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Optical Tweezer Stretching of Miniature
Coarse-Grained Red Blood Cells
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ABSTRACT Due to the high computational cost of full-cell coarse-grained molecular dynamics modelling, being
able to simulate ”miniature" cells that effectively represent their full-sized counterparts would be highly advantageous.
To accurately represent the morphological and elastic properties of a human red blood cell in silico, such a model
is employed utilising the molecular dynamics package LAMMPS. The scale invariance of the model is first tested
qualitatively by following the shape evolution of red blood cells of various diameters, then quantitatively by evaluating
the membrane shear modulus from simulations of optical tweezer-style stretching. Cells of physical diameter of at
least 0.5µm were able to form the characteristic biconcave shape of human red blood cells, though smaller cells
instead equilibrated to bowl-shaped stomatocytes. A positive correlation was found between the cell size and both
magnitude of deformation from optical tweezer stretching and scaled shear modulus, indicating a lack of scale
invariance in the models elastic response. However, the stable morphology and measured shear modulus of the
0.5 − 1.0µm diameter cells are deemed close enough to past in vitro studies on human red blood cells for them to
still offer valuable use in making simplified predictions of whole-cell mechanics.

SIGNIFICANCE The study tests the invariance of a coarse-grained molecular dynamics red blood cell
(RBC) model to system scale, asking whether it is qualitatively and quantitatively viable to perform whole-
cell simulations in "miniature". Simulating cells at a reduced scale greatly improves computational speed,
making possible computational experiments that would otherwise be too computationally demanding. This
facilitates the simulation of larger systems, both in number of whole-cells, and cells of greater structural
complexity than the RBC. More generally, the accurate and efficient modelling of biological cells allows
computational experimentation of real-world systems that would be very challenging or impossible to perform
in vitro. Therefore, miniature-cell modelling could help both direct development in whole-cell modelling, and
also developments in more widespread bio-physical studies.

1 INTRODUCTION
The red blood cell (RBC) is the simplest and most well researched blood-borne cell, making it an ideal candidate on which
to develop techniques in whole-cell computational modelling (1–3). The RBC is a highly deformable, "rubbery" cell, able
to recover its shape after squeezing through very narrow capillaries (4). The cell is primarily comprised of a 2-component
membrane, enclosing a cytoplasm fluid interior. Due to the entirely viscous nature of the cytoplasm, the cell membrane is
solely responsible for the elastic response of the cell (5). As the membrane thickness is much lower than the diameter of the
whole cell, it has 3D structure describable by 2D elastic parameters (6). The resistance to extension of the whole-cell is then
characterised by two properties of the membrane: the out-of-plane bending rigidity �, and the in-plane shear modulus `B (7).
The RBC membrane is composed of a lipid bilayer and distinct cytoskeleton network, connected by transmembrane proteins.
The lipid bilayer is essentially a 2D fluid-like structure embedded in 3D space, resistant to bending, but unable to sustain
in-plane shear stress due to its highly diffusive nature (8). Conversely, the cytoskeleton provides the resistance of the membrane
to shear deformation, being a structural network bound to the inner surface of the bilayer. Therefore, the bending rigidity � of
the cell membrane is dominated by the lipid bilayer, whereas the shear modulus `B is dominated by the cytoskeleton (8–10).

Many different formalisms have been used to develop computational models of RBCs. To date, the most popular have been
continuum methods such as the finite element method (FEM), and the particle-based dissipative-particle-dynamics (DPD)
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approach (2, 3, 11). However, recently coarse-grained molecular dynamics (CGMD) has seen increasing popularity (8, 12–15).
In CGMD, an atomic system is coarse-grained (CG) into a more computationally efficient representation, with CG particle
interactions managed by inter-particle potentials. The length-scale of the system is defined by a specific parameter of the system,
such as the thickness of the bilayer. The elastic properties are then dictated by the broader physics of the complete system
and not explicitly specified by the interaction potentials. Conversely, comparative DPD and continuum models require the a
priori knowledge of elastic moduli, made explicit within the model functions (15, 16). Therefore, CGMD is unique in allowing
evolution of these properties, crucially enabling the testing of how elastic parameters change under new stimuli.

However, CGMD is very computationally expensive, with membrane models historically restricted to simulation of only
small patches of membrane (8, 17). Only recently has a full-scale CGMD RBC been modelled in its entirety (15). Despite being
an implicit-fluid model with notable care taken to ensure computational efficiency, simulating the full-scale cell (consisting of
3.2 million particles) for 100, 000 time-steps on 20 CPU cores still took on the order of a day. An alternative speed-up approach
has been to simulate "miniature" cells, consisting of far fewer particles, but whilst adopting the same length scaling (14, 18).
These cells thus have a significantly reduced physical diameter, but assume elastic properties equivalently representative to those
of a full-scale cell. To our knowledge however, no quantitative verification of this "miniature cell" approach has been conducted.

To date, most CG particle models of RBCs have only been validated qualitatively, by studying their shape at rest and under
flow conditions (19). To determine the membrane shear modulus, experimental techniques typically involve applying some
external force in order to deform it. Historically, most quantitative data on the RBC shear modulus has come from the technique
of micropipette aspiration (20). By drawing a protrusion of the membrane into a pipette, the relationship between applied
pressure and protrusion extension allows approximation of `B , creating an accepted range for the RBCmembrane of 4−10µN/m
(21). Recently however, optical tweezers have seen increasing popularity as an alternative (12, 21–23). Optical tweezers make it
possible to apply pN-level forces to a membrane, either directly or through manipulation of attached microbeads (5). In the
latter case, two silica microbeads attached at opposite ends of a cell membrane can be used like handles to stretch the cell.
Analogously to the micropipette technique, the gradient of the resulting force-extension curve then allows approximation of
`B (5, 7). Analysis of deformation responses from the optical tweezers technique has shown a wide range in calculated RBC
membrane shear modulus, with Henon et al. finding 2.5µN/m, Mills et al. 5.3 − 11.3µN/m, and Sleep et al. up to 200µN/m
(5, 7, 21).

This work gives, to the best of our knowledge, the first quantitative assessment of the "miniature cell" approach to CGMD
whole-cell modelling, by testing the scale invariability of a fundamental elastic parameter of a human RBC; the membrane
shear modulus `B . Firstly, the simulation methodology is outlined, before attempting the evolution of initially spherical cells of
various model diameters to a biconcave stable state. The evolved whole-cell systems are then used as input for simulated optical
tweezer stretching tests, with `B determined via a dimensional scaling. These results are then compared to past in vitro studies,
and used to discuss the invariability of aspects of the model to the physical cell diameter.

2 MATERIALS AND METHODS
The model used in this work follows closely that of Fu et al. (14), who built upon the lipid membrane model of Yuan et al.
(24). The model is that for a CGMD, 2-component RBC, with explicit representations of the lipid bilayer, cytoskeleton, and
internal and external fluid particles (see Figure 1A). The lipid bilayer is represented as a one-particle-thick monolayer of CG
spherical particles, each representing a large number of constituent lipids. In determining a distance dependant function for
lipid-lipid interactions in the bilayer, it is challenging to find a form that produces the correct diffusion of particles. It has been
shown that the classical 12-6 Lennard-Jones (LJ) potential only produces two membrane phases, a solid at low temperatures
and gas at high temperatures (25). At small separations the inter-particle forces are too strong to permit particle diffusion, and at
large separations too weak to keep particles bound together. To provide the intermediate fluid phase necessary to allow such
behaviour, a two branch interparticle function can be adopted (24).

This work adopts the lipid-lipid interaction potential of Yuan et al. (24), hereafter referred to as the Yuan potential.
The Yuan potential has been shown to represent well the mechanical properties of a RBC bilayer membrane, including
a diffusive fluid phase, due to the separation of attractive and repulsive branches (14). It has an orientational dependence
which allows the complex lipid hydrophobicity to be represented, being essential for the self-assembly of the bilayer in an
aqueous environment (8, 26). The membrane properties of spontaneous curvature 20, bending rigidity � and diffusivity �
are conveniently characterised by three Yuan model parameters, \0, `. and Z respectively. \0 signifies the most energetically
favourable angular configuration between particles, with `. weighting the energy penalty for deviation away from this. Z
controls the slope of the attractive branch of the potential. The potential also features the LJ-like parameters of length f, energy
well depth n and cut-off radius A2 . See the Supplementary Material S1 for further detail on the formalism of the potential.

While bilayer-bilayer interactions are managed by the Yuan potential, all other particle-particle interactions operate through
classic 12-6 LJ potential functions. Unless otherwise stated, interactions operate under parameters following Fu et al. (14),
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Figure 1: (A) Pictorial representation of the RBC membrane components, showing the cytoskeleton network attached to the lipid
bilayer. Actin junction complexes (actin protofilament and protein band-4.1) connect the spectrin tetramers. The cytoskeleton is
tethered to the lipid bilayer via transmembrane proteins - immobile band-3 at the spectrin-ankyrin binding sites and glycophorin
at the actin junctional complexes. (B) Graphic of our pre-evolved (spherical) RBC, with each CG particle type shown in
colour: (red) lipids, (orange) trans-membrane proteins, (green) spectrin tetramers, (black) junction complexes, (yellow) ankyrin,
(purple) internal fluid and (grey) external fluid. The graphic is split into two mirror halves, to make the distinct particle types
clearer visually. The particles described in Figure B are highlighted in Figure A by opaque circles of corresponding colour.

Particle Interaction Pair Potential f n A2DC Z `. sin \0
fluid-fluid LJ 2.7 0.2
fluid-cytoskeleton LJ 1.0 0.2
cytoskeleton-cytoskeleton LJ 1.0 0.2
bilayer-bilayer Yuan 1.0 1.0 2.6 4 3 −1.41 × 10−3*
bilayer-cytoskeleton LJ 1.0 0.2
bilayer-fluid LJ 1.0 0.2
Particle Type <"

bilayer, cytoskeleton 0.5*
fluid 1.0*

Table 1: Default pair potential parameters for each CG particle interaction type within the model, all given in LJ units. The
mass of each CG particle type is also given. ’Fluid’ refers to both internal and external solvent. ’Bilayer’ refers to the lipids and
transmembrane proteins. ’Cytoskeleton’ refers to spectrin, junction complex and ankyrin particles. Values that differ from the
Fu et al. (14) implementation are marked with a *.

summarised in Table 1. Assuming a typical RBC curvature 20 ∼ −0.5µm−1, the membrane curvature is parameterised as
sin \0 = −1.41 × 10−3 (27, 28) (see the Supplementary Material S1 for detail on this calculation). A Hookean harmonic
bond-potential is also used to couple the transmembrane proteins of the lipid bilayer to the cytoskeleton. The characteristic
biconcave RBC shape can only be attained if the spectrin network undergoes constant structural remodelling, so as to relax the
in-plane shear elastic energy to zero (8). One way to ensure the cytoskeleton is initially stress free is to modify the equilibrium
bond length in the bond-potential so that the bond energy is initially zero. This is achieved by making the equilibrium bond
length a variable corresponding to the initial bond lengths between each particle pair, rather than a constant as in the standard
Hookean potential (14).

Simulations are run utilising the LAMMPS molecular dynamics coding package (29), operated as a library within Python.
LAMMPS handles the thermodynamic evolution of the system, while particular biophysical calculations are performed in the
parent Python code. Initial particle configurations are input from an independent Python code which generates a 3D "supercell"
volume containing the configuration of pseudo-particle types as required (see Figure 1B), alongside particle classifications
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interpretable by LAMMPS. Simulations are performed in the system of non-dimensionalised LJ units. However, to compare
results with past in vitro studies, quantities must then be converted to SI units. In the presented formalism, each variable 8 is
associated with a dimensional conversion parameter f8 which relates the non-dimensional "model" LJ unit (denoted 8" ) to
"real" SI unit (denoted 8'). For example, the conversion of a length A from LJ units to meters is denoted A'[m] = fA [m]A" . The
unit conversions used in this work are length-scale fA = 5nm, time-scale fC = 80ns, energy-scale fn = 1.8× 10−20J, force-scale
f� = 3.5pN, pressure-scale f% = 1.4 × 105N/m2, temperature-scale f) = 1.3 × 102K and mass-scale f< = 4.9 × 10−6kg. All
simulations were run on 1 − 4 nodes of the local supercomputer, with each node having two 14 core 2.4 GHz Intel E5-2680 v4
(Broadwell) CPUs, and 128 GB of RAM. See the Supplementary Material S2 and S4 for detail on the conversion of each unit
and benchmark of the model respectively.

Implementation of the Yuan potential is verified against Fu et al. (14) by testing of the bending rigidity and diffusivity from
the thermal fluctuations of a patch of isolated bilayer membrane. Fu et al. sets the mass of the bilayer particles to <; = 1

8f< and
all other particles to 3

4cf<. However, we found that in our implementation of the model this failed to reproduce comparative
elastic and diffusive properties. Instead, we found better agreement by setting the mass of all membrane particles to 1

2f<, and
all other particles to f<. This gave a rigidity of � = 18.3:�) , matching well with the result of � = 18:�) by Fu et al. (14).
Similarly, an approximate simulation time scale of fC = 80ns was then obtained from the diffusivity in the bilayer, matching
closely with the value fC = 100ns of Fu et al. See the Supplementary Material S3 for detail regarding these tests.

3 RESULTS
Cell Equilibration
To test the miniature-cell methodology, whole-cells are generated at various model diameter �" , with smaller cells comprising
proportionally fewer CG particles. Each cell is generated as an initially spherical configuration of CG particles suspended
within a fluid of water-like CG particles. The cell membrane is generated as two concentric spherical shells of bilayer and inner
cytoskeleton, enclosing an internal CG fluid representing the cytoplasm. Each particle type is then thermodynamically activated
sequentially as follows:

• An isothermal-isobaric (NPT) ensemble is applied to the external water, and the canonical ensemble (NVT) to the internal
fluid over 25,000 steps.

• The spectrin, ankyrin and junctional complexes of the cytoskeleton are then equilibrated with the NPT ensemble over
25,000 steps.

• The lipids and transmembrane proteins in the bilayer are the last to be equilibrated, using the NVT ensemble over 50,000
steps.

Each cell is equilibrated from its initially spherical state with time-step length g = 0.02fC , pressure %" = 0.05, and temperature
ramping from )" = 0.02 to )" = 0.23 (14). For these initial shape-evolution simulations, some model parameters are changed
from their default values: the membrane particles have their mass increased to f<, and the energy well depth in the Yuan
potential is increased to n = 1.5, to strengthen the lipid bindings, temporarily.

Membrane folding is then induced by reducing the initial number of internal fluid particles #� � ,0 to a final number #� � (see
Table 2). Small, equal and opposite forces are also applied to circular areas on each -. face of the cell to promote biconcave
indents to manifest perpendicular to the -. -plane. Particles are deleted gradually to a final fraction of internal fluid particles
=� � = #� �/#� � ,0, differing with cell size. The rate of compression has an effect on both the equilibrium shape and stability
of the transition (6, 14). All cells have #� � reduced at a constant rate of 3% every 5000 time-steps, which was determined
to be most conducive to achieving a biconcave final state. The concave regions of the cells then develop gradually with the
compression. Deviation from this rate results in alternative unwanted vesicle transitions such as to prolate, dumbbell rods, or
inward or outward budding (see Yuan et al. for examples (6)).

Only cells with diameter �" ≥ 100 were able to achieve a biconcave discocyte final state, with smaller cells instead
relaxing to bowl-shaped stomatocytes (see Table 2). The degree of biconcavity in a healthy RBC can be characterised by
the volume-radius ratio +/'3 = 1.57 (28). An optimal particle fraction =� � for each cell is found by slowly deleting internal
fluid particles until a target volume-radius ratio is reached. =� � is found to be inversely proportional to �" which achieves a
consistent volume-radius ratio between cell sizes. Furthermore, below a critical ratio +/'3 . 1.9 the internal fluid becomes
unable to fill the region between the two enclosing membrane edges, closing the gap. This critical ratio does not appear to have
a direct relationship with cell-size. However, the effect is more pronounced for the biconcave cells, and thus suppressed in the
bowl-shaped �" < 100 cells. To maintain consistency between cells, =� � is chosen such that cells are compressed to a ratio
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Final State
�" 50 75 100 125 150
+/'3 2.02 1.90 2.08 2.03 2.00
=� � 0.68 0.49 0.42 0.37 0.32
Bilayer particles 8,346 18,704 33,400 52,069 75,156
Total particles 34,944 114,592 269.296 521,437 896,703
Compression steps 55,000 85,000 95,000 105,000 115,000

Table 2: Equilibrated final states of each RBC cell size, with final ratio +/'3 achieved from chosen compression fraction
=� � . The number of bilayer to total particles is also given, as-well as the number of steps run in the compression stage of the
simulation.

+/'3 = 2.0 ± 0.1, slightly higher than that of a healthy RBC (see Table 2). However, qualitatively, the �" ≥ 100 cells relax to
morphologies closely resembling those of a healthy human RBC (see Table 2).

Optical Tweezers
Once each cell has been equilibrated to its stable state, it can be used as input for subsequent simulations of optical tweezer
stretching. The Yuan potential and membrane particle masses are now set back to their defaults, n = 1.0 and 1

2f< respectively.
Stretching is applied by assuming the influence of two spherical microbeads, each of radius '"

1403
= 0.05c�" (equivalent to

2.5µm diameter at a full-scale RBC), centred on those lipid particles having the minimum G− and maximum G+ coordinates
(see Figure 2A). All the lipids within '"

1403
of these extremities are designated "bead" particles. Stretching forces − 1

2�G and
+ 1

2�G are then applied, split evenly across only these #− and #+ "bead" lipids respectively.

Figure 2: (A) Graphic showing the -. -plane projection of a cell at initial biconcave equilibrium, with contact areas of each
bead designating #± lipid particles as "bead" particles. (B) Graphic showing the cell after stretching has been applied by forces
± 1

2�G , where each force is split evenly across only those designated #± bead-particles respectively. The axial �G and transverse
�H diameters are also shown, with intersecting (green) lines indicating the contact planes from the beads.

As an increasing force is applied, the membrane will stretch along the axial diameter �G and contract along the transverse
diameter �H (see Figure 2B). The resulting force-extension profiles can then be compared against the literature, and `B can be
approximated in the low deformation regime (5). Following the recommendation of Siguenza et al. (23), �G is taken as the
distance between interior planes intersecting the cell at the inner edge of each bead (see Figure 2B). �H is then the distance
between those lipids with the minimum and maximum H coordinates in the plane perpendicular to �G .

Following Henon et al. (5), assuming linear elastic theory - valid in the low deformation region - applying equal and
opposite forces ± 1

2�G at diametrically-opposed regions of the RBC surface will incur a change in transverse diameter

�H,0 − �H =
�G

4c`B

(
1 +

(
1 − c

2

) `B
 �

)
, (1)
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with �H,0 being the stable transverse diameter before stretching. Given that `B �  � for a RBC membrane (6), this expression
can be reduced to

�H,0 − �H =
�G

4c`B
, (2)

which has been shown to be approximately equivalent for discotic and spherical cells (5).
To represent each cell as a full-size RBC, additional scaling factors are introduced. A constant force-per-particle

5G = 2�G/(#+ + #−) is maintained with �" by including a factor Γ� = (�"/�"
<8=

)2 in the total applied force, relative to the
diameter �"

<8=
= 50 that the model was originally parameterised for. Additionally, a length scaling ΓA =

(
�'RBC/(�

"fA )
)2 is

applied to Eq. 2, relative to the full-scale RBC diameter �'RBC = 8µm. Eq. 2 is thus applied as

ΓAfA

(
�"H,0 − �

"
H

)
=
[
f� 5

"
G (#+ + #−)

] 1
4c`B

, (3)

including conversion to SI units.
Plots of extension against time at given force are generated for each cell up to a maximum �'G = 210pN, with axial and

transverse extension ratios denoted by _G and _H respectively (see Figure 3A for an example). The force is applied in a step-wise
progression from �G = 0, alternating every 5 × 105 steps between periods of steady ramped increase, and being held constant to
allow the cell to stabilise. Each stage of force ramping applies an additional 5f� over 5 × 105 steps, corresponding to a rate of
440pN/s. Reduced axial and transverse force-extension curves are then produced (see Figure 3B), where the extension at given
�G is taken as the mean over the relevant stabilisation phase. The smallest (�" = 50) cell was unable to reach the maximum
force of 210pN due to critical membrane rupture occurring above 185pN. The largest (�" = 150) cell was unable to achieve a
maximum force above �'G = 200pN, due to computational limitations regarding simulation time and memory access at this
system size.

Figure 3: (A) Example plot of force and extension against time up to 210pN from the �" = 125 cell, showing both the axial
(red) and transverse (blue) deformation response. The plots from the other cell sizes are given in the Supplementary Material
S5. �G is increased gradually in a step-wise fashion, alternating between ramp and stabilisation stages every 5 × 105 steps.
(B) Plot showing the combined axial _G and transverse _H force-extension curves for each �" tested. The extension at given
force is taken as the mean of the respective stabilisation stage, with error given by the standard deviation in that mean. The
�" = 125 cell has a particularly large error at 210pN, due to having ruptured before the end of that stabilisation phase.

Over the force regime tested, all cell sizes show reduced deformation at given force compared with in vitro studies on healthy
human RBCs. The experiments of Mills et al. (21) saw peak extensions of _G = 2.0 ± 0.3 and _H = 0.5 ± 0.2 at maximum
force of 193pN. Similarly, the experiments of Suresh et al. (30) saw _G = 2.1 ± 0.2 and _H = 0.6 ± 0.1 at 193pN. At the same
force, our simulations have resulted in maximum extensions of _G = 1.32 ± 0.01 and _H = 0.81 ± 0.01 (being those from our
�" = 150 cell). In this high force regime, we have thus found extension roughly three times lower than in these comparative
studies (21, 30). The disparity is even greater in the low force regime, where at 39pN our maximum axial and transverse
extension are roughly ten times lower comparative to the Mills et al. experiment (21).

Regarding the shape of the extension-time curves, observations can be made on the smoothness of the curves, and how
continuous the trajectories are. All cells have extension curves follow the step-wise progression of the force, with each period of
force ramping producing an increased rate of extension, followed by a gradual flattening of the extension over the subsequent
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stabilisation phase (see Figure 3A and Figure S4). However, the overall rate of change of extension increases with force above
the low deformation regime. This observation is also represented in the reduced force-extension curves (see Figure 3B). The
rate of change of extension is initially approximately linear . 80pN, but then gradually increases with growing �G . As `B is
determined from the gradient of the force-extension curve, this behaviour is consistent with previous studies showing `B to be
variable over a large deformation regime (21, 31).

To calculate `B, cells are instead stretched from �G = 0 up to �'G = 80pN at the same rate of 440pN/s, but now without
stabilisation phases. `B is determined using Eq. 3 from the gradient within the low deformation limit of the resulting force-
extension curves (see Figure 4A). The low deformation regime is defined by the initial region within which the force-extension
response remains linear, deemed to be that up to 40pN. Above this region, the rate of extension begins to increase, and linear
elastic theory no longer holds, invalidating Eq. 3 (5). The axial and transverse diameters of all cell sizes are seen to randomly
fluctuate with time. RBC membranes are known to show shape fluctuation due to thermal noise, introducing an uncertainty in
_G/H (2). Such random fluctuations are seen to be increasingly prominent at small �" , with much greater noise in the extension
(see Figure 4A).

Figure 4: (A) Change in scaled transverse diameter against force for the �" = 50, 100, 150, 200 cells. The shear modulus is
then calculated according to Eq. 3 from the gradient in the low deformation limit, with dashed lines of best fit of corresponding
colour. (B) Evaluated scaled shear modulus against simulated cell size, with dashed line of best fit weighted by error. Standard
error is obtained from repeating each simulation 3 times.

Despite dimensional scaling, there appears to be a positive correlation between `B and �" (see Figure 4B). The range
`B = 6 − 10µN/m evaluated for our �" < 125 cells is within the accepted range of 4 − 10µN/m from in vitro micropipette
experiments on healthy human RBCs (21), while our �" ≥ 125 cells exceed this range (having `B = 11 − 15µN/m). However,
previous in vitro studies using optical tweezer techniques have produced a large range in values for the human RBC shear
modulus (`B ∼ 2.5− 200µN/m) (5, 7, 21). Therefore, we do not consider the higher shear modulii of our �" ≥ 125 cells to be
unreasonable for representation of a healthy RBC.

Comparing the reduced force-extension curves between cell sizes (see Figure 3B), we observe a distinct proportionality
with �" - larger cells have a greater deformation response than smaller cells when subject to the same force. If this trend
were to persist in our model up to a full-scale cell (that at �" = 1600), it could provide an explanation for the much lower
deformation response seen across our miniature cells compared to in vitro studies. Similarly, a positive trend is found between
`B and �" from evaluation in the low deformation limit (see Figure 4B). If this trend were to persist linearly, a full-scale cell
would expect `B ∼ 90µN/m, roughly an order of magnitude higher than the smallest cell tested. However, it should be noted
that due to computational limitations from poor model scaling (see Supplementary Material S4), it was infeasible to test cells of
�" & 200. Therefore, it is unclear whether these trends persist beyond the cell sizes tested, or indicate the start of a plateau in
the deformation response and measured shear modulus with �" .
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4 DISCUSSION
In the present computational study, we have observed variations with cell size in the shape of the stable state, shape of the
force-extension curve from optical tweezer-style stretching, and shear modulus as measured in the low-force regime. Only
cells of �" ≥ 100 evolved to biconcave discocytes, with smaller cells relaxing to bowl-shaped stomatocytes (see Table 2).
However, this is conceptually reasonable, due to the CG nature of the model. By considering all model sizes representative of a
full-sized RBC, �" essentially represents a degree of coarse-graining, as smaller cells are comprised of fewer particles. The
more CG a cell, the less versatile it is to shape transitions, due to the reduced number of degrees of freedom. Therefore, it is
not unexpected to have found a lower �" limit on the cells able to form the more complex biconcave shape, nor a complex
relationship between �" and optimal internal fluid fraction =� � .

The effect of cell shape on the stretching response was also investigated. Not only did cells evolve to different total
morphology (biconcave discocyte or stomatocyte), cells of the same size would also develop varied non-axial deformities within
these shapes. For example, cells would develop as non-axial discocytes where the cell thickness was non-uniform, or having
concave regions of varying depth and shape. Furthermore, the orientation of the evolved cell was not always ideal, with concave
regions not always manifesting directly perpendicular to the -. -face. These effects were particularly prominent in the smaller
cells and contributed to inconsistencies in the progression of the extension curves, where reorientation or reconfiguration of the
cell shape would produce abrupt changes in extension (see Figure S4). Crucially, these factors often resulted in stretching being
initiated on cells having non-axially symmetric -. cross-sections, where �G,0 6= �H,0. However, stretching tests of cells with
�" = 75 and �" = 125 and at a variety of initial shapes showed no consistent relationship between the total deformation
response and initial shape, in either case. This is consistent with a previous study, which found no significant effect of initial cell
shape on the evolution of �G or �H (23).

Over the deformation regime tested, all cell sizes showed a reduced extension for a given force compared with previous
studies (21, 30). This implies our model membrane to be stiffer than that of the RBCs tested in these studies. A notable
consideration to this is the effect of the model bending rigidity on the deformation response. While the Henon analysis
implicitly assumes the membrane bending rigidity to have a negligible influence on the deformation response, it has been
shown that for a given force, _G ∝ �−1/3, compared to _G ∝ `−2/3

B from the shear modulus (32). Following Fu et al. (14) we
calculated �' = 3.2 × 10−19J from an isolated patch of our lipid membrane (see Supplementary Material S3). Taking the value
`B = 11µNm/s from our �" = 125 cell, this indicates the bending rigidity of the bilayer to incur a negligible effect on the
whole-cell deformation response compared to the shear modulus (7). In a healthy RBC, the bending rigidity of the lipid bilayer
is 2-3 orders of magnitude larger than the cytoskeleton (8). However, our model cytoskeleton is very simple in construction,
being comprised of CG particles of uniform mass held together by standard 12-6 LJ potentials. Therefore, it is possible that the
stretching response is being partly dampened by an uncharacteristically high bending rigidity in the cytoskeleton.

More generally, it is challenging to create direct comparison between the force-extension curves generated in this in silico
study and past in vitro studies. Firstly, the force calibration methods of in vitro studies introduce large uncertainties, resulting in
a wide range of reported force measurements (21, 23, 31). Mills et al. (21) presented major revisions to the force calibration of
their initial work (22, 31), having initially estimated the maximum applied force to be double that from their revised calibration.
Furthermore, how the axial diameter is defined can be contentious between in vitro experimentation and our CGMD simulations.
In an optical tweezers experiment, the microbeads are physically bound to the cell surface. The axial extension _G can then be
directly determined by measurement of the relative displacement of the two beads (21, 23). However, in our simulations we
assume the effect from the microbeads by applying forces directly to designated regions of the lipid membrane. Without the
presence of explicit beads, _G must be determined from the relative displacement of some part of the cell surface, made more
challenging by the diffusive nature of the lipid particles. Following the recommendation of Siguenza et al. (23), we have defined
�G as the distance between planes intersecting perpendicular to the innermost "bead" lipids (see Figure 2B). This may have led
to the under-representation of _G relative to the experiments of Mills et al. (21) and Suresh et al. (30) in the high force regime.

Another notable divergence with past studies occurs above the low-force regime. Previous studies have consistently shown a
plateau in extension with increasingly large force, with an asymptote around _G ∼ 2 (12, 21–23, 30). This is not seen in our
model. Instead, the rate of growth of _G (and decay of _H) continues to increase with �G , until a critical point at which the
membrane ruptures. Human RBC lysis due to critically high shear strain has been confirmed by many past in vitro studies
(33–35). While RBCs are able to withstand linear extensions up to 250% (23), they are very susceptible to rupture from
increasing surface area. Micro-pipette measurements showed rupture above a critical area strain of 2-4% (33), while cell-poking
found rapid cell lysis above 2.6% area strain (35). This is comparable to when stretching our CGMD cells, with the �" = 50
cell bursting at an area strain of 6.1%. Conversely, the cell sizes that reached the maximum applied force of �G = 210pN
without rupture had maximum area strain of order ∼ 1%. Past application of the Fu et al. model also found rupture to occur
during the shape evolution phase, and when subject to high shear force from external fluid flow (18). Membrane rupture during
the shape evolution phase was common in our simulations, hence the employed modifications to the mass and Yuan potential
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parameterisation to strengthen the particle bindings during this phase.
Rupture of the membrane is also conceptually reasonable in a CGMD model. Being a particle model operating through pair

potentials, all attracting particles are bound within energy wells of finite depth. Introducing an external force to particular
particles will add energy, acting towards breaking them free of these wells. The collection of CG lipids within the sphere of
influence of each bead is kept constant, but have an evolving collective shape (see Figure 5). Initially, when the -. -plane of the
cell is circular, these particles will be tightly spread within a circular patch on each edge of the membrane. However, as the cell
is stretched along G, these regions are pulled outwards, becoming increasingly elongated. The Yuan potential binds the lipids
together with a LJ-like relationship of inter-particle separation, within a cutoff radius A2 . Therefore, the more particles within
A2 of a particular CG lipid, the more tightly that particle will be bound to the whole cell. As each region of assigned bead
particles is pulled into an increasingly elongated bulb, those lipids at the extremity will have fewer surrounding particles, thus
lose binding strength to the whole cell. Eventually, the external force overcomes the restoring force of the summed inter-particle
bindings and these lipid particles break free. This causes the whole cell to then lose structural integrity, and "pop".

Figure 5: Graphic showing the shape evolution of a region
of a cell stretched in the positive G direction, where only
those #+ lipids designated bead particles are shown, being
the only particles directly subjected to the external force.
Before any stretching has occurred the cell is in its initial
stable state, and the region of bead particles is relatively
flat (A). At a late stage the cell has undergone a significant
deformation, and the region has been pulled into a rounded
cone (B). Finally, the extraneous particles start losing their
binding with the whole cell and rupture becomes imminent
(C).

Critically, it is also this force balancing between the internal restorative and external stretching forces that requires
introduction of the force scaling term Γ� . Larger cells are comprised of more particles, but the proportional size of the optical
microbeads is kept constant. Therefore, if the total force is kept constant, larger cells will have �G spread over a larger number
of bilayer particles. By maintaining the same model parameterisation between cell sizes, a cell comprising more particles will
also have a greater sum of restoring forces within it, from the greater number of inter-particle potentials. Therefore, to produce
the same extension in a larger cell as a smaller cell will require a larger total external force, proportional to the ratio in surface
area. This leads to the Γ� = (�"/�"

<8=
)2 scaling term, which acts to maintain a constant force per-particle, rather than total

force, as dictated by the model parameterisation.
A final consideration to the shape and scale of the force-extension curves is the model time-scale. Comparative RBC optical

tweezer stretching experiments typically transition from zero to maximum strain over an order of 2-5s (22). The simulations
performed in this work reached maximum strain after . 1s. The rate of stretching is able to effect the temperature of a system in
vitro, and thus the elastic properties of the components (22). The critical shear strain for RBC lysis has also been shown to be
inversely proportional to the length of exposure to shear stress (36). Our fast deformation rate was due to having required a very
short time-step size g = 1.6ns, such to maintain numerical stability in the simulations. To then achieve maximum deformation
on the order of 5 seconds would have required over 6 × 108 time-steps, which for the �" = 150 cell would expect to take up to
40 days to simulate.

5 CONCLUSION
The scale invariance of a CGMD model for a single RBC has been tested, first qualitatively through the shape evolution,
then quantitatively by determination of the shear modulus `B through simulation of optical tweezer stretching. By evolving
cells of various diameter from their initially spherical configurations, cells of size �" ≥ 100 were found able to develop
the characteristic biconcave discocyte shape of a healthy RBC. All evolved cells were then subjected to optical tweezer-style
stretching, with `B in the range 6 − 15µN/m calculated from the low-force limit of resulting force-extension curves. Despite
implementation of a dimensional scaling, a positive correlation was found between cell size and the deformation response over
the range of �" tested. This indicated an order of magnitude difference in measured shear modulus between a full-scale cell
and one at 1/32 scale, thus contradicting a total scale invariance in the model. However, without being able to test cells of
�" > 200, the persistence of this trend is speculative. Furthermore, the similarities of the �" = 100 − 200 miniature cells to
a full-scale human RBC in shape and shear modulus indicate them to be valuable as simplified representations. Therefore,
we determine the scaled use of miniature CGMD cells of �" = 100 − 200 to be a valid approximation for the purposes of
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estimating the elastic responses of a cell in-silico. This finding supports the use of the miniature cell approach in further studies,
with its considerable computational advantages opening up numerous possibilities in simulations of physically larger, more
numerous and more complex CGMD cellular systems than have been performed to-date.
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