneficial effects
against aging-related physiological declines and diseases(14), and boosting NAD* levels
extended the lifespan of laboratory animals including rodents(14, 15). However, whether NAD*

activation leads to the prevention or therapeutic improvements in cancer has not been reported.
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The glioblastoma-brain parenchyma interface (termed ‘tumor edge’) creates a unique ecosystem
where several somatic cells (e.g. vascular endothelial cells and astrocytes) contribute to elevating
tumor malignancy. In particular, an astrocyte-derived decline in NAD* activity appears to affect
glioblastoma aggressiveness at the tumor edge, at least in young mouse models. Nonetheless,
the effect of NAD" activity on tumorigenesis in the ecosystem of older brains has not been
elucidated yet.

In this study, we addressed the hypothesis that rejuvenating brains by supplementation of
certain circulating factors including NMN might reverse the glioblastoma-permissive trait of aging
brains. Using mice bearing glioblastoma, we present evidence that treatment with NMN or
exposure to circulating factors from young mice reactivated neuronal signaling and reduced
tumor-causing death. We identify BDNF as an effector of these beneficial interventions and
propose that the rise of aggressive glioblastoma with age is linked to a concomitant decline in

brain NAD* that reduces neuronal function and increases neuroinflammation.

Results

Brain aging exacerbates glioma aggressiveness

Comparison of the distribution of high-grade gliomas (HGG) [WHO Grade 1ll and Grade IV
(glioblastoma)] between younger (<60) and older (>60) patients using the Cancer Genome Atlas
(TCGA) database revealed an elevation of glioblastoma in the older population; Grade Il
astrocytomas were more prevalent in the young population (Fig. 1A). Meta-analysis across four
different datasets (TCGA, Rembrandt, GSE36245, and GSE13041) showed significantly reduced
overall survival (OS) and progression-free survival (PFS) in elderly HGG patients compared to
younger patients (16, 17) (Fig. 1B and fig. S1, A-F). Of note, the reduced overall survival of older
patients was not due to IDH (Isocitrate dehydrogenase) status, as a significantly poorer prognosis
was seen for older patients in both IDH wild-type (WT) and mutant groups within the TCGA

dataset (fig. S1B). In addition, the relative distribution of subtypes of IDH WT tumors in the TCGA
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database [proneural (PN), mesenchymal (MES), and classical (CL)] was the same in both age
groups (fig. S1G). Gene ontology (GO) analysis of the RNA-seq data indicated that younger
tumors expressed mRNAs encoding proteins implicated in neuronal and synaptic pathways (e.qg.
neuropeptide receptor activity and neuron projection), whereas older tumors expressed mRNAs
encoding proteins implicated in neuronal inflammation and DNA methylation (e.g. oxidative
stress-induced senescence and DNA damage/telomere stress-induced senescence) (Fig. 1, C
and D; fig. S2, A and B).

The genes upregulated in younger tumors were largely related to neuronal/synaptic
activity (i.e. SCGN, SLITRK6, and SLC18A3) (Fig. 1E). In addition, the unbiased clustering
analysis of the RNA-seq data identified 4 previously unidentified patient groups (G1-4) (Fig. 1F).
Of note, none of the clusters correlated with any of the subtypes — PN, MES, or CL(18). instead,
there was clustering with age: the youngest glioblastoma patients (Group 4, G4) (average age
47.3y.0.) harbored distinct gene expression patterns with 11 markedly elevated genes implicated
in neuronal activity that accumulated in Cluster 2, while Group 1 (G1) comprised the oldest
glioblastoma patients (67.7 y.0.) and its gene expression pattern was substantially different and
almost mutually exclusive from that of G4 (Fig. 1F and G). Importantly, the overall survival of G4
was significantly better than the others, and the worst overall survival was seen for G1 (Fig. 1H,
and fig. S3A-C). Among the 11 genes representative of G4, seven displayed individual survival
benefits in the Rembrandt database for WHO Grade Il to 1V gliomas, indicating that neuron- and
synapse-related genes were likely associated with lower grades of glioma and better patient
outcomes (fig. S4, A and B). Collectively, these findings suggest that transcriptomic programs
toward a less neuronal and more neuroinflammatory phenotype contribute to the aging-related
increases in glioma grade, phenotypic aggressiveness, and patient mortality. We also suggest
that a new transcriptomic subclassification termed "Neuronal Activity-Based (NAB)" may be more
clinically relevant than the currently used transcriptional subtyping, given the direct link to the

patient’s post-surgical life expectancy.
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Mouse brain tumor models recapitulate the aging-associated phenotypic shift in human
glioblastoma

Given these clinical findings, we next investigated mouse tumor models for their aging-related
changes. We first transplanted mouse glioblastoma cells into young (2 months old (m.o.)) and old
(16 m.o.) mice. Specifically, we used 4 mouse glioblastoma models. The first three, the glioma
sphere lines ms7080, AR006, and ms6835, were established from glioblastoma-like tumors
forming spontaneously in mice by ablation of genes Tp53, Pten, and Nfl (ms7080)(19), CreER;
Pten'oxPloxP. Tp53loxPlloxP. Rl loxPioxP (20), and Cre; Nf1" and p537(21), respectively. The fourth,
NSCL61, was established from p53-deficient murine neural stem cells overexpressing oncogenic
HRas1(22). Following intracranial injection and tumor establishment with all four models in young
and old mice, we stained the tumor-bearing mouse brains with hematoxylin and eosin (H&E) to
assess their histopathology. All these mouse tumors displayed pseudo-palisading adjacent to
central necrosis and microvascular proliferation, two histopathological hallmarks of human
glioblastoma (fig. S5A). As shown by H&E staining of the representative m7080-derived tumors,
old mice harbored densely packed tumor cells with large central necrosis, while young mouse
tumors exhibited relatively lower cellularity and noticeably smaller necrotic areas (Fig. 2A). The
survival time of older tumor-bearing mice was much shorter than that of younger mice in all four
models following tumor challenge (Fig. 2, B and C). Additionally, comparison of the xenograft
models utilizing the patient-derived glioma spheres (1051x1) injected into young vs. old
immunocompromised SCID mice yielded similar results (Fig. 2C and fig. S5C).

To identify the molecular mechanisms underlying the aging-associated phenotypic shift in
tumors, we performed RNA-seq analysis of these mouse tumors. Principal component analysis
(PCA) harboring PC1 as the identity determinant for 98.9% demonstrated an axis of gene
expression for tumors from young to old mice (Fig. 2D). Similar to the data with glioblastoma

patients (Fig. 1, C and D), GSEA identified an elevated activity of synapse organization pathways


https://doi.org/10.1101/2020.10.10.334748

10

15

20

25

in younger tumors, while older tumors displayed elevations in cytokine production and
inflammatory response pathways (Fig. 2E and fig. S6A). KEGG analysis confirmed that
neuronal/synaptic pathways were more activated in younger tumors (Fig. 2F and fig. S6, B and
C) and RT-gPCR analysis confirmed the elevation of inflammatory markers in older tumors (e.g.
Ifng, Tnfa, and Nfkb2 mRNAs) (Fig. 2G).

We then compared the gene expression profiles in young and old mouse tumors with
those in human glioblastomas in the TCGA database. As shown in Fig. 2H, SLITRK6 mRNA,
encoding a membrane-bound protein that is known to promote proliferation of peripheral neurons
within the inner ear and eye (23), was the only transcript significantly elevated in both humans
and mice. RT-qPCR analysis of our cohort of 17 glioblastoma patients confirmed that SLITRK6
MRNA expression was in fact significantly higher in younger tumors (Fig. 2I). RNA-seq and RT-
gPCR analyses of mouse tumors showed similar results (Fig. 2J). As expected, the TCGA
database revealed shorter overall survival of Slitrké low-expression group in older glioblastoma
patients (Fig. 2K). Immunohistochemistry analysis of human glioblastomas and mouse tumors
revealed higher protein expression levels for SLITRK6 in younger tumors (Fig. 2, L to N). Taken
together, these data suggest that the mouse tumor models recapitulate the age-associated
phenotypic and molecular reprogramming seen in human glioblastoma, with SLITRK6 as the only

shared molecule declining with aging in mouse and patient tumors.

Exposure of old brains to young blood alters the brain microenvironment, diminishing
glioblastoma aggressiveness

We then asked if the aging-associated difference in tumor aggressiveness was due to the
presence of different circulating factors in young vs. old mice affecting the architecture of brain
microenvironment. To address this question, we performed a series of parabiosis experiments,
physically connecting a young mouse (2 m.o.) and an old mouse (16 m.o0.) to share blood for 5

weeks; following disconnection, these mice received tumor challenges (Fig. 3A). In control
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experiments, we paired two young control mice (termed ‘Young-cont’) and old two mice (termed
‘Old-cont’). While both Young-cont and Old-cont developed almost identical tumors to those
without parabiosis, old mice receiving young blood (termed ‘Old-para’) exhibited substantial
changes in tumor morphology and cellular architecture, resembling those of Young-cont (Fig. 3B
and fig. S7, A and B). Accordingly, we also observed a remarkable improvement in survival of
Old-para in all three glioblastoma models (Fig. 3C). Surprisingly, young mice receiving old blood
(termed 'Young-para') developed tumors that appeared strikingly similar to those found in Old-
cont (fig. S7C). At one month following injection of ms7080 cells, H&E staining of Old-para
showed relatively less dense tumor cells with infiltration to the corpus callosum and lateral
ventricle, which resembled those in Young-cont (fig. S7D). Consistent with the data with human
glioblastoma patients and mouse models without parabiosis (Fig. 2F), KEGG analysis of RNA-
seq data of Old-para revealed substantially overlapping elevation of neuronal/synaptic pathways
(Fig. 3D and fig. S8, A and B). In addition, Slitrk6 mRNA levels were markedly increased in Old-
para, as determined by both RNA-seq and RT-gPCR analyses (Fig. 3, E and F). Furthermore,
IHC analysis of Old-para displayed higher SLITRK6 signals comparable to those in Young-cont
(Fig. 3G).

Next, in order to determine the circulating factors responsible for these phenotypic shifts,
we performed mass spectroscopy analysis of metabolites in blood obtained from young and old
mice. PCA demonstrated an axis of metabolite expression from young to old samples (Fig. 3H).
Also, Heat map clustering analysis showed a change in overall metabolite expression profiles
between young and old samples (Fig. 3I). Metabolite pathway analysis identified the nicotinate
and nicotinamide metabolism pathway as one of the most activated pathways in young blood (Fig.
3J). Based on these results, we measured the expression of NAD*-related metabolites in blood
and normal cortical tissues obtained from young and old mice, as well as post-parabiosis mice.
This analysis revealed that NAD" and nicotinamide adenine dinucleotide phosphate (NADP)

levels were among the most upregulated in Young-cont blood samples as compared to Old-cont,
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while Old-para restored some, if not all, nicotinamide (NAM) levels (Fig. 3K). Consistent with
these data, nicotinamide mononucleotide (NMN) was significantly increased in post-parabiotic
normal cortical tissues (Fig. 3L). Collectively, these findings suggest that young blood contains
circulating factors including those in the NAD* pathway (including NMN, which penetrates the
blood-brain barrier) that might be capable of reversing the aging-associated tumor

aggressiveness and the loss of neuronal activation in the brain tumors.

Systemic treatment with NMN diminishes tumor aggressiveness
To test this possibility, we investigated whether direct activation of the NAD* pathway in older
brains was capable of reversing the aging-dependent aggravation of glioblastoma. To activate
the NAD* pathway, NMN was systemically administered to old WT mice (16 m.o.) for 3 weeks.
Treated mice underwent tumor challenge with 4 murine and 1 human glioblastoma models (Fig.
4A). As shown, NMN pre-treatment of old mice (termed 'NMN-before-tumor") led to fewer pseudo-
palisading or microvascular proliferation areas in tumors determined by H&E staining, indicating
a shift of the subsequent tumor grade from glioblastoma to Grade Ill gliomas (Fig. 4, B and C
and fig. S9, A and B). To examine this possibility further, double-blinded assessments of tumor
grading was performed by a board-certified neuropathologist (JRH), who independently
determined that a higher number of old mouse tumors were congruent with a diagnosis of
glioblastoma, unlike the tumors in young mice and those in NMN-before-tumor mice (fig. S9C).
Consistent with this observation, NMN pre-treatment conferred significantly longer survival in all
4 tested models (Fig. 4D and fig. S9D). In sharp contrast to these changes, NMN post-treatment
(termed ‘NMN-after-tumor’) did not confer any survival benefits or histopathological changes (Fig.
4E and fig. S9E).

Given that recent literature has pointed out that boosting the NAD* pathway fuels the
growth of glioblastoma cells (24, 25), the striking differences between NMN-before-tumor and

NMN-after-tumor suggest that the anti-tumor effect by NMN can be achieved by systemic

10


https://doi.org/10.1101/2020.10.10.334748

10

15

20

25

administration only prior to tumor challenge (benefit for prevention) but not after tumor formation
(no effect on therapy). To support this interpretation, the NAD™ activity measured in these tumors
showed a trend of partial reversal (although not reaching statistical significance) of the
pathologically activated intra-tumoral NAD* activity in old mice by the systemic NMN treatment
prior to tumor challenge (fig. S9F).

Similar to tumors in young and old mice subjected to parabiosis, the NMN-before-tumor
models showed a rise in MRNAs encoding proteins implicated in the neuronal/synaptic pathways
(Fig. 4F and fig. S10, A and B). A comparison of mMRNAs encoding neuroinflammatory genes
(i.e. Ifng, Tnfa, Nfkb, 116 MRNASs) in ms7080 tumors indicated that NMN pre-treatment dramatically
reversed these age-associated elevations; in fact, the abundance of these mRNAs fell below the
baseline levels seen in young mice (fig. S11A). As expected, expression of mMRNAs in the NAD*
pathway (Nampt, Cd38, Sirtl, Parpl, Nmnatl-3, and Naprt mRNAs) were largely reversed by
NMN pre-treatment for these tumors (fig. S11B). The abundance of Slitrk6 mMRNA, as measured
by RNA-seq and RT-gPCR analyses, was significantly higher in NMN-before-tumor tissues (Fig.
4, G and H). IHC also showed the recovery of the SLITRKG6 intensity levels in NMN-before-tumor
from markedly diminished levels in the old untreated control (Fig. 4l).

Given that NMN pre-treatment conferred survival benefit in these glioblastoma models,
we next examined whether the tumors developing in brains from mice pre-treated with NMN had
fewer tumor-initiating cells (TICs). To this end, we resected tumors from old mice with and without
NMN pre-treatment and established secondary glioma sphere cultures termed 7080X1-old and -
NMN-before-tumor, respectively (Fig. 4J). The 7080X1-NMN-before-tumor cells exhibited
reduced growth in culture and reduced ability to for clonal spheres, as compared to both 7080X1-
young and 7080X1-old cells (fig. S12, A and B). Similar to the ms7080 tumor counterparts, RT-
gPCR analysis indicated that the expression level of Cd133 mRNA, a surrogate marker of tumor
initiation, increased in 7080X1-old cells to levels comparable to those in 7080X1-NMN-before-

tumor cells (fig. S12C). GO analysis of the RNA-seq data showed that 7080X1-NMN-before-
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tumor cells were predominantly associated with neuron/synapse-associated pathways (e.g.
synapse, generation of neuron, synapse part) (fig. S12D). As expected, RT-gPCR analysis from
these three cell cultures showed elevated Slitrk6 mRNA in 7080X1-NMN-before-Tumor cells as
compared to 7080X1-old cells (Fig. 4K).

We then performed intracranial passaging of these 7080X1 cell lines using young WT
mice (Fig. 4J). Histopathological examination of these secondary tumors revealed a striking
reduction of tumor grade in one-third of the tumors from glioblastoma to Grade Il glioma in the
7080X1-NMN-before-tumor line, unlike the 7080X1-old, in which all resultant tumors were
glioblastoma with prominent central necrosis and microvascular proliferation (Fig. 4, L and M,
and fig. S12, E and F). This finding was associated with a significant improvement in survival of
mice bearing 7080X1-NMN-before-tumor cells as compared to 7080X1-old tumor cells (Fig. 4N).
Additionally, in vivo serial dilution experiments — the gold standard for measuring TIC
subpopulations in each tumor — showed that the mice carrying 7080X1-NMN-before-tumors
experienced significantly fewer tumor-burden death as compared to those with 7080X1-old
tumors (Fig. 4N). Finally, we compared the relative abundance of NAD* and NADH in these
7080X1 models via two different culture conditions, termed ‘low NAM’ or normal. We observed
significantly higher NAD" and NADH levels in 7080X1-old cells relative to 7080X1-NMN-before-
tumor cells, indicating that, similar to the young tumor cells, intratumoral NAD* is lower in 7080X1-
NMN-before-tumor cells (fig. S12G). Collectively, these data suggest that the survival benefits of
NMN pre-treatment for tumor-bearing mice was due at least in part to the diminished TIC

subpopulations in tumors.

Recovered neuronal gene signature in the aging brain by NMN
In light of the phenotypic changes elicited by parabiosis and NMN, we next investigated the
cellular effectors activated by the NAD* pathway in old brains (Fig. 5A). Following the systemic

administration of NMN, we performed RNA-seq analysis of non-tumor-bearing brain samples
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derived from young, old, Old-para, and NMN-treated old mice (Old-NMN). Heat map clustering
analysis showed a change in overall gene expression profiles between these groups (Fig. 5B).
PCA with PC1 as the predominant determinant as high as 99.7% demonstrated a trend of
transcriptomic signature changes from young to old mice which was at least partially reversed
both by parabiosis and by NMN pre-treatment, albeit to different degrees among the mice studied
(Fig. 5C). Similar to the results with the parabiosis models, the aging-induced shift in gene
expression signature in cortical tissues was markedly larger than that in striatal tissues (fig.
S12A). We then separated the genes in the RNA-seq data into those related to the four major cell
types in the brain; among them, neuronal genes (26) exhibited the most striking shift in the gene
signature in cortices of young, old, and old-NMN brains. In contrast, the gene signatures of the
other three gene sets (astrocytic, oligodendrocytic, and microglial) did not display a clear trend
with aging or NMN treatment (Fig. 5D). Ingenuity Pathway Analysis (IPA) of the RNA-seq data
for pathways and biological functions confirmed an aging-related reduction of the genes
implicated in neurotransmitter metabolism, release of acetylcholine, and behavior pathways, all
of which were reversed by NMN pre-treatment of old mice (Fig. 5E).

Additionally, we developed a method to immobilize NMN on beads (fig. S12B and S12C).
In order to identify proteins binding to NMN, we incubated these beads with membrane proteins
and performed LC-MS/MS analysis (Fig. 5F). Seven out of 64 proteins identified as associating
with NMN were synapse-associated proteins, including FLNA, HIP1, TUBB, MAP4, VDAC1,
EIF4A3, and ATP2A2 (Fig. 5G). Consistent with the results of the parabiosis models, we
confirmed that NMN administration partially recovered NAD* and NADP levels in the blood
samples from old mice (fig. S12D). These data suggest that NMN might activate cortical neurons
through association with neuronal/synaptic membrane proteins to attenuate an aging-related

progression toward a tumor-permissive brain microenvironment.

BDNF contributes to NMN-mediated reprogramming in brains and tumors

13
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To investigate the molecular mechanisms in aging brain to elicit phenotypic changes by NMN, we
first examined the expression changes of SLITRK6 in aging normal brains. IHC analysis revealed
a striking recovery of SLITRK®6 signals in the normal cortex of old NMN-treated mice relative to
old untreated cortex, which were comparable to those of young untreated control (Fig. 6A). IPA
analysis of the RNA-seq data to identify key effectors of the NAD* pathway revealed that brain-
derived neurotrophic factor (BDNF) was the most significantly downregulated protein in the old
group, and that this trend was largely reversed by NMN treatment (Fig. 6B). As expected, a
number of inflammatory molecules showed the opposite trend (Fig. 6B). A comparative analysis
of BDNF interactions revealed downregulation of receptors for BDNF, including NGFR and
NTRK1, both in old vs. young mice and in old vs. old-NMN mice (Fig. 6C). Among the four well-
studied BDNF exons (exons 1, 2, 4, and 6), NMN induced primarily the recovery of exon 4,
previously identified to be excluded with aging and be associated with the NAD* pathway (27-29)
(Fig. 6D and fig. S13A).

In addition to these changes in BDNF levels in the cerebral cortex, the aging-associated
reduction of the systemic levels of circulating BDNF in the blood was totally rescued by NMN
treatment (Fig. 6E). Furthermore, NMN administration reversed the aging-related changes in
Ntrk2 (transcript for TrkB), encoding a receptor of mature BDNF (mBDNF) and a known agonist
for neurons, and in Ngfr (transcript for p75N™R), encoding a receptor of precursor of BDNF
(proBDNF) and a known antagonist for neurons (Fig. 6F). As anticipated, the expression levels
of neuroinflammatory markers (Nfkb1l, Nfkb2, and Ccl2 mRNAS) in these samples displayed
opposite patterns, as determined by RT-gPCR validation of IPA data (fig. S13B). The ensuing
analysis of a possible physical interaction of BDNF and SLITFK6 proteins by immunoprecipitation
followed by Western blotting analysis demonstrated an association between the two proteins (Fig.
6G). Collectively, these data suggest a novel molecular signaling axis whereby BDNF forms a
protein complex with SLITRK6 linked to the development of a cortical aging, tumor-favorable

microenvironment.

14


https://doi.org/10.1101/2020.10.10.334748

10

15

20

25

Reduction in NMN-regulated BDNF aggravates tumor phenotype in old brains
Next, we sought to determine whether the aging-associated glioblastoma malignancy is regulated
by NAD* and BDNF by performing tumor challenges in BDNF*- mice with and without NMN pre-
treatment (Fig. 7A). The tumors in BDNF"- mice were histopathologically more malignant,
harboring highly condensed tumor cells with larger central areas of necrosis, and the mice had
shorter survival than tumor-bearing WT mice (Fig. 7B and C). Importantly, the survival benefit of
mice in the NMN pre-treatment group was absent in BDNF*" underscoring the role of BDNF in
the anti-tumor effect of NMN (Fig. 7C). These data suggested that the reversal of the tumor
permissive microenvironment activated by NAD* in older mice is primarily regulated by the
circulating BDNF.

Lastly, we asked whether systemically circulating BDNF, and not only the brain-resident
BDNF, determines the aging-associated anti-tumor effect of BDNF in the brain. To this end, we
performed parabiosis followed by tumor challenge with Old-cont, Old-para (termed ‘Para-WT’),
and old mice receiving young BDNF*- mouse blood (termed ‘Para-BDNF*") (Fig. 7D). Strikingly,
the m7080-derived tumor phenotype of Para-BDNF*" mice displayed a clear difference from Para-
WT, exhibiting densely packed tumor lesions with markedly larger central necrosis — similar to the
lesions seen in Old-cont (Fig. 7E). As a result, the young blood-engendered survival benefit for
older mice almost completely disappeared when the blood was received from young BDNF*" mice
(Fig. 7F). Collectively, these findings indicate that the decline of circulating BDNF is a major
effector of the tumor-favorable environment seen in old mouse brain, triggered by the age-

associated reduction in NAD* (Fig. 7G).

Discussion
Aging accelerates the risk of cancer and aggravates malignant phenotypes. This study uncovered

that the aging-induced cancer-permissive changes in the brain microenvironment can be reversed,
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at least in part, by systemic factors, as confirmed by both parabiosis between young and old
animals and systemic administration of the NAD" pathway booster NMN. This observation, if
applicable to humans, underscores the potential of using NMN (and other means of activating the
NAD* pathway) to reduce the risk of cancer formation and deterioration through rejuvenation of
the brain and other organs. It remains unclear why blending blood circulation between young and
old mice for as long as 5 weeks (approximately 7-9 years for humans) almost completely flipped
the tumor phenotypes between them, rather than rendering intermediate phenotypes (e.g. tumors
corresponding to "middle-aged brains"). These data may reflect the existence of unknown factors
that trigger opposite phenotypes (young converted to old-like and old converted to young-like).
Further studies are required to answer this question.

Older glioblastoma patients often survive less than a year from the time of diagnosis. This
aging-driven elevation of malignancy is thought to be closely linked to neuroinflammation,
although the possibility remains that (hyper)active neurons may aggravate glioblastomas
pathoetiology even in older patients. The mechanism whereby neuroinflammation is initiated and
promoted in glioblastoma needs further investigation. Inflammation is generally stimulated by
soluble factors (e.g. chemokines, cytokines, metabolites) secreted by either resident cells such
as microglia and astrocytes or by cells external to brain tissues, such as macrophages. ldentifying
the specific cellular factors responsible for aging-mediated neuroinflammation and tumor-
permissive microenvironment would be very helpful in designing therapies to combat the effect of
aging on cancer phenotype. Cortical neurons are terminally differentiated non-cycling cells, yet
recent studies have shown that they develop a senescent-like status through accumulation of
age-related DNA damage. Senescent cells are known to secrete powerful paracrine factors,
including proinflammatory cytokines that spread to neighboring cells. Whether this senescent
program caused by aged neurons helps to orchestrate the deteriorating microenvironment in aged
tumors warrants future study.

Both parabiosis with younger mice and systemic NMN administration resulted in notably
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similar tumor-preventive changes in the old-brain microenvironment. In the brain, NMN protects
neurons from chemotherapy-induced degeneration and cell death after stroke(30, 31). Our recent
study revealed that NMN pre-treatment of CD38 (NADase) KO mice followed by ms7080 tumor
challenge improved glioblastoma malignancy and altered intra-tumoral NAD* activity, supporting
the notion that the action of systemic NMN administration directly controls NAD* activity in murine
glioblastoma. Nonetheless, this earlier work did not investigate the possible change in the BDNF
signaling in the brain or tumors. In the present study, as illustrated by the remarkable difference
between prevention and therapy for NMN in mice with tumor challenge, NMN treatment appears
to be a double-edged sword, providing nutrients for normal somatic cells that is also highjacked
by cancer cells as an energy source (24). Accordingly, plans to boost the NAD* pathway only in
non-cancerous cells must include the shutting off of the cancer cell-specific receptor for NMN.
Recently, SLC12a8 was identified as a transporter of NMN in the intestine, but this transporter is
not expressed in the brain or glioblastoma cells(32). This study identified a set of (brain) cancer-
specific transporter candidates for NMN, although validation awaits. Through future investigation,
one may enable the use of NMN for not only prevention but also treatment of glioblastoma,
particularly in old patients.

Based on the two sets of data using the BDNF*- mice combined with pre-treatment of
NMN or parabiosis, BDNF is likely a bona fide gate-keeper for NMN-driven NAD* activity in the
brain. However, caution is warranted, as BDNF may display antagonistic pleiotropy (possibly by
forming a protein complex with SLITRK6) to provoke a fundamental tumor-permissive
microenvironmental architecture, particularly in a young adult-specific manner. How the NAD*
pathway regulates BDNF secretion and activity in the brain microenvironment needs additional
study. Identification of SLITRK6 as a novel binding protein for BDNF raises a possibility that this
protein complex may communicate signals derived from the elevated NAD* activity to rejuvenate

the tumor phenotype.
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In conclusion, this study has developed a new NAB subclassification based on novel gene
expression patterns related to neuronal activity and identifying clinically relevant subtypes.
Furthermore, we performed a set of in vivo experiments with parabiosis and NMN administration
using 4 mouse glioblastoma tumor models and 1 human patient-derived tumor model for tumor
challenge in the brain. These experiments uncovered effects of aging and rejuvenation on
tumorigenesis. The gene signature in both paradigms exhibited an aging-associated shift from
neuronal activity to neuroinflammation, accompanied by substantial elevation in tumor
aggressiveness. This aging-associated molecular and phenotypic changes can be reversed by
either receiving young blood or NMN administration, underscoring the plasticity of the brain in
susceptibility to disease. Validation of these interventions in human glioblastoma can pave the

way towards novel age-dependent cancer therapy regimens.
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Materials and Methods

Patients, Specimens, and Ethics

For the pre-clinical studies, the previously characterized patient-derived glioma sphere model
(1051X1) established and described elsewhere (33) was used. In short, with signed patient
consent, the senior author (IN) performed supra-total resection of glioblastoma tumors under the
awake setting and resected tumor to achieve maximal tumor eradication without causing any
permanent major deficit in the patients. After confirmation of enough tumor tissue was secured
for the clinical diagnosis, the remaining tissue was provided to the corresponding scientists
following de-identification of the patient information. This patient-derived glioma model was
periodically checked for mycoplasma using the Short Tandem Repeat (STR) analysis. All pre-
clinical work was performed under an Institutional Review Board (IRB)-approved protocol

(N150219008) compliant with guidelines set forth by the National Institutes of Health (NIH).

Cell culture

Murine glioma-derived (neuro)sphere cultures were established from tumors formed by Cre;
Nf1”; p53™ Pten”™ mice (ms7080)(19), CreER; Pten'®PoxP, Tp53loxPloxP.  Rp1loxPloP mjce
(AR006)(20), Cre; Nf1": p53™ mice (ms6835)(21), and by transforming p53-deficient neural stem
cells (NSC) with oncogenic HRas"®* (NSCL61)(22). Characterization of the patient-derived 1051
spheres is described in our prior study (33). Both murine and patient-derived glioma spheres were
cultured in defined medium containing DMEM/F12/ Glutamax (Invitrogen) supplemented with B27
(Miltenyi Biotec), heparin (2.5 mg/mL), basic fibroblast growth factor (bFGF) (Peprotech, 20
ng/mL), and epidermal growth factor (EGF) (Peprotech, 20 ng/mL). Growth factors (bFGF and

EGF) were added twice a week and the culture medium was changed every 7 days.

RNA isolation and Quantitative Real-Time PCR (RT-gPCR) analysis

Total RNA was extracted using the RNeasy mini kit (QIAGEN) according to the manufacturer’s
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instructions. RNA concentration was determined using Nanodrop One (Thermo Scientific). cDNAs
were synthesized using iScript reverse transcription supermix (Bio-Rad) according to the
manufacturer’s protocol. RT-gPCR analysis was performed on StepOnePlus thermal cycler
(Thermo scientific) with SYBR Select Master Mix (Thermo scientific). GAPDH/Gapdh mRNA was

used as an internal control. Primer sequences are shown in Supplementary Table 1.

Western blotting

Cells were lysed for 30 min on ice in RIPA buffer (Sigma) containing 1% protease and 1%
phosphatase inhibitor cocktails (Sigma). Protein samples were quantified using the Bradford
assay reagent (Bio-Rad) according to the manufacturer's instructions. The proteins were
transferred onto a PVDF membrane and the membranes were probed overnight at 4 °C with the
appropriate primary antibodies recognizing SLITRK6 (Invitrogen) or [B-Actin (ACTB, Caell
Signaling). After incubation with HRP-conjugated second antibodies, staining was visualized with
Amersham ECL Western Blot System (GE Healthcare) and images were obtained with

ImageQuant LAS 500 (GE Healthcare).

Immunoprecipitation (IP)

Brain tissues were collected and lysed in IP lysis buffer (Pierce) supplemented with protease
inhibitors, incubated on ice for 15 min, and cleared by centrifugation at 13,000 rpm at 4°C for 15
min. After a preclearing step with protein A/G- agarose beads (Upstate), protein lysate (1 mg) was
subjected to IP (overnight at 4°C) in the presence of beads carrying antibodies that recognized

BDNF (LSBio), SLITRK6 (Invitrogen), or with isotype control antibodies.

Immunohistochemistry (IHC)

Human glioma tissues (n=20) were collected at the Ehime University after obtaining the written
informed consent forms from the patients. IHC was performed as previously described and signals
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were detected using the DAB substrate kit (Vector) (33-35). For double staining, donkey IgG H&L
(alkaline phosphatase) pre-adsorbed antibody (Abcam) was used to detect primary antibodies
and detected by the liquid fast-red substrate kit (abcam). Primary antibodies used in this study

recognized SLITRK®6 (Invitrogen).

Animal experiments

All animal experiments were performed at the UAB under an Institutional Animal Care and Use
Committee (IACUC)-approved protocol according to NIH guidelines. C57BL/6 mice and
immunocompromised mice (SCID Beige and NSG) were purchased from Charles River and
Jackson Laboratory. For intracranial injection, mice were anesthetized with ketamine/xylazine and
fixed in place and dissociated BC cells were stereotactically injected into the striatum of mice as

described (33-35). Mice were placed on a stage warmed at 37°C until they were fully awake.

Parabiosis

Female mice were placed in a cage for two weeks to assure peaceful cohabitation. Two animals
were anesthetized using 1-5 to 2% isoflurane, shaved at approximately 1 cm above the elbow to
1 cm below the knee, prepared by thoroughly wiping (3x) with Betadine-soaked wipes followed
by alcohol wipes, and placed on a heated pad covered by a sterile pad. For analgesia, Carprofen
and Buprenorphine were administered subcutaneously at a dose of 10 mg/kg and 0.1 mg/kg,
respectively. Longitudinal skin incisions were performed to the shaved sides of each animal
starting at 0.5 cm above the elbow all the way to 0.5 cm below the knee joint. Following the
incision, the skin was gently detached from the subcutaneous fascia by holding if up with a pair
of curved forceps. The fascia was then separated with a second pair to create 0.5 cm of free skin.
The left olecranon of one animal will be joined to the right olecranon of the other. Both olecranons
and knee joints were clearly distinguishable following the skin incision. To facilitate the joining,
the elbow of the first mouse was bent and a needle of the non-absorbable 3-0 suture will be
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passed under the olecranon. Following the attachment of the joints, the skin of the two animals
was joined with continuous absorbable 5-0 Vicryl suture starting ventrally from the elbow towards
the knee. To prevent skin rupture and separation tight suture closure of the skin in the area around
the elbows and knees was performed. To prevent dehydration, 0.5 mL of 0.9% NaCl was
administered subcutaneously to each mouse, and animals were kept on a heated pad until
recovery. Following recovery, analgesics carprofen and buprenorphine were given
bysubcutaneous injection every 12 hr for 48 hr at the same doses described above. Animals were
monitored for signs of pain and given Sulfamethoxazole/Trimethoprim in drinking water (2 mg

sulfa/mL +0.4 mg trim/mL) for 10 days.

NMN Administration

Water consumption was measured prior to the start of NMN administration. NMN was
administered in drinking water at 300 mg/kg/day, based on the previously measured water
consumption. The NMN solution was prepared twice weekly by dissolving NMN into autoclaved
water at the respective doses and sterilized by filtering. Water bottles and cages were changed

twice weekly.

Immobilization of NMN and CMP on agarose beads

Two hundred uL of m-Aminophenylboronic acid—Agarose beads (Sigma) were washed 3 times
with 1 mL of binding buffer (200 mM NH4Ac, 30 mM MgCl,, pH 8,9) and incubated with 1 mL of
NMN (Oriental Yeast Co., Ltd.) or CMP (Sigma) solution (5 g/l in binding buffer) for 1 hour at room
temperature. Remaining concentration of NMN and CMP in the solution were monitored using
NanoDropONE spectrophotometer (Thermo Fisher) by absorbance at A = 270 nm. Beads were
washed 3 times with binding buffer and incubated with 1 mL of 2:1 mixture of binding buffer and
solubilized membrane proteins purified from glioblastoma cells. After overnight incubation at +4°C

with constant agitation, beads were washed once with 2:1 mixture of binding buffer and
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solubilization buffer (Thermo Fisher) and 4 times with binding buffer. After the last wash NMN,
CMP and bound proteins were eluted with 100 pL of 25 mM HCI. Immediately after elution, the
eluate was neutralized with 1 M Tris buffer pH 9. Eluted proteins were subjected to LC-MS/MS
analysis, performed on a TripleTOF 5600+ mass-spectrometer with a NanoSpray Il ion source
(ABSciex) coupled with a NanoLC Ultra 2D+ nano-HPLC system (Eksigent) as described
previously(35). Proteins eluted from empty beads (without NMN or CMP) were used as a negative

control.

ELISA

The concentration of BDNF was measured by using the BDNF ELISA kit (LSbio) according to the

manufacturer’s protocol.

Neurosphere formation assay

Murine GBM neurospheres were seeded into 96-well plates at 1, 10, 20, 30, 40, and 50 cells per
well. After 3 days, the numbers of spheres with diameters greater than 60 mm were counted. Data
were analyzed as described previously (http://bioinf.wehi.edu.

au/software/elda/).

RNA sequencing

Isolated RNA samples were sequenced commercially at QUICK BIOLOGY
(http://www.quickbiology.com). Following depletion of ribosomal (r)RNA, libraries were prepared
and sequenced using an lllumina HiSeq 4000 instrument, PE150, for a total of 80 million reads

per sample.

RNA-Seqg analysis
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STAR (version 2.5.3a) was used to align the raw RNA-Seq fastq reads to the mouse reference
genome (GRCm38 p4, Release M11) from Gencode with parameters --outReadsUnmapped
Fastx; --outSAMtype BAM SortedByCoordinate; --outSAMAttributes All (36). Following alignment,
HTSeg-count (version 0.9.1) was used to count the number of reads mapping to each gene with
parameters -m union; -r pos; -t exon; -i gene_id; -a 10; -s no; -f bam (37). Normalization and

differential expression were then applied to the count files using DESeq2.

Systems Biology analysis

For generating networks, a data set containing gene identifiers and corresponding expression
values was uploaded into Ingenuity Pathway Analysis. Each identifier was mapped to its
corresponding object in Ingenuity’s Knowledge Base. A fold change cutoff of £2 and p-value <
0.05 was set to identify molecules whose expression was significantly differentially regulated.
These molecules, called network-eligible molecules, were overlaid onto a global molecular
network developed from information contained in Ingenuity’s Knowledge Base. Networks of
network eligible molecules were then algorithmically generated based on their connectivity. The
functional analysis identified the biological functions and/or diseases that were most significant to
the entire data set. Molecules from the dataset that met the fold change cutoff of +2 and p-value
< 0.05 and were associated with biological functions and/or diseases in Ingenuity’s Knowledge
Base were considered for the analysis. Right-tailed Fisher’s exact test was used to calculate a p-
value determining the probability that each biological function and/or disease assigned to that

data set is due to chance alone.

Gene Expression Data Analysis

Gene Set Enrichment Analysis (GSEA) was performed using available online software
(http://software.broadinstitute.org/gsea/index.jsp). Gene Ontology (GO) enrichment analysis also
was performed using available website (http://geneontology.org/).
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Measurement of NAD metabolites

Twenty microliters of mouse blood were mixed with 180 pl of 80% methanol and shaken at 1200
rpm for 10 min at 37°C. After centrifugation at 16000 x g for 5 min at 25°C, 100 pl of supernatant
were collected and mixed with 40 ul of purified water and 72 pl of chloroform, followed by a vortex
mixing for 5 seconds. After centrifugation at 16000 x g for 5 min at 25°C, 50 ul of supernatant
were collected and dried in a centrifugal evaporator (CVE-3100, Tokyo Rikakikai Co. Ltd.). For
brain analysis, the dissected cerebral cortex was homogenized in ice-cold 80% methanol
(tissue:solvent=1:4, w/v) using a beads homogenizer (uT-12, Taitec) at 3200 rpm for 30 seconds
two times. After centrifugation at 16000 x g for 30 min at 25°C, 100 pl of supernatant were treated
in the same way as the blood samples. Each dried sample was dissolved in 50 ul of 0.1% formic
acid in water and 3 pl of the sample solution was injected into to the LC-MS system. Metabolites
were separated on a Shim-pack GIST C18-AQ column (3 pym, 150 mm x 2.1 mm id, Shimadzu
GLC) with a Nexera UHPLC system (Shimadzu). The mobile phase consisted of 0.1% formic acid
in water (A) and 0.1% formic acid in acetonitrile (B). The gradient program was as follows: 0-3
min, 0% B; 3-15 min, linear gradient to 60% B; 15-17.5 min, 95%B; 17.5-20.0 min, linear gradient
to 0% B; hold for 4 min; flow rate, 0.2 ml/min. The LC system was coupled with a triple-quadruple
mass spectrometer LCMS-8040 or LCMS-8060(Shimadzu). Mass spectrometers were operated
with the ESI in positive (for NAM and NMN) and negative ion mode (for NAD and NADP). lon
transitions for multiple reaction monitoring were as follows: NAD, m/z 662.10>540.05; NADP, m/z

742.00>619.95; NAM, m/z 123.10>80.05, NMN, m/z 335.05>123.10.

Statistics

The required sample sizes were estimated on the basis of our previous experience with similar
experiments. Statistical analyses and graph generation were performed using XLSTAT 2018.5,
SPSS statistical package version 25, and Graphpad Prism 7.0 software. All data were presented
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as the mean * SD. P-values <0.05 were considered statistically significant. Statistical differences
were determined using unpaired, two-tailed Student’s t test. Statistically significant differences in

Kaplan-Meier survival curves were determined by log-rank analysis.

Data and Code availability

Data are available in the Gene Expression Omnibus (GEO) under accession GSE135062 and
GSE135210. All custom code used in this work is available from the corresponding author upon

request.
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Figure legends

Figure 1. Brain aging enhances the aggressiveness of glioblastoma tumors.

(A) Pie chart comparing median ages of patients with WHO Grade Il astrocytoma (43.0) and
glioblastoma (59.0) according to the TCGA dataset. n=114 and 590, respectively. (B) Kaplan-
Meier analysis comparing overall survival of young and old glioblastoma patients in the TCGA-
IDH-wild-type dataset (n=368). p<0.0001. (C) Gene set enrichment analysis (GSEA), highlighting
synaptic signaling and cytokine receptor activity in young and old glioblastoma patients,
respectively. Gene expression profiles were obtained from the TCGA RNA-seq database. (D) Bar
graph comparing the pathways activated in young and old glioblastoma patients in the TCGA
dataset. (E) Volcano plot displaying the most upregulated genes in young and old glioblastomas
in the TCGA dataset. (F) Unbiased heat map clustering of RNA-seq analysis, TCGA dataset. (G)
RNA-seq analysis of the 11 neuron/synapse-associated genes in cluster 2 in (F). (H) Kaplan-

Meier analysis comparing the 4 patient groups in (F) (n=165; 5 G1, 28 G2, 85 G3, and 27 G4).

Figure 2. Tumors in aged mouse brains recapitulate human glioblastoma phenotypes.

(A) Hematoxylin and eosin (H&E) staining of young (left) and old (right) mouse brains following
intracranial injection of ms7080 cells. Scale bars represent 2 mm (full brain section) and 100 um
(enlarged section). (B) Kaplan-Meier analysis comparing young and old mice following intracranial
injection of ms7080 cells (left; n=15 for young; n=10 for old) and young and old Scid mice following
intracranial injection of human 1051X1 cells (right; n=5 for young and old). (C) Comparison of the
median survival days of young and old mice following intracranial injection in 4 mouse
glioblastoma models (ms7080-AR006) and 1 patient-derived tumor model (1051X1). (D) Principal
component analysis (PCA) of RNA-seq data comparing young and old tumors derived from
ms7080 cells. (E) GSEA displaying the indicated pathways activated in young and old ms7080
tumors. (F) KEGG enrichment analysis of RNA-seq data for comparison between young tumors
and old tumors. (G) RT-gPCR analysis of inflammatory markers in young and old ms7080 tumors.

28


https://doi.org/10.1101/2020.10.10.334748

10

15

20

25

Data are the means + SD (n=3). **p<0.01, ***p<0.001. (H) Venn diagram showing shared
upregulated mRNAs in young and old glioblastomas in TCGA data and ms7080 tumors. (1)
SLITRK6 mRNA expression levels in human glioblastoma tissues, obtained from the TCGA
dataset (left) and by RT-gPCR data (right; n=8 for young; n=9 for old). **p<0.01. (J) RNA-seq
(left) and RT-qPCR (right) analyses of Slitrk6 mRNA levels in young and old ms7080 tumors (n=9
for young and old). *p<0.05. (K) Kaplan-Meier analysis of OS of old glioblastoma patients in the
TCGA dataset (n=63). (L) Representative IHC analysis of SLITRK6 signals in young and old
human glioblastoma tissues. Scale bar represents 100 um. (M) Intensity scoring of SLITRK6
signals detected by IHC in young and old human glioblastoma tissues (n=10 for young and old).
(N) Representative IHC images for SLITRK6 in young and old mouse tumor tissues. Scale bar

represents 100 pum.

Figure 3. Pre-exposure of old brains to young blood reverses glioblastoma phenotype.

(A) Schematic of the chronological order for parabiosis connecting young and old mice, followed
by disconnection and tumor challenge (ms7080). (B) H&E staining of the brains indicated. Scale
bars represent 2 mm (left) and 100 um (right). (C) Kaplan-Meier analysis comparing the survival
of each mouse group following injection of ms7080, ms6835, and NSCL61 (n=18, 12, 12 total,
respectively). *p<0.05, **p<0.01, ***p<0.001. (D) KEGG enrichment analysis of RNA-seq data for
comparison between Old-para and Old-cont tumors. (E-F) Slitrk6 mRNA expression levels by
RNA-seq (E) and RT-gPCR (F) analyses of mouse tumors. Data are the means + SD (n=3 each).
**p<0.01, **p<0.001. (G) Representative IHC analysis of SLITRK6 expression levels in old-cont
and old-para mouse tumors. Scale bars represent 100 um. (H) PCA comparing blood samples
from young and old mice. (I) Heat map of LC/MS data with indicated blood samples (n=5 for young
and old). (J) Metabolite pathways upregulated in young blood. (K) Quantitative analysis of NAD,
NADP, NMN, and NAM levels in blood, measured by LC/MS (n=14 for young-cont and old-cont;
n=3 for old-para). *p<0.05, **p<0.001. (L) Quantitative analysis of NAD*, NADP, NMN, and NAM
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levels in normal cerebral cortices, measured by LC/MS (n=9 for young-cont; n=8 for old-cont; n=3

for old-para). *p<0.05.

Figure 4. Systemic pre-treatment with NMN diminishes tumor aggressiveness.

(A) Schematic of the timing of NMN administration before tumor challenge (ms7080) in 16 m.o.
mice. (B-D) Representative H&E staining (B), rate of necrosis (C), and Kaplan-Meier survival
analysis (D) of the indicated mouse brains. In (B) scale bars represent 2 mm (whole brain) and
100 um (enlarged field); in (C) n=5 mice per group; in (D) left, n=10 for old, n=9 for NMN-before-
tumor with ms7080 tumors; middle, n=5 for old, n=5 for NMN-before-tumor with ms6835 tumors;
and right, n=5 for old and NMN-before-tumor with NSCL61 tumors. (E) Kaplan-Meier survival
analysis of mice with ms7080 tumors treated with NMN after tumor challenge (n=10 for old; n=7
for NMN-after-tumor). (F) KEGG enrichment analysis of RNA-seq data for comparison between
old tumors and NMN-before-tumor tumors. (G-H) Slitrk6 mRNA levels by RNA-seq (G) and RT-
gPCR (H) analyses of ms7080 tumor. Data are the means + SD (n=3). *p<0.05, **p<0.01. (I)
Representative IHC images for SLITRK6 in ms7080 tumors (old and NMN-before-tumor). Scale
bars represent 100 um. (J) Schematic representation of the experiments in (K-N). (K) RT-gPCR
analysis of the levels of Slitrké mRNA in 7080X1-old and -NMN-before-tumor cells. Data are the
means + SD (n=3). *p<0.05. (L) Representative H&E staining of mouse brains following
intracranial injection of 7080X1-old and -NMN-before-tumor cells. Scale bars represent 2 mm
(left) and 100 um (right). (M) Rate of necrosis in 7080X1 tumors (7080X1-old and 7080X1-NMN-
before-tumor) (n=5 each). (N) Kaplan-Meier survival analysis of 7080X1-bearing mice following
intracranial injection of 5x10° cells (left, n=7 for 7080X1-old; n=8 for 7080X1-NMN-before-tumor),

5x10* cells (middle; n=5 each), and 5x10° cells (right; n=5 each).

Figure 5. Rejuvenation of neuronal gene signature in normal cortices by NMN treatment.
(A) Schematic illustration of the timing of NMN administration and sample collections. (B) Heat
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10

15

20

25

map of RNA-seq data of indicated normal cortical samples (n=3 for young, old, and old-NMN; n=4
for old-para). (C) PCA comparing young, old, old-para, and old-NMN mouse cortices. (D) PCA
comparing genes associated with neurons, astrocytes, oligodendrocytes, and microglia in normal
cortices (n=3 for each group). (E) Ingenuity pathway analysis of RNA-seq data indicating the
activation of specific processes in indicated mouse cortices. (F) Schematic of the immobilization
of Cytidine 5-monophosphate (CMP) and NMN on agarose beads. (G) Flow chart of the
methodology to enrich proteins through the LC-MS/MS experiments with patient-derived glioma

spheres.

Figure 6. BDNF is a key effector of the response to glioma by the young brain.

(A) Representative IHC analysis of SLITRK®6 levels in normal cortices of young, old, and old-NMN
mice. Scale bar represents 100 um. (B) List of inhibitory and activating regulators identified by
RNA-seq analysis with normal cortices in young, old, and old-NMN mice. (C) Function map of
BDNF downstream genes regulated in old cotices compared to young cortices (left) and to old-
NMN cortices (right). Red indicates upregulated and green indicates downregulated mRNAs. The
shape corresponds to the significance. (D) RT-gPCR analysis of the levels of total BDNF mRNA
as well as BDNF exons 1, 2, 4, and 6 in old and old-NMN cortices. Data are the means + SD
(n=6). **p<0.001. (E) ELISA analysis of BDNF levels in mouse blood; data are the means + SD
(n=4). *p<0.05, **p<0.01. (F) RT-gPCR analysis of the levels of Ntrk2 (TrkB) and Ngfr (p75"")
mMRNAs in young, old, and old-NMN cortices. Data are the means + SD (n=6 each). **p<0.01,
***p<0.001. (E) RT-gPCR analysis of Nfkb1, Nfkb2, and Ccl2 mRNAs, encoding inflammatory
markers, in young, old, and old-NMN cortex. Data are the means + SD (n=6). ***p<0.001. (G)
Immunoprecipitation (IP) analysis with anti-BDNF antibody followed by immunoblot for SLITRK6
in ms7080 tumors. Input tumor lysates and IgG IP were included as positive and negative controls,

respectively.
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Figure 7. Decline in BDNF levels contributes to aggravating tumor phenotype in old brains.
(A) Schematic of the timing of NMN administration together with ms7080 challenge in wild-type
(WT) and BDNF*" mice. (B) H&E staining analysis of mouse brains bearing m7080 tumors in
BDNF*" mice with and without NMN pre-treatment. BDNF*"-NT indicates without NMN pre-
treatment. Scale bars represent 2 mm. (C) Kaplan-Meier survival analysis of WT (n=5 for NT and
NMN-before-tumor) and BDNF*- (n=5 for NT and NMN-before-tumor) mice bearing ms7080
tumors following NMN pre-treatment, compared to control mice. (D) Schematic of the
chronological order for parabiosis of old mice with old, young WT, or BDNF*- mice together with
ms7080 injection. (E) H&E staining analysis of brains in Para-WT mice (left), compared to Para-
BDNF* mice (right). Scale bar represents 2 mm. (F) Kaplan-Meier survival analysis of the
indicated mice with parabiosis (n=5 for each). (G) Schematic of the NAD*-BDNF-mediated

signaling hypothesis in young and old glioblastomas.

Supplementary figure legends

Figure S1 (complements Figure 1).

(A-B) Kaplan-Meier curve comparing overall survival (OS) of young and old glioblastoma patients
in the TCGA-GBM (A) and TCGA-WT (B) datasets (n= 590 and 368, respectively). p<0.0001. (C)
Table comparing OS and progression-free survival (PFS) in WHO Grade Ill astrocytomas, as well
as young and old glioblastoma patients. (D-F) Kaplan-Meier curve comparing OS of young and
old glioblastoma patients in the Rembrandt (D), GSE36245 (E), and GSE13041 (F) datasets. (G)
Pie chart comparing the frequency of glioblastoma molecular subtypes in young and old

glioblastoma patients in the TCGA IDH-WT dataset.

Figure S2 (complements Figure 1).

(A) GSEA plots of genes associated with neuronal/synaptic pathways in young glioblastoma
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patients. Gene expression data are obtained from the TCGA database. (B) GSEA plots of genes
implicated in inflammation in old glioblastoma patients. Gene expression profile data are obtained

from the TCGA database.

Figure S3 (complements Figure 1).
(A-C) Kaplan-Meier survival analysis comparing OS of glioblastoma patients with high expression
of 11 neuron/synapse associated genes in the HT_HG-U133A (A), AgilentG4502A_07 (B), and

HuEx-1_0-st-v2 (C) datasets.

Figure S4 (complements Figure 1).
(A-B) Kaplan-Meier survival analysis comparing OS of glioblastoma patients based on the levels

of 11 neuron/synapse-associated genes in the TCGA (A) and Rembrandt (B) datasets.

Figure S5 (complements Figure 2).

(A) Representative H&E staining analysis of mouse brains following intracranial injection of
ms6835 (left), NSCL61 (middle), or AR0O6 (right) cells. Scale bar represents 100 um. (B) Kaplan-
Meier curve comparing young and old mice following intracranial injection of mouse ms6835 (left;

n=3 for each), NSCL61 (middle; n=5 for each), or AR006 cells (right; n=4 for each).

Figure S6 (complements Figure 2).

(A) Upregulated gene sets in addition to those in Figure 2E in young and old glioblastoma
patients. Gene expression profile data were obtained from the TCGA database. (B-C) Reactome
enrichment analysis (B) and Gene ontology (GO) pathway analysis (C) of RNA-seq data for

comparison between young and old mouse tumors.

Figure S7 (complements Figure 3).
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(A-B) H&E staining of Young-cont (top), Old-cont (middle) and Old-para (bottom) mouse brains
following intracranial injection of ms6835 (A) and NSCL61 (B) cells. Scale bars represent 2 mm.
(C) H&E staining of Young-para mouse brains following intracranial injection of ms7080 cells.
Scale bars represent 2 mm. (D) H&E staining of young-cont (top left), old-cont (top right), old-cont
(bottom left), and old-young (bottom right) mice brains 1 month after intracranial injection of

ms7080 cells. Scale bar represents 2 mm.

Figure S8 (complements Figure 3).
(A-B) Reactome enrichment analysis (A) and GO pathway analysis (B) of RNA-seq data for

comparison between Old-para and Old-cont tumors.

Figure S9 (complements Figure 4).

(A) Representative H&E staining of young, old, and NMN-before-tumor mice at one month after
intracranial injection of ms7080 cells. Scale bar represents 2 mm. (B) Ratio of tumor tissues with
microvascular proliferation (MVP). Data are the means £+ SD (n=5 each). (C) WHO grading of
tumor tissues in young, old, and NMN-before-tumor mice at one month after intracranial injection
of ms7080 cells (n=5 for each). (D) Kaplan-Meier curve comparing survival of young, old, and
NMN-before-tumor mice following intracranial injection of AR006 cells (n=3 for each). (E) H&E
staining of ms7080-injected mouse brains together with post-injection NMN treatment (NMN-
after-Tumor). Scale bar represents 2 mm. (F) Quantitative analysis of NAD* level by LC/MS in

ms7080 tumors in young, old, and NMN-before-tumor mice (n=5 each). ***p<0.001.

Figure S10 (complements Figure 4).
(A-B) Reactome enrichment analysis (A) and GO pathway analysis (B) of RNA-seq data for

comparison between NMN-before-tumor and old tumors.
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Figure S11 (complements Figure 4).
RT-gPCR analysis of mMRNAs encoding neuroinflammation factors (A) and NAD+ pathway-related
factors. (B) Gene expression programs in cortical tissues of young, old, and NMN-before-tumor

mice. Data are the means = SD (n=3 each).

Figure S12 (complements Figure 4).

(A) Proliferation in culture of 7080X1-old and -NMN-before-tumor cells. Data are the means + SD
(n=3 each). *p<0.05. (B) Log-dose response curves of sphere formation assays of 7080X1-young,
-old, and -NMN-before-tumor cells. Data are the means + SD (n=5 each). (C) RT-gPCR analysis
of the expression levels of CD133 mRNA in 7080X1-old and -NMN-before-tumor cells. Data are
the means £ SD (n=3). *p<0.05. (D) GO analysis of RNA-seq data showing the list of activated
biological processes in 7080X1-NMN-before-tumors compared to 7080X1-old tumors. (E) Ratio
of 7080X1 tumor tissues with microvascular proliferation (MVP). Data are the means + SD (n=5
each). (F) WHO grading of 7080X1 tumor tissues at one month after injection (n=5 for each). (G)
Quantitation of the levels of NAD*, NADH and NAD*/NADH in 7080X1-old and -NMN-before-
tumor cells cultured in low-nicotinamide (NAM) media (top) and normal media (bottom), using

luminescence [relative light units (RLUS)]. Data are the means £ SD (n=3 each).

Figure S13 (complements Figure 5).

(A) PCA of RNA-seq analysis of young, old, and old-NMN cortical and striatum tissues. (B) CMP
and NMN in solution after incubation with specific beads. (C) CMP and NMN attached to the
beads after wash and elution. (D) Quantitative analysis of NAD* and NADP levels in young, old,

and old-NMN mouse blood samples. Data are the means + SD (n=10 each). **p<0.01.

Figure S14 (complements Figure 6).
RT-gPCR analysis of BDNF mRNA as well as exons 1, 2, 4, and 6 of BDNF mRNA (A) and
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133

134

Nfkb1, Nfkb2, and Ccl2 mRNAs, encoding neuroinflammatory markers (B), in young, old, and

old-NMN cortices. Data are the means + SD (n=6 each). **p<0.01, ***p<0.001.

Figure S15 (complements Figure 6).

(A) Uncropped western gels for SLITRK6 (top) and BDNF (bottom).
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Figure 1. Brain aging enhances the aggressiveness of GBM tumors
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Figure 2. Tumors in aged mouse brains recapitulate human GBM phenotypes
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Figure 3. Exposure of old brains to young blood reverses GBM response
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Figure 4. Systemic treatment with NMN diminishes tumor aggressiveness
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Figure 5. Rejuvenation of neuronal gene sighatures by NMN treatment
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Figure 6. BDNF as a key molecule of younger phenotype and anti-aging treatment
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Figure 7. BDNF as the diminished protein responsible for aggravated tumor phenotype in old brains

A

B

NMN treatment & Tumor challenge

Intracranial injection

ms7080 (BDNF*-)

BDNF*--NT BDNF*--NMN-before-Tumor

NMN
(300mg/kg/day)
|-
»
3 weeks
WT-NMN-before-Tumor C
ms7080
100 H — WT-NT
| ]:
L'_I —— WT-NMN-before-Tumor *
NMN S i : —— BDNF*-NT
(300mgrkg/day) B 50 _T: —— BDNF*-NMN-before-Tumor
> s L
» 5 | .:
3 weeks @ b
[N
&S L
0 . . S
BDNF*--NMN-before-Tumor 0 20 40 60 80
Days
D . Disconnection & E ms7080 (Parabiosis)
Parabiosis L
Intracranial injection Para-WT Para-BDNF*-
old old
5 weeks
—> —_— >
Old-cont
Young
wr od i
5 weeks F
} } ms7080
100 A
( = — Old-cont
o — Para-WT
. Para-WT s — Para-BDNF* "
oung =
BDNF*- Old g 50 1
g
5 weeks @
—> —_— >
“ I \ » (( } “ J 0 T T T "
0 20 40 60 80
Para-BDNF*- Days

G Glioblastoma in young brain

Neuronal activity-driven
lower malignancy

Glioblastoma in old brain

Neuro-inflammation-driven
higher malignancy

activation
administration


https://doi.org/10.1101/2020.10.10.334748

Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 7
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Supplementary Figure 8
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Supplementary Figure 9
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Supplementary Figure 10

Reactome enrichment (Old vs NMN-before-Tumor)
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Supplementary Figure 11
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Supplementary Figure 12
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Supplementary Figure 13
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Supplementary Figure 14
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Supplementary Figure 15
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