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Abstract 
A major challenge for droplet-based single-cell sequencing technologies is distinguishing true cells from 

uninformative barcodes in datasets with disparate library sizes confounded by high technical noise (i.e. batch-

specific ambient RNA). We present dropkick, a fully automated software tool for quality control and filtering of 

single-cell RNA sequencing (scRNA-seq) data with a focus on excluding ambient barcodes and recovering real 

cells bordering the quality threshold. By automatically determining dataset-specific training labels based on 

predictive global heuristics, dropkick learns a gene-based representation of real cells and ambient noise, 

calculating a cell probability score for each barcode. Using simulated and real-world scRNA-seq data, we 

benchmarked dropkick against a conventional thresholding approach and EmptyDrops, a popular computational 

method, demonstrating greater recovery of rare cell types and exclusion of empty droplets and noisy, 

uninformative barcodes. We show for both low and high-background datasets that dropkick’s weakly supervised 

model reliably learns which genes are enriched in ambient barcodes and draws a multidimensional boundary 

that is more robust to dataset-specific variation than existing filtering approaches. dropkick provides a fast, 

automated tool for reproducible cell identification from scRNA-seq data that is critical to downstream analysis 

and compatible with popular single-cell analysis Python packages. 

 

Introduction  

Single-cell RNA sequencing (scRNA-seq) allows for untargeted profiling of genome-scale expression in 

thousands of individual cells, providing insights into tissue heterogeneity and population dynamics. Droplet-

based platforms that involve microfluidic encapsulation of cells in water-oil emulsions (Klein, et al. 2015; 

Macosko, et al. 2015; Zheng, et al. 2017) have grown widely popular for their robustness and throughput. The 

use of barcoded poly-thymidine capture oligonucleotides provides information for assigning eventual sequencing 

reads to each droplet downstream of bulk library preparation. Due to the low cellular density required to avoid 

doublets (i.e., two or more cells captured in the same droplet), the vast majority of droplets are empty, ideally 

containing only tissue dissociation buffer and a barcoded RNA-capture bead with no cellular RNA. However, 

during the tissue dissociation process, cell death, lysis, and leakage result in the shedding of ambient mRNA 

into the supernatant solution, which is then captured as background in droplets containing individual cells and 

so-called “empty droplet” reactions. Ultimately, a droplet-based scRNA-seq dataset contains up to hundreds of 
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thousands of barcodes that correspond to these “empty droplets” which include sequenced material from 

ambient RNA alone. 

In order to prepare these data for downstream analysis, empty droplets and other “junk” barcodes with little to 

no molecular information must be removed. Often, computational biologists will define manual thresholds on 

global heuristics such as total counts of unique molecular identifiers (UMI) or the total number of genes detected 

in each barcode in order to isolate high-quality cells. While these hard cutoffs may generally yield expected cell 

populations and remove the bulk of populational noise in low-background samples, they are highly arbitrary, 

batch-specific, and generally biased against cell types with low RNA content or genetic diversity (Lun, et al. 

2019). Furthermore, lenient thresholds often yield filtered datasets with populations of dead and dying cells or 

empty droplets with high ambient RNA content, especially in encapsulations with high background resulting from 

tissue-specific cell viability and dissociation protocols. These cell clusters may be gated out manually by the 

experienced single-cell biologist, but they will distort dimension-reduced embeddings and alter statistical testing 

for differential gene expression if left unchecked. 

Here we introduce dropkick, a fully automated machine learning software tool for data-driven filtering of droplet-

based scRNA-seq data. dropkick provides a quality control (QC) module for initial evaluation of global 

distributions that define barcode populations (real cells vs. empty droplets) and quantifies the batch-specific 

ambient gene profile. The dropkick filtering module establishes initial thresholds on predictive global heuristics 

using an automated gradient-descent method, then trains a gene-based logistic regression model to assign 

confidence scores to all barcodes in the dataset. dropkick model coefficients are sparse and biologically 

informative, identifying a minimal number of gene features associated with empty droplets and low-quality cells 

in a weakly supervised fashion. We show that dropkick outperforms basic threshold-based filtering and a similar 

data-driven model (Lun, et al. 2019) in recovery of expected cell types and exclusion of empty droplets, with 

robustness and reproducibility across encapsulation platforms, samples, and varying degrees of noise from 

ambient RNA. 

 

Results 
Evaluating dataset quality with the dropkick QC module: Global data quality and predominance of ambient 

RNA affect both reliable cell identification as well as downstream analyses including clustering, cell type 

annotation, and trajectory inference in scRNA-seq data (Young and Behjati 2018; Fleming, et al. 2019; Yang, et 

al. 2020). Single-cell data with a low signal-to-noise ratio due to high ambient background can result in 

information loss that may ultimately confound cell type and cell state identification and related statistical analyses 

(Zhang, et al. 2019). For instance, a scRNA-seq encapsulation with a high degree of cell lysis can cause highly 

expressed marker genes from abundant cell types to be present in the ambient RNA profile that contaminates 

all cell barcodes. In this scenario, global differences between cell populations would be diminished by the 

common detection of ambient noise, leading to loss of resolution in inference of cell identity and state. 

In order to quantify ambient contamination that reduces this batch-specific signal-to-noise ratio, we have 

developed a comprehensive quality control report for unfiltered, post-alignment UMI counts matrices. Figure 1 
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provides an example dropkick QC report for a human T cell dataset encapsulated using the 10X Genomics 

Chromium platform (Zheng, et al. 2017). This sample is exemplary of a low-background dataset, as the cells 

isolated from human blood do not require dissociation that causes cell stress and lysis in other tissues 

(Supplementary Figure 1). Barcodes are ranked by total counts to yield a profile that describes the expected 

number of high-quality cells, empty droplets, and “junk” barcodes (Figure 1A; Fleming et al. 2019). The number 

of genes detected per barcode follows a similar distribution to total counts, which informs our choice of dropkick 

training thresholds in the following sections. The first plateau in the total counts profile of the T cell dataset 

indicates approximately 4,000 high-quality cells, followed by a sharp drop in the distribution (Figure 1A). This 

drop-off in total UMI content signifies an estimated location for a manual cutoff as seen in the 10X CellRanger 

version 2 analysis software (Lun, et al. 2019). 

 

 
dropkick next defines a subset of ambient genes using the dropout rate, or the fraction of barcodes in which each 

gene is not detected. Ranking genes from lowest to highest dropout rate (Figure 1B), dropkick labels those with 

dropout rates lower than the top ten as “ambient”. High-background datasets may have many genes that are 

detected in every barcode (dropout rate = 0). The dropkick definition of an ambient profile thus ensures that all 

relevant genes are included. The contribution of this ambient subset to the total counts of each barcode can then 

be calculated, shown as blue points in the dropkick QC report (Figure 1A). Similarly, an overlay of mitochondrial 

read percentage indicates dead or dying cells undergoing apoptosis (Tait and Green 2010). Indeed, the ambient 

and mitochondrial contributions to the empty droplets in the second plateau of the total counts log-rank curve is 

markedly higher than the first plateau (Figure 1A). Another noteworthy observation is dropkick defines an 

Figure 1. Evaluating dataset quality with the dropkick QC module. A) Profile of total counts (black trace) and genes 
(green points) detected per ranked barcode in the 4k pan-T cell dataset (10X Genomics). Percentage of mitochondrial 
(red) and ambient (blue) reads for each barcode included to denote quality along dataset profile. B) Profile of dropout 
rate per ranked gene. Ambient genes are identified by dropkick and used to calculate ambient percentage in A. 
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ambient profile that is distinct from the subset of mitochondrial genes. This is important for assessing cell quality 

in downstream clustering and dimension reduction, as any empty droplets that remain in the dataset post-filtering 

often cluster together in low-dimensional embeddings and can be highlighted by their enrichment in ambient 

genes. As stated previously, marker genes from abundant cell types may show up in the ambient gene set due 

to excessive lysis of these common cells during tissue preparation (Young and Behjati 2018; Fleming, et al. 

2019; Yang, et al. 2020; Supplementary Figure 1). Accordingly, analysts should be cognizant of background 

expression levels that contaminate adjacent cell populations and confound cell type identification during 

subsequent analysis. 

As each scRNA-seq dataset has unique, batch-specific ambient RNA profiles and barcode distributions, the 

dropkick QC module allows for estimation of global data quality. Mouse colonic mucosa dissociated and 

encapsulated in parallel using inDrop and 10X Genomics platforms (Supplementary Figure 1) exemplifies high-

background scRNA-seq data, as indicated by elevated RNA levels in the second plateau of the total counts and 

genes curves. Moreover, marker genes Car1 and Muc2 from abundant colonocytes and goblet cells, 

respectively, are identified by dropkick as ambient genes for these datasets. This signifies lysis of common 

epithelial cell populations during tissue preparation and dissociation. Given the dropkick QC report, the user 

should thus expect background expression across all barcodes, which could prove pivotal to downstream 

processing and biological interpretation. Taken together, dropkick can estimate the number of high-quality cells 

in our dataset, determine average background noise from ambient RNA, and thus predict performance of filtering 

and ensuing analysis based on global data quality. 

 
Description of dropkick filtering method: dropkick uses weakly supervised machine learning to build a model 

of single-cell gene expression in order to score and classify barcodes as real cells or empty droplets within 

individual scRNA-seq datasets. To construct a training set for this model, dropkick begins by calculating batch-

specific global metrics that are generally predictive of barcode quality, such as the total number of genes detected 

(n_genes; Figure 2A) which was chosen as the default training heuristic for dropkick by testing concordance with 

three alternative cell labels across 46 scRNA-seq samples (Supplementary Figure 2). A dataset similar to the 

10X Genomics human T cell encapsulation (Figure 1A) will exhibit a multimodal distribution of n_genes across 

all barcodes (Figure 2B) where the peaks of the distribution match the plateaus seen in the log-rank 

representation (Figure 2C). Next, dropkick performs multi-level thresholding on the n_genes histogram using 

Otsu’s method (Otsu 1979; Figure 2B,C). This automated gradient-descent technique divides the barcode 

distribution into three levels in this “heuristic space”: a lower level containing uninformative “junk” barcodes 

(which are thrown away), an upper level containing barcodes with very high cell probability based on n_genes, 

and an intermediate level that consists of both high-RNA empty droplets and relatively low-RNA cells. The upper 

and intermediate barcode populations are labeled as real cells and putative empty droplets, respectively, for 

initial dropkick model training. These weakly self-supervised labels based on threshold cutoffs in “heuristic 

space” are expected to be noisy, and the goal of the next step of the dropkick pipeline is to re-draw these rough 
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boundaries in “gene space” using logistic regression in order to recover real cells from the intermediate barcode 

cohort while removing ambient barcodes from the upper plateau (Figure 2D,E). 

The logistic regression model employed by dropkick uses elastic net regularization (Zou and Hastie 2005), which 

balances feature selection and grouping by preserving or removing correlated genes from the model in concert. 

Ultimately, the motivation for choosing this regularization method is two-fold. First, the resulting model exists in 

“gene space”, maintaining the relative dimensionality of the dataset and providing biologically interpretable 

coefficients that describe barcode quality. Second, the model is penalized for complexity, which yields the 

simplest model (sparse coefficients) that adjusts the noisy initial labels while compensating for expected 

collinearities and errors in measurement. 

 

 
Evaluating dropkick filtering performance with simulated data: We tested dropkick filtering on single-cell 

data simulations that define both empty droplets and real cells, providing ground-truth labels for comparison to 

dropkick outputs (Fleming, et al. 2019). These simulations modeled ambient RNA noise in the cell populations 

to confound filtering, as seen in real-world datasets. We simulated both low (Figure 3A,B) and high (Figure 3C,D) 

background scenarios (see Methods: scRNA-seq data simulation).  

To demonstrate the utility of the dropkick model over one-dimensional thresholding and an analogous data-

driven filtering model, we ran dropkick, 10X Genomics CellRanger version 2 (CellRanger_2) and the EmptyDrops 

R package (Lun, et al. 2019) on ten iterations of low and high-background simulations. An example UMAP 

Figure 2. Description of dropkick filtering method. A) Diagram of scRNA-seq counts matrix with initial cell confidence for 
each barcode based solely on total genes detected (n_genes), depicted by color (red = empty droplet, blue = real cell). 
B) Histogram showing the distribution of barcodes by their n_genes value. Black lines indicate automated thresholds for 
training the dropkick model. C) log(n_genes) vs. log(rank) representation of barcode distribution as in dropkick QC report 
(Figure 1A). Thresholds from B are superimposed. D) Thresholds in heuristic space (B-C) are used to define initial 
training labels for logistic regression. E) dropkick chooses an optimal regularization strength through cross-validation, 
then assigns cell probabilities and labels to all barcodes using the trained model in gene space. 
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embedding of all barcodes kept by dropkick_label (dropkick score ≥ 0.5) and the two analogous methods shows 

that all three methods excluded empty droplets (assigned cluster 0 from the simulation), with a single false 

negative (FN) barcode highlighted in the EmptyDrops label set (Figure 3A). An UpSet plot (Figure 3B; Lex, et al. 

2014) tabulating shared barcode sets across ten low-background simulations reveals nearly perfect specificity, 

sensitivity, and area under the receiver operating characteristic curve (AUROC) for all three methods in the low-

background scenario (Supplementary Figure 3A,B,D, Supplementary Table 1, Supplementary Table 2). 

Conversely, the high-background simulations produced a large number of false positives (FP) in the 

CellRanger_2 and EmptyDrops labels (Figure 3C), as ambient barcodes with high RNA content lie above the 

total counts threshold identified by CellRanger and the inflection point used as a testing cutoff by EmptyDrops 

(Lun, et al. 2019). A UMAP embedding of an example high-background simulation reveals a large population of 

empty droplets (assigned cluster 0 by the simulation) that dropkick_label removes from the final dataset (Figure 

3D). Accordingly, dropkick displayed overall specificity and AUROC of 0.9999 ± 0.0002 and 0.9998 ± 0.0002 for 

the high-background simulations compared to 0.9910 ± 0.0018 and 0.9955 ± 0.0009 for CellRanger_2 and 

0.9838 ± 0.0133 and 0.9917 ± 0.0071 for EmptyDrops, respectively (Supplementary Figure 3E,F,H, 

Supplementary Table 1, Supplementary Table 2). 

We also compared outputs from the trained model (dropkick_label) to automated dropkick training labels 

(thresholding on n_genes) in both low- and high-background scenarios to further demonstrate the utility of 

dropkick’s machine learning model over heuristic cutoffs alone. Similar to CellRanger_2, the dropkick threshold 

performed favorably for the low background simulation, where real cells are separated distinctly from empty 

droplets in heuristic space – indicated by a sharp drop-off in total counts and genes in the dropkick QC log-rank 

plot (Figure 3B, inset). This one-dimensional thresholding resulted in sensitivity, specificity, and AUROC of 

0.9986 ± 0.0007, 0.997 ± 0.0006, and 0.9978 ± 0.0005, respectively for ten low-background simulations 

(Supplementary Figure 3E, Supplementary Table 1). The trained dropkick model, on the other hand, recovered 

all real cells (sensitivity 1.0), with a perfect average AUROC of 1.0 ± 0.0 (Supplementary Figure 3D, 

Supplementary Table 1). This modest improvement indicates the utility of the dropkick model for sensitively 

discerning real cells from ambient barcodes over simple heuristic thresholding, even in a relatively low-

background sample. In the high-background simulations, sensitivity of dropkick training labels fell to 0.8762 ± 

0.0092 with an average AUROC of 0.9074 ± 0.0043 (Supplementary Figure 3G, Supplementary Table 1). 

Following model training, dropkick’s sensitivity and AUROC once again improved to 0.9995 ± 0.0004 and 0.9998 

± 0.0002, respectively (Supplementary Figure 3H, Supplementary Table 1). These data further signify that the 

dropkick logistic regression model results in enhanced performance over one-dimensional heuristic thresholding, 

especially in the presence of high ambient noise in the training set. 
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dropkick recovers expected cell populations and eliminates low-quality barcodes in experimental data: 
To evaluate dropkick’s performance against existing scRNA-seq filtering algorithms with real-world data, we 

processed a human T cell dataset from 10X Genomics (Figure 1) and again compared default dropkick results 

(dropkick_label) to 10X CellRanger version 2 and EmptyDrops (Lun, et al. 2019). The final dropkick coefficients 

and chosen regularization strength (lambda; Figure 4A) reveal that the model is sparse – with nearly 98 % of all 

Figure 3. Evaluating dropkick filtering performance with simulated data. A) UMAP embedding of all barcodes kept by 
dropkick_label, CellRanger_2 and EmptyDrops for an example low-background simulation. Points colored by each of 
the three filtering labels, as well as ground-truth clusters determined by the simulation and dropkick score (cell 
probability). Arrow highlights a single false negative (FN) barcode in the EmptyDrops label set for this replicate. B) UpSet 
plot showing mean size of shared barcode sets across dropkick_label, CellRanger_2, EmptyDrops, and true labels for 
ten simulations. Error bars represent standard deviation. Unique sets show false positive (FP) barcodes labeled by 
dropkick and false negative (FN) barcodes excluded by EmptyDrops. Inset shows log-rank representation of the low-
background simulation in A. C) Same as in B, for ten high-background simulations. Inset shows log-rank representation 
of the high-background simulation in D. D) Same as in A, for an example high-background simulation. Arrow highlights 
cluster 0, designated as “empty droplets” by simulation (see Methods: scRNA-seq data simulation).  
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coefficient values equal to zero – offering an interpretable gene-based output. Without prior training or 

supervision, dropkick identified higher counts of mitochondrial genes, which are markers of cell death and poor 

barcode quality (Tait and Green 2010), as predictive of empty droplets (Figure 4A). To visualize heuristic 

distributions within the T cell dataset, the number of genes detected and the percentage of ambient counts per 

barcode are shown along with dropkick’s automatic training thresholds (Figure 4B). Junk barcodes below the 

lower n_genes threshold were discarded before model training and assigned a dropkick score of zero. Barcodes 

between the two thresholds were initially assigned a label indicating putative empty droplets, while those above 

the upper threshold were labeled as real cells for model training. The dropkick score overlay illustrates how 

dropkick re-drew label boundaries in gene space (Figure 4B). dropkick scores are noticeably lower for barcodes 

with high ambient RNA content, while some putative empty droplets with lower background are “rescued” and 

labeled as real cells by the trained dropkick model. 

 

 

Figure 4. dropkick recovers expected cell populations and eliminates low-quality barcodes in experimental data. A) Plot 
of coefficient values for 2,000 highly variable genes (top) and mean binomial deviance ± SEM (bottom) for five-fold 
cross-validation along the lambda regularization path defined by dropkick. Top and bottom three coefficients are shown, 
in axis order, along with total model sparsity representing the percentage of coefficients with values of zero (top). Chosen 
lambda value indicated by dashed vertical line. B) Joint plot showing scatter of percent ambient counts versus arcsinh-
transformed genes detected per barcode, with histogram distributions plotted on margins. Initial dropkick thresholds 
defining the training set are shown as dashed vertical lines. Each point (barcode) is colored by its final dropkick score 
after model fitting. C) UMAP embedding of all barcodes kept by dropkick_label (dropkick score ≥ 0.5), CellRanger_2 and 
EmptyDrops. Points colored by each of the three filtering labels, as well as clusters determined by NMF analysis, 
dropkick score (cell probability), and percent counts mitochondrial. Circled area shows high mitochondrial enrichment in 
a population discarded by dropkick. D) Dot plot showing top differentially expressed genes for each NMF cluster. The 
size of each dot indicates the percentage of cells in the population with nonzero expression for the given gene, while the 
color indicates the average expression value in that population. Bracketed genes indicate significantly enriched 
populations in EmptyDrops compared to dropkick_label as shown in E. E) Table and bar graph enumerating the total 
number of barcodes detected by each algorithm in all NMF clusters. EmptyDrops shows significant enrichment over 
dropkick_label in clusters 3 and 5 as determined by sc-UniFrac analysis. 
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We then jointly processed all barcodes kept by dropkick_label (dropkick score ≥ 0.5), CellRanger_2, and 

EmptyDrops using nonnegative matrix factorization (NMF; Kotliar, et al 2019) to define cell clusters, and sc-

UniFrac (Liu, et al. 2018) to determine population differences across labeled barcode sets. A UMAP embedding 

of these barcodes reveals a population of cells with high mitochondrial content that is mostly excluded by 

dropkick (Figure 4C). This area is enriched in clusters 3 and 5 from NMF analysis, which carry exclusively 

mitochondrial genes as their top differentially expressed features (Figure 4D). Based on sc-UniFrac, these two 

clusters constitute the only statistically significant differences between EmptyDrops and dropkick (Figure 4E). 

Final dropkick labels had an overall sc-UniFrac distance of 0.01 from CellRanger_2 and 0.02 from EmptyDrops 

across all barcodes. These data indicate that dropkick recovers as many or more real cells in expected 

populations than previous algorithms, while also identifying and excluding low-quality dead or dying cells with 

high mitochondrial RNA content. 

 

dropkick outperforms analogous methods on challenging datasets: To challenge the robustness of the 

model, we next used dropkick to filter real-world samples with more complex cell types and higher noise. Human 

colorectal carcinoma (3907_S2) and adjacent normal colonic mucosa (3907_S1) samples were dissociated and 

encapsulated using the inDrop scRNA-seq platform (Klein, et al. 2015). In contrast to the 10X Genomics pan-T 

cell dataset (Figure 1, Figure 4), these samples exhibited high levels of background, containing empty droplets 

with thousands of UMIs detected per barcode and up to 40 % ambient RNA in expected cell barcodes 

(Supplementary Figure 5A,D). Because of this dominant ambient profile, infiltrating immune populations with 

lower mRNA content than epithelial cells can be lost among empty droplets. Indeed, CellRanger_2 and 

EmptyDrops show depletion in T cells (cluster 7) and macrophages (cluster 11) compared to dropkick (Figure 

5A,B). Prevalence of high-RNA empty droplets also yields a population with low genetic diversity and 

mitochondrial gene enrichment (cluster 4; Figure 5A) that is kept by the one-dimensional thresholding of 

CellRanger_2 but discarded by dropkick. sc-UniFrac analysis confirmed that dropkick recovers significantly more 

cells from rare populations than both CellRanger_2 and EmptyDrops in this pair of high-background datasets 

dominated by ambient RNA from dead and dying colonic epithelial cells (Figure 5C, Supplementary Figure 5). 

Meanwhile, dropkick also identified and removed significantly more dead cells (cluster 4) than both CellRanger_2 

and EmptyDrops (Figure 5C) by identifying mitochondrial and ambient genes as negative coefficients 

(Supplementary Figure 5B,E). 

 

dropkick filters reproducibly across scRNA-seq batches: We also applied dropkick to a combined human 

placenta dataset from six patients to show robustness of the model to batch-specific variation. dropkick learned 

the distribution of genes and ambient RNA specific to each dataset and filtered them accordingly (Supplementary 

Figure 6A), with a resulting AUROC of 0.9956 ± 0.0051 across all six replicates compared to EmptyDrops labels 

(Supplementary Figure 7E, Supplementary Table 3). 
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Figure 5. dropkick outperforms analogous methods on challenging datasets. A) UMAP embedding of all barcodes kept 
by dropkick_label (dropkick score ≥ 0.5), CellRanger_2 and EmptyDrops for human colorectal carcinoma inDrop 
samples. Points colored by each of the three filtering labels, as well as clusters determined by NMF analysis, dropkick 
score (cell probability), arcsinh-transformed total genes detected, percent counts mitochondrial, and original batch. 
3907_S1 is normal human colonic mucosa and 3907_S2 is colorectal carcinoma from the same patient. B) Dot plot 
showing top differentially expressed genes for each NMF cluster. The size of each dot indicates the percentage of cells 
in the population with nonzero expression for the given gene, while the color indicates the average expression value in 
that population. Bracketed genes indicate significantly enriched or depleted populations in dropkick compared to 
CellRanger_2 and/or EmptyDrops labels as shown in C. C) Table and bar graph enumerating the total number of 
barcodes detected by each algorithm in all NMF clusters for the combined dataset. Significant cluster enrichment as 
determined by sc-UniFrac is denoted by brackets. 
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Extending this analysis to a larger cohort of scRNA-seq samples from both 10X Genomics (n = 13) and inDrop 

(n = 33) encapsulation platforms, we see that dropkick is highly concordant with CellRanger version 2 (AUROC 

0.9656 ± 0.0271) and EmptyDrops (AUROC 0.9817 ± 0.012) results (Supplementary Figure 7A-D, 

Supplementary Table 3, Supplementary Table 4), suggesting global recovery of major cell populations. We also 

performed manual cell labelling to provide an additional alternative to compare to dropkick filtering on 33 inDrop 

datasets (see methods: CellRanger 2, EmptyDrops, and manual filtering of real-world scRNA-seq datasets). 

dropkick scores for these samples had an AUROC of 0.9729 ± 0.0335 compared to manually curated labels 

(Supplementary Figure 7E, Supplementary Table 5), again confirming the model’s utility for robust filtering across 

several unique datasets. Finally, we measured the total run time of dropkick for all of the above scRNA-seq 

batches, which was appreciably faster than the EmptyDrops R package, running to completion in 40.56 ± 25.97 

seconds across ten replicates of all 46 samples when utilizing five CPUs with dropkick’s built-in parallelization 

(Supplementary Figure 7F). 

 

Discussion  

Barcode filtering is a key preprocessing step in analyzing droplet-based single-cell expression data. Reliable 

filtering is confounded by distributions of global heuristics such as total counts, total genes, and ambient RNA 

that can be highly variable across batches and encapsulation platforms. We have developed dropkick, a fully 

automated machine learning software tool that assigns confidence scores and labels to barcodes from unfiltered 

scRNA-seq counts matrices. By automatically curating a training set using predictive heuristics and training a 

gene-based logistic regression model, dropkick ensures that ambient barcodes (“empty droplets”) are removed 

from the filtered dataset while recovering rare, low-RNA cell types that may be lost in ambient noise. We showed 

that unlike previous filtering approaches including one-dimensional thresholding (CellRanger 2) and a Dirichlet-

multinomial model (EmptyDrops), dropkick is robust to the level of ambient RNA, performing favorably in both 

low and high-background scenarios across simulated and real-world datasets. 

Although we have demonstrated that dropkick is more robust to varying degrees of ambient background than 

existing filtering methods, the dropkick model is still limited by the input dataset. As stated previously (see 

Evaluating dataset quality with dropkick QC module), the profile of ranked total counts/genes and the global 

contribution of ambient reads are vital to analysis of single-cell sequencing data, including cell filtering. Data with 

weak separation between high-quality cells and empty droplets (i.e. a unimodal distribution of n_genes lacking 

distinct plateaus in the log-rank curve) will perform poorly in inflection-point thresholding as well as data-driven 

models such as EmptyDrops and dropkick due to the similarity between theoretically “high-confidence” barcodes 

and ambient background droplets. Moreover, datasets dominated by a small number of ambient genes (> 40 % 

average ambient counts across all barcodes) will also perform poorly in automated filtering. While such data 

artefacts may be handled by dropkick’s heavy feature selection conferred by HVG calculation and elastic net 

regularization, there will also be circumstances that cause dropkick – as well as CellRanger and EmptyDrops – 

to return an over or under-filtered dataset. Scenarios such as those described should be considered QC failures, 
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and further analysis should not be performed. For this reason, the dropkick QC module is extremely beneficial 

in post-alignment evaluation of scRNA-seq data quality and should be applied to all datasets prior to filtering. 

The dropkick Python package provides a fast, user-friendly interface that integrates seamlessly with the Scanpy 

(Wolf, et al. 2018) single-cell analysis suite for ease of workflow implementation. dropkick is available for install 

through the Python Package Index (pypi.org/project/dropkick/), and source code is hosted on GitHub 

(github.com/KenLauLab/dropkick). 

 

Methods 

Quality control and ambient RNA quantification with the dropkick QC module: The dropkick QC module 

begins by calculating global heuristics per barcode (observation) and gene (variable) using the scanpy (Wolf, 

Angerer, and Theis 2018) pp.calculate_qc_metrics function. These metrics are used to order barcodes by 

decreasing total counts (black curve in Figure 1A) and order genes by increasing dropout rate (Figure 1B). The 

nth gene ranked by dropout rate determines the cutoff for calling “ambient” genes, with n determined by the 

n_ambient parameter in the dropkick.qc_summary function. All genes with dropout rates less than or equal to 

this threshold are labeled “ambient”. In a sample with many (> n) genes detected in all barcodes, this ensures 

that the entire ambient profile is identified. Through observation of samples used in this study, we set the default 

n_ambient = 10. To compile the dropkick QC summary report, the log-total counts versus log-ranked barcodes 

(Figure 1A black curve) are plotted along with total genes detected for each barcode (Figure 1A green points), 

percent counts from “ambient” genes in each barcode (Figure 1A blue points), and percent counts from 

mitochondrial genes in each barcode (Figure 1A red points). 

 

Labeling training set with the dropkick filtering module: The dropkick filtering module also begins by 

calculating global heuristics per barcode (observation) and gene (variable) using the scanpy (Wolf, Angerer, and 

Theis 2018) pp.calculate_qc_metrics function. Next, training thresholds are calculated on the histogram of the 

chosen heuristic(s); arcsinh-transformed n_genes by default. dropkick then uses the scikit-image function 

filters.threshold_multiotsu to identify two local minima in the n_genes histogram that represent the transitions 

from “junk” barcodes to “empty droplets” and from “empty droplets” to real cells. These locations are also 

characterized by the two expected drop-offs in the total counts/genes profiles as shown in the dropkick QC report 

(Figure 1, Supplementary Figure 1). To label barcodes for dropkick model training, barcodes with fewer genes 

detected than the first multi-Otsu threshold are discarded due to their lack of molecular information. dropkick 

then labels barcodes below the second threshold as “empty”, and remaining barcodes above the second 

threshold as real cells for initial training. These inputs to the dropkick logistic regression model represent the 

“noisy” boundary in heuristic space that is to be replaced with a learned cell boundary in gene space. 

 

Training and optimizing the dropkick filtering model: The dropkick filtering model uses logistic regression 

with elastic net regularization (Zou and Hastie 2005), and is fit as described in Friedman, et al. 2010. The elastic 

net combines ridge and lasso (least absolute shrinkage and selection operator) penalties for optimal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.08.332288doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

regularization of model coefficients. The ridge regression penalty pushes all coefficients toward zero while 

allowing multiple correlated predictors to borrow strength from one another, ideal for a scenario like scRNA-seq 

with several expected collinearities (Hoerl and Kennard 1970). The lasso penalty on the other hand, favors model 

sparsity, driving coefficients to zero and thus selecting informative features (Tibshirani 1996). The combined 

elastic net balances feature selection and grouping by preserving or removing correlated features from the model 

in concert (Zou and Hastie 2005). 

The fraction ! ∈ [0,1] (alpha) represents the balance between the lasso and ridge penalties. If ! = 0, the 

regularization would be entirely ridge, while if ! = 1, it would be entirely lasso. By default, dropkick fixes this 

alpha value at 0.1, but the user may alter this parameter or provide multiple alpha values to optimize through 

cross-validation (with lambda; explained below) at the expense of slightly longer computational time. 

For a desired length of “lambda path,” n (default n = 100 for dropkick), the model is fit n + 1 times, where the first 

pass determines the values of lambda (regularization strength) to test, and subsequent fits determine model 

performance using cross-validation (CV; default 5-fold for dropkick). Each fit involves selection of highly-variable 

genes (HVGs; scanpy pp.highly_variable_genes; default 2,000 for dropkick) from the training set. For both the 

first pass and the final model, the training set consists of all available barcodes, while training the model along 

the lambda path uses only the current training fold as to not bias model fitting with information from the test set. 

The lambda path is scored using mean deviance from the training labels for all cross-validation folds. The largest 

value of lambda such that its mean CV deviance is less than or equal to one standard error above the minimum 

deviance is chosen as the final regularization strength for the model in order to further minimize overfitting. 

Finally, dropkick fits a logistic regression model using all training labels and the chosen lambda value and assigns 

cell probability (dropkick_score) to all barcodes. By default, the resulting dropkick_label is positive (1; real cell) 

for barcodes with dropkick_score ³ 0.5, but the user may define a stricter or more lenient threshold for particular 

applications. 

 

scRNA-seq data simulation: We used CellBender (Fleming, et al. 2019) to simulate single-cell datasets. We 

generated a basic count matrix with 30,000 features (n_genes), 12,000 total droplets (including 3,000 n_cells 

and 9,000 n_empty), and 6 clusters. The default ratio between the cell size scale factor and the empty droplet 

size scale factor – d_cell at 10,000 and d_empty at 200 – created an unrealistic gap between the empty droplets 

and the real cells but built a foundation on which to produce more realistic simulations. By adjusting these 

parameters, we simulated two different scenarios with the number of features, total droplets, and clusters held 

constant. The first scenario modeled a “low background” dataset, with a realistic n_genes and total counts profile 

and relatively low ambient RNA. We set the cell size scale factor (d_cell) to 10,000, and the empty droplet size 

scale factor (d_empty) to 1,000. These settings produced a small gap between the real cells and the empty 

droplets, yet still mimicked a low background droplet profile. We then modeled a “high background” scenario, 

which had much higher ambient RNA content. For this simulation we set d_cell to 10,000, and d_empty to 2,000. 

This simulation mimicked a real scRNA-seq dataset with a high ambient profile, as it had a smaller gap between 
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real cells and empty droplets. Taken together, these simulations recapitulate real-world single-cell data and were 

tested by dropkick to compare their ground-truth labels to those determined by dropkick filtering. 

 

CellRanger 2, EmptyDrops, and manual filtering of real-world scRNA-seq datasets: CellRanger filtering 

algorithms were derived from Lun, et al. 2019, with CellRanger 2 described by the function DefaultDrops (from 

the repository github.com/MarioniLab/EmptyDrops2017), and EmptyDrops by the EmptyDrops function within 

the DropletUtils R package (v1.8.0). All 10X datasets, with the exception of 3659_colon, were processed as in 

Lun, et al. 2019 (github.com/MarioniLab/EmptyDrops2017). EmptyDrops was run for the 3659_colon sample not 

present in Lun et al. 2019 using a minimum non-ambient counts threshold of 500 UMIs. For inDrop datasets, 

CellRanger 2 was run with an expected cell number of 1,000, and upper_quant and lower_prop parameters set 

to 0.99 and 0.01, respectively. EmptyDrops was run for all inDrop datasets using the “inflection point” as the 

minimum non-ambient counts threshold as in Lun, et al. 2019 (github.com/MarioniLab/EmptyDrops2017). 

Manual filtering was performed for each inDrop sample by initial thresholding beyond the “knee point” detected 

in the first curve of the ranked barcodes profile (as in Figure 1A). Then, following standard dimension reduction 

and high-resolution Leiden clustering, clusters with low quality cells (high mitochondrial/ambient percentage, low 

total counts/genes) were manually gated out of the final dataset. These manually curated labels were used as 

an orthogonal “gold standard” for benchmarking automated thresholding methods (Supplementary Figure 2A) 

and final AUROC (Supplementary Figure 4D). 

 

sc-UniFrac analysis of shared populations between dropkick, CellRanger 2, and EmptyDrops labels: In 

order to evaluate the preservation of expected cell clusters between dropkick and alternative labels, we 

employed sc-UniFrac (Liu, et al. 2018) to determine the global and populational differences between the label 

sets. We used nonnegative matrix factorization (NMF) to analyze the union of barcodes kept by dropkick_label, 

CellRanger_2, and EmptyDrops in order to reduce dimensions into cell identity and activity “metagenes” (Kotliar, 

et al. 2019). We then clustered this low-dimensional space using the Leiden algorithm (Traag, et al. 2019) to 

define consensus cell populations for sc-UniFrac analysis. We then ran sc-UniFrac (v0.9.6) to evaluate 

statistically significant cluster differences based on both cluster membership and gene expression hierarchies 

between clusters. The global sc-UniFrac distance quantified the overall similarity of hierarchical trees across 

barcode label sets. 

 

Dimension reduction, clustering, projection, and differential expression analysis: We used Consensus 

Nonnegative Matrix Factorization (cNMF; Kotliar, et al. 2019) for initial dimension reduction. The optimal number 

of factors, k, was determined by maximizing stability and minimizing error across all tested values after 30 

iterations of each. We then built a nearest-neighbors graph in Scanpy (pp.neighbors function) from the NMF 

usage scores for consensus factors in all cells, where we set n_neighbors to the square root of the total number 

of cells in the dataset. We then clustered cells with the Leiden algorithm (Scanpy tl.leiden function; Traag, 

Waltman, and Van Eck 2019) applied to this graph. Resulting clusters were used in sc-UniFrac analysis, 
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differential expression, and visualization. We performed differential expression analysis using a Student’s t-test 

with Benjamini-Hochberg p-value correction for multiple testing (Scanpy tl.rank_genes_groups). To visualize 

datasets in 2D space, we ran partition-based graph abstraction (PAGA; Wolf, et al. 2019; Scanpy tl.paga) on this 

nearest-neighbors graph and associated Leiden clustering in order to create a simple representation of cluster 

similarity. Finally, a UMAP projection (McInnes and Healy 2018) seeded with these PAGA positions provided a 

two-dimensional embedding of all cells in the dataset (Scanpy tl.umap with init_pos=”paga”). 

 

Data and Code Availability: All publicly available datasets are listed in Supplementary Table 6, including the 

human colorectal carcinoma inDrop data deposited to the Gene Expression Omnibus (GEO) to accompany this 

manuscript (GSE158636). inDrop scRNA-seq data were generated with according to published protocols 

(Southard-Smith, et al. 2020; Banerjee et al., 2020). The dropkick Python package is available for download via 

“pip” from the Python Package Index (PyPI) at https://pypi.org/project/dropkick/. Source code for the package is 

also available on GitHub at https://github.com/KenLauLab/dropkick. Scripts for reproducing analyses in this 

manuscript are hosted on GitHub at https://github.com/codyheiser/dropkick-manuscript. 
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Supplementary Figures, Tables and Legends 
 

 

 
 

Supplementary Figure 1. dropkick QC reports for a mouse colonic epithelium sample analyzed by both 10X Genomics 
(A) and inDrop (B) scRNA-seq. In contrast to Figure 1, this is considered a high-background sample due to the height 
(increased total counts) of the second plateau (empty droplets) and presence of epithelial marker genes (Car1, Muc2) 
in the ambient profile. 
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Supplementary Figure 2. Optimal heuristics and thresholding for determination of dropkick training set. A) Barcode set 
differences between initial dropkick thresholding and manual filtering of 33 inDrop scRNA-seq datasets. Four automated 
thresholding techniques were used to label cells based on the distribution of arcsinh-transformed genes detected alone 
(genes), or the combination of genes and percent ambient counts as calculated by the dropkick QC module 
(genes/ambient; see Methods: Quality control and ambient RNA quantification with dropkick QC module). B) Same as in 
A for 13 10X Genomics scRNA-seq datasets, with set differences compared to CellRanger_2. C) Same as in B, with set 
differences compared to EmptyDrops. 
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Supplementary Figure 3. Testing dropkick on simulated datasets. A) Receiver operating characteristic (ROC) curves for CellRanger_2 vs. ground truth in ten low-
background simulations. B) ROC curves for EmptyDrops vs. ground truth in ten low-background simulations. C) ROC curves for dropkick training labels (threshold) 
vs. ground truth in ten low-background simulations. D) ROC curves for final dropkick score vs. ground truth in ten low-background simulations. E-H) Same as in 
A-D, for ten high-background simulations. 
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Supplementary Figure 4. Barcode set differences for 4k pan-T cell dataset. A) UpSet plot showing global set differences 

between dropkick_label (dropkick score ≥ 0.5), CellRanger_2 and EmptyDrops. B) Histograms showing global 

distribution of heuristics (arcsinh-transformed genes, left, percent ambient counts, middle, and percent mitochondrial 

counts, right) in barcodes kept by dropkick_label and CellRanger_2. Distribution of barcodes unique to each label set 

also overlaid to show difference. C) Same as in B, for dropkick_label compared to EmptyDrops. 
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Supplementary Figure 5. dropkick plots and barcode set differences for human colorectal carcinoma (CRC) inDrop 

samples. A) dropkick QC report for human normal colonic mucosa, 3907_S1 and CRC, 3907_S2. B) dropkick coefficient 

plots, showing coefficient values (top) and binomial deviance (bottom) along the tested lambda regularization path. 

Dashed line indicates chosen lambda value of trained model. Top and bottom three genes by coefficient value and total 

model sparsity noted in top plot. C) dropkick score plot showing scatter of percent counts ambient versus arcsinh-

transformed total genes detected per barcode. Dashed lines indicate location of automated dropkick thresholds used for 

model training. Points colored by final dropkick score. D-F) Same as in A-C, but for adjacent human normal colonic 

mucosa sample, 3907_S2. G) UpSet plot showing global set differences between dropkick_label (dropkick score ≥ 0.5), 

CellRanger_2 and EmptyDrops. H) Histograms showing global distribution of heuristics (arcsinh-transformed genes, left, 

percent ambient counts, middle, and percent mitochondrial counts, right) in barcodes kept by dropkick_label and 

CellRanger_2. Distribution of barcodes unique to each label set also overlaid to show difference. J) Same as in H, for 

dropkick_label compared to EmptyDrops. 
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Supplementary Figure 6. dropkick filters reproducibly across scRNA-seq batches. A) dropkick score plots for six placenta 

replicates. B) Total run time, in seconds, for EmptyDrops and dropkick. Both algorithms were run ten times on each 

placenta replicate; points represent single runs. C) PAGA graph and UMAP embedding of all barcodes kept by 

dropkick_label (dropkick score ≥ 0.5), CellRanger_2 and EmptyDrops for the aggregate placenta dataset. Points colored 

by each of the three filtering labels as well as original batch, NMF clusters, dropkick_score (cell probability), and percent 

counts mitochondrial. D) Dot plot showing top five differentially expressed genes for each NMF cluster. The size of each 

dot indicates the percentage of cells in the population with nonzero expression for the given gene, while the color 

indicates the average expression value in that population. E) Table and bar graph enumerating the total number of 

barcodes detected by each algorithm in all NMF clusters. F) UpSet plot showing global set differences between 

dropkick_label, CellRanger_2 and EmptyDrops. G) Histograms showing global distribution of heuristics (arcsinh-

transformed genes, left, percent ambient counts, middle, and percent mitochondrial counts, right) in barcodes kept by 

dropkick_label and CellRanger_2. Distribution of barcodes unique to each label set also overlaid to show difference. H) 

Same as in G, for dropkick_label compared to EmptyDrops. 
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Supplementary Figure 7. Comparing dropkick probability scores to two alternative cell labels using receiver operating characteristic (ROC) curves. AUC = area 
under the ROC curve. A) ROC curves for 13 10X Genomics scRNA-seq datasets, using CellRanger_2 as reference. B) Same as in A, with EmptyDrops as 
reference. C) ROC curves for 33 inDrop scRNA-seq datasets, using CellRanger_2 as reference. D) Same as in C, with EmptyDrops labels as reference. E) Same 
as in C, with manually curated cell labels as reference (see methods: CellRanger 2, EmptyDrops, and manual filtering of real-world scRNA-seq datasets). F) 
Total run time, in seconds, for EmptyDrops and dropkick. Both algorithms were run ten times on all datasets; points represent single replicates. 
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Simulation Rep. Threshold 

total cells 
dropkick label 
total cells 

True label 
total cells 

Threshold 
sensitivity 

Threshold 
Specificity 

Threshold 
AUC 

dropkick 
Sensitivity 

dropkick 
Specificity 

dropkick 
AUC 

Low 
Background 

1 3028 3001 3000 0.9983 0.9963 0.9973 1.0000 0.9999 1.0000 
2 3022 3003 3000 0.9990 0.9972 0.9981 1.0000 0.9997 1.0000 
3 3017 3003 3000 0.9990 0.9978 0.9984 1.0000 0.9997 1.0000 
4 3022 3002 3000 0.9967 0.9965 0.9966 1.0000 0.9998 1.0000 
5 3026 3001 3000 0.9990 0.9968 0.9979 1.0000 0.9999 1.0000 
6 3023 3005 3000 0.9987 0.9970 0.9978 1.0000 0.9994 1.0000 
7 3028 3003 3000 0.9983 0.9963 0.9973 1.0000 0.9997 1.0000 
8 3012 3000 3000 0.9983 0.9981 0.9982 1.0000 1.0000 1.0000 
9 3020 3000 3000 0.9990 0.9975 0.9982 1.0000 1.0000 1.0000 

10 3030 3002 3000 0.9993 0.9965 0.9979 1.0000 0.9998 1.0000 

High 
Background 

1 3269 3005 3000 0.8910 0.9379 0.9124 1.0000 0.9994 1.0000 
2 3178 2998 3000 0.8693 0.9404 0.9030 0.9990 0.9999 0.9995 
3 3246 3002 3000 0.8860 0.9387 0.9103 1.0000 0.9998 1.0000 
4 3167 3001 3000 0.8710 0.9420 0.9047 0.9997 0.9998 0.9998 
5 3206 3002 3000 0.8833 0.9418 0.9108 1.0000 0.9998 1.0000 
6 3095 2999 3000 0.8563 0.9448 0.8989 0.9997 1.0000 0.9998 
7 3200 2999 3000 0.8737 0.9396 0.9047 0.9993 0.9999 0.9997 
8 3127 2998 3000 0.8760 0.9475 0.9103 0.9993 1.0000 0.9997 
9 3118 2998 3000 0.8780 0.9490 0.9121 0.9993 1.0000 0.9997 

10 3199 2998 3000 0.8773 0.9407 0.9072 0.9990 0.9999 0.9995 
  

Supplementary Table 1. Global comparison statistics between automated thresholding (dropkick training labels) and trained dropkick model vs. ground-truth cell 
labels for low and high-background simulations. 
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Simulation Rep. CellRanger 

2 total cells 
EmptyDrops 
total cells 

True label 
total cells 

CellRanger 
2 sensitivity 

CellRanger 
2 Specificity 

CellRanger 
2 AUC 

EmptyDrops 
Sensitivity 

EmptyDrops 
Specificity 

EmptyDrops 
AUC 

Low 
Background 

1 3000 3001 3000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 3000 3003 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 
3 3000 3003 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 
4 3000 3002 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 
5 3000 3001 3000 1.0000 1.0000 1.0000 0.9993 1.0000 0.9997 
6 3000 3005 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 
7 3000 3003 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 
8 3000 3000 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 
9 3000 3000 3000 1.0000 1.0000 1.0000 0.9997 1.0000 0.9998 

10 3000 3002 3000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

High 
Background 

1 3070 3005 3000 1.0000 0.9923 0.9961 1.0000 0.9881 0.9940 
2 3061 2998 3000 1.0000 0.9933 0.9966 1.0000 0.9938 0.9969 
3 3091 3002 3000 1.0000 0.9900 0.9949 1.0000 0.9807 0.9902 
4 3079 3001 3000 1.0000 0.9913 0.9956 1.0000 0.9921 0.9960 
5 3077 3002 3000 1.0000 0.9915 0.9957 1.0000 0.9848 0.9923 
6 3077 2999 3000 1.0000 0.9915 0.9957 1.0000 0.9914 0.9957 
7 3055 2999 3000 1.0000 0.9939 0.9969 1.0000 0.9461 0.9715 
8 3103 2998 3000 1.0000 0.9887 0.9943 1.0000 0.9851 0.9924 
9 3093 2998 3000 1.0000 0.9898 0.9948 1.0000 0.9925 0.9962 

10 3111 2998 3000 1.0000 0.9878 0.9938 1.0000 0.9838 0.9918 
 

 
 dropkick label 

total cells 
CellRanger 2 
total cells 

CellRanger 2 
sensitivity 

CellRanger 2 
specificity 

CellRanger 2 
AUC 

EmptyDrops 
total cells 

EmptyDrops 
sensitivity 

EmptyDrops 
specificity 

EmptyDrops 
AUC 

293t 3224 2897 0.9717 0.9986 0.9994 3028 0.9508 0.9988 0.9991 
jurkat 4020 3259 0.9963 0.9974 0.9989 3452 0.9655 0.9977 0.9985 
neuron_9k 11050 9094 0.8745 0.9958 0.9964 11027 0.8422 0.9976 0.9950 
neurons_900 1297 792 0.9369 0.9992 0.9963 1940 0.6649 1.0000 0.9721 
pbmc_4k 4830 4335 0.9993 0.9993 0.9999 4231 0.9804 0.9991 0.9935 
t_4k_small 4716 4494 0.9955 0.9993 0.9998 5004 0.8929 0.9993 0.9884 
placenta1 6285 5636 0.9963 0.9991 0.9999 7149 0.8741 1.0000 0.9983 
placenta2 2771 2101 0.9700 0.9990 0.9997 3530 0.7697 0.9999 0.9844 
placenta3 5373 4019 0.9988 0.9982 0.9997 4600 0.9833 0.9988 0.9987 
placenta4 5038 3906 0.9964 0.9984 0.9996 4532 0.9709 0.9991 0.9981 
placenta5 4064 2723 0.9927 0.9982 0.9994 3885 0.8976 0.9992 0.9972 
placenta6 3942 3289 0.9960 0.9991 0.9998 4238 0.9033 0.9998 0.9971 
3659_colon 3376 5649 0.5936 1.0000 0.9877 5655 0.5929 1.0000 0.9878 

  

Supplementary Table 2. Global comparison statistics between CellRanger_2 and EmptyDrops versus ground-truth cell labels for low and high-background 
simulations. 

Supplementary Table 3. Global comparison statistics between dropkick, CellRanger_2, and EmptyDrops for 13 10X Genomics scRNA-seq datasets. 
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 dropkick label 

total cells 
CellRanger 2 
total cells 

CellRanger 2 
sensitivity 

CellRanger 2 
specificity 

CellRanger 2 
AUC 

EmptyDrops 
total cells 

EmptyDrops 
sensitivity 

EmptyDrops 
specificity 

EmptyDrops 
AUC 

2771_S1 2222 2401 0.7380 0.9264 0.9263 2519 0.7594 0.9472 0.9590 
2771_S2 1248 925 0.8465 0.9031 0.9237 1219 0.8515 0.9506 0.9634 
2771_S3 1382 1422 0.6392 0.9643 0.9154 983 0.8688 0.9616 0.9771 
3072_S1 962 1536 0.5137 0.9899 0.9619 1049 0.6616 0.9848 0.9788 
3072_S2 2370 2239 0.6807 0.9434 0.9196 1571 0.8250 0.9322 0.9531 
3072_S3 3112 2873 0.8190 0.9102 0.9331 3210 0.8059 0.9334 0.9485 
3254_S1 1285 1356 0.8201 0.9536 0.9501 1235 0.8907 0.9521 0.9783 
3777_S1 1066 828 0.9541 0.9082 0.9669 908 0.9361 0.9247 0.9735 
3777_S2 927 1205 0.6929 0.9802 0.9435 1699 0.5221 0.9902 0.9712 
3907_S1 2260 2016 0.8661 0.9788 0.9782 1948 0.9004 0.9792 0.9892 
3907_S2 1828 2057 0.7321 0.9828 0.9652 1207 0.9205 0.9641 0.9840 
4058_colon 2186 2155 0.7940 0.9827 0.9788 1973 0.8246 0.9798 0.9790 
MPP_03A 945 997 0.6861 0.9534 0.9224 914 0.8271 0.9663 0.9771 
MPP_04A 702 766 0.8055 0.9365 0.9281 847 0.8040 0.9824 0.9842 
MPP_07A 1384 1352 0.9098 0.9761 0.9837 1256 0.9594 0.9728 0.9895 
MPP_08A 1473 1601 0.7077 0.9597 0.9290 1433 0.8130 0.9641 0.9692 
MPP_13A 1815 1634 0.8782 0.9501 0.9563 1744 0.8893 0.9643 0.9744 
MPP_18A 875 753 0.8539 0.9655 0.9558 661 0.9213 0.9612 0.9799 
MPP_19A 1503 1477 0.8538 0.9732 0.9809 1416 0.8905 0.9734 0.9876 
MPP_21A 2149 2096 0.8545 0.9522 0.9574 1518 0.9697 0.9193 0.9663 
MPP_48A 811 287 0.9477 0.9389 0.9652 934 0.8084 0.9927 0.9931 
MPX_03A 1228 1197 0.8797 0.9370 0.9471 1217 0.9260 0.9624 0.9872 
MPX_03B 407 782 0.3964 0.9861 0.9343 493 0.5558 0.9818 0.9779 
MPX_04A 744 975 0.6338 0.9900 0.9136 730 0.8274 0.9891 0.9878 
MPX_08A 1277 1100 0.8236 0.9563 0.9599 906 0.9183 0.9492 0.9767 
MPX_08B 947 962 0.8753 0.9889 0.9751 1050 0.8333 0.9923 0.9915 
MPX_09A 549 507 0.7929 0.9655 0.9622 609 0.8144 0.9870 0.9857 
MPX_09B 1462 1235 0.8899 0.9767 0.9785 1143 0.9283 0.9745 0.9850 
MPX_17A 889 813 0.7282 0.9751 0.9638 1347 0.5457 0.9863 0.9709 
MPX_19A 857 798 0.7406 0.9673 0.9630 865 0.7260 0.9715 0.9737 
MPX_19B 2830 2753 0.8794 0.9493 0.9709 2769 0.9029 0.9586 0.9804 
MPX_21A 1647 1629 0.8422 0.9660 0.9713 1622 0.8662 0.9700 0.9812 
MPX_21B 1377 1287 0.8143 0.9541 0.9608 1020 0.9255 0.9426 0.9748 

Supplementary Table 4. Global comparison statistics between dropkick, CellRanger_2 and EmptyDrops for 33 inDrop scRNA-seq datasets. 
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 dropkick label 

total cells 
Manual label total 
cells 

Manual label 
sensitivity 

Manual label 
specificity 

Manual label 
AUC 

2771_S1 2222 2715 0.7193 0.9521 0.9515 
2771_S2 1248 1536 0.7637 0.9802 0.9635 
2771_S3 1382 1303 0.8365 0.9778 0.9854 
3072_S1 962 2639 0.3297 0.9942 0.9360 
3072_S2 2370 2725 0.6712 0.9618 0.9382 
3072_S3 3112 2990 0.8084 0.9160 0.9375 
3254_S1 1285 1442 0.8336 0.9766 0.9829 
3777_S1 1066 2253 0.4589 0.9761 0.8325 
3777_S2 927 2326 0.3947 0.9974 0.8971 
3907_S1 2260 2288 0.8488 0.9866 0.9909 
3907_S2 1828 2003 0.8522 0.9935 0.9920 
4058_colon 2186 2182 0.7988 0.9838 0.9796 
MPP_03A 945 993 0.8449 0.9805 0.9793 
MPP_04A 702 854 0.7787 0.9692 0.9684 
MPP_07A 1384 1397 0.9170 0.9838 0.9916 
MPP_08A 1473 1548 0.8637 0.9836 0.9834 
MPP_13A 1815 1794 0.9498 0.9845 0.9942 
MPP_18A 875 834 0.9329 0.9851 0.9925 
MPP_19A 1503 1719 0.8214 0.9895 0.9896 
MPP_21A 2149 2149 0.9614 0.9884 0.9966 
MPP_48A 811 785 0.8994 0.9867 0.9948 
MPX_03A 1228 1242 0.8712 0.9460 0.9643 
MPX_03B 407 1313 0.3024 0.9984 0.9583 
MPX_04A 744 818 0.8264 0.9947 0.9883 
MPX_08A 1277 1200 0.9225 0.9792 0.9917 
MPX_08B 947 872 0.9507 0.9876 0.9960 
MPX_09A 549 590 0.8678 0.9909 0.9896 
MPX_09B 1462 1455 0.9162 0.9915 0.9949 
MPX_17A 889 691 0.9450 0.9803 0.9950 
MPX_19A 857 880 0.8045 0.9812 0.9874 
MPX_19B 2830 2807 0.9184 0.9679 0.9853 
MPX_21A 1647 1615 0.9467 0.9851 0.9923 
MPX_21B 1377 1369 0.9065 0.9803 0.9867 

Supplementary Table 5. Global comparison statistics between dropkick and manual cell labelling for 33 inDrop scRNA-
seq datasets. 
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Resource Source Identifier 
Deposited Data 
293T Cells Zheng, et al. 2017 

support.10xgenomics.com/single-cell-gene-
expression/datasets 
 

Jurkat Cells Zheng, et al. 2017 
9k Neurons 10X Genomics 
900 Neurons 10X Genomics 
4k PBMCs 10X Genomics 
4k Pan-T Cells 10X Genomics 
Placenta 10X Genomics 
3907_S1 & 3907_S2 this manuscript GSE158636 
Software and Algorithms 
Python version 3.8.2 Python Software Foundation python.org 
matplotlib version 3.3.0 Hunter 2007 matplotlib.org 
numpy version 1.19.1 Oliphant 2006 numpy.org 
pandas version 1.1.0 McKinney, et al. 2010 pandas.pydata.org 
scanpy version 1.5.1 Wolf, et al. 2018 pypi.org/project/scanpy/ 
scikit-learn version 0.23.1 Pedregosa, et al. 2011 scikit-learn.org 
scipy version 1.5.2 Oliphant 2007 scipy.org 
seaborn version 0.10.1 Waskom, et al. 2014 seaborn.pydata.org 
umap-learn version 0.4.3 McInnes and Healy 2018 github.com/lmcinnes/umap 
R version 3.6.3 The R Foundation r-project.org 
Seurat version 3.0.0 Butler, et al. 2018 satijalab.org/seurat 
DropletUtils version 3.11 Lun, et al. 2019 10.18129/B9.bioc.DropletUtils 
UpSetR version 1.4.0 Lex, et al. 2014 doi:10.1109/TVCG.2014.2346248 
sc-UniFrac version 0.9.6 Liu, et al. 2018 github.com/liuqivandy/scUnifrac 
dropkick version 1.2.1 this manuscript pypi.org/project/dropkick/ 

 
  

Supplementary Table 6. Code and data resources. 
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