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 2 

ABSTRACT 30 

The role of mitochondria in programmed cell death (PCD) during animal growth and 31 

development is well documented, but much less is known for plants. We previously 32 

showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins 33 

TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer 34 

membrane and participate in PCD during senescence and immunity, respectively. Here, 35 

we show that TTM1 is specifically involved in senescence induced by abscisic acid 36 

(ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein 37 

kinases (MAPKs) regulates its function and turnover. A combination of proteomics and 38 

in vitro kinase assays revealed three major phosphorylation sites of TTM1 (S10, S437, 39 

and S490), which are phosphorylated upon perception of senescence cues such as 40 

ABA and prolonged darkness. S437 is phosphorylated by the MAP kinases MPK3 and 41 

MPK4, and S437 phosphorylation is essential for TTM1 function in senescence. These 42 

MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), 43 

phosphorylate S10 and S490, marking TTM1 for protein turnover, which likely prevents 44 

uncontrolled cell death. Taken together, our results show that multiple MPKs regulate 45 

the function and turnover of the mitochondrial protein TTM1 during senescence-related 46 

PCD, revealing a novel link between mitochondria and PCD. 47 

 48 

  49 
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INTRODUCTION 50 

Senescence is a type of highly regulated developmental programmed cell death 51 

(PCD) in which nucleic acids, carbohydrates, lipids, and proteins are remobilized from 52 

senescing tissues such as leaves to other plant tissues such as seeds or roots. 53 

Senescence is crucial for ending the life cycle of plants and for survival under 54 

unfavorable conditions (Daneva et al., 2016). During senescence, chloroplasts are the 55 

first organelles to be degraded and leaf yellowing resulting from the loss of chlorophyll 56 

provides a visible sign of senescence (Keech et al., 2007; Wada et al., 2009). 57 

Mitochondria play crucial roles in senescence, as a signaling hub and by providing 58 

energy to the cell while chloroplasts are disassembled (Kmiecik et al., 2016; Chrobok et 59 

al., 2016). However, the precise molecular mechanism by which mitochondria contribute 60 

to plant PCD remains elusive.  61 

In addition to being triggered by developmental cues, senescence can be 62 

triggered by abiotic stresses such as drought or prolonged darkness. Exogenous 63 

application of phytohormones that are related to these external stresses, such as 64 

abscisic acid (ABA), ethylene, or jasmonic acid (JA), also trigger senescence (Weaver 65 

et al., 1998, Kim et al., 2011; Liu et al., 2016). It has long been known that ABA levels 66 

increase in senescing leaves (Samet and Sinclair, 1980). However, although ABA signal 67 

transduction and the role of ABA in seed germination, stomata closure, and drought 68 

have been studied extensively (Cutler et al., 2010; Sussmilch et al., 2019; Yan and 69 

Chen, 2017), relatively little is known about the role of ABA in leaf senescence. The 70 

senescence-related transcription factor ARABIDOPSIS NAC DOMAIN CONTAINING 71 

PROTEIN (NAP) induces the expression of ABSCISIC ALDEHYDE OXIDASE3 (AAO3), 72 

whose protein product catalyzes the final step in ABA biosynthesis. ABA then promotes 73 

the transcription of chlorophyll catabolic genes such as NON-YELLOW COLORING1 74 

(NYC1), and PHEOPHORBIDE a OXYGENASE (PAO) via the ABA-RESPONSIVE 75 

ELEMENT (ABRE) BINDING PROTEINS ABF2, ABF3, and ABF4 transcription factors 76 

(Yang et al., 2014, Gao et al., 2016).  77 

ABA perception has been elucidated in detail: ABA binds to the PYRABACTIN 78 

RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTOR 79 

(PYR1/PYL/RCAR) ABA receptors, leading to the inactivation of Clade A type 2C 80 
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protein phosphatases (PP2Cs), which then release the inhibition of the SUCROSE 81 

NON-FERMENTING-1 RELATED PROTEIN KINASE 2 (SnRK2) kinases (Cutler et al., 82 

2010). Activated SnRK2 kinases (SnRK2.2, SnRK2.3, and SnRK2.6) then 83 

phosphorylate downstream targets such as ABF transcription factors, which in turn 84 

induce the expression of many ABA-responsive genes (Fujita et al., 2009; Fujii et al., 85 

2009) and other target genes (Wang et al., 2013; Umezawa et al., 2013). The snrk2.2 86 

snrk2.3 snrk2.6 (snrk2.2/3/6) triple mutant is insensitive to ABA (Fujii et al., 2009) and 87 

displays delayed ABA-induced senescence (Gao et al., 2016; Zhao et al., 2016). 88 

Previous work suggested that these SnRK2 kinases activate the MAP kinase kinase 89 

kinases MAPKKK18 and MAPKKK17, which in turn activate the MAP kinase kinase 90 

MKK3 (Danquah et al., 2015; Tajdel et al., 2016; Matsuoka et al., 2018). MKK3, as well 91 

as ABA treatment, activate the group C MAP kinases MPK1, MPK2, MPK7, and 92 

MPK14. The mapkkk17 mapkkk18 double mutant and the mkk3 mutant exhibit 93 

hypersensitivity to ABA treatment during germination and altered expression of ABA-94 

inducible genes (Danquah et al., 2015).  95 

In our previous study, we showed that triphosphate tunnel metalloenzyme 1 96 

(TTM1) plays a positive role in the regulation of senescence, as ttm1 mutant plants 97 

displayed delayed natural and dark-induced senescence (Ung and Karia et al., 2017). 98 

TTM proteins are characterized by a unique tunnel structure, composed of eight 99 

antiparallel β-strands forming a β-barrel, and a characteristic EXEXK motif (where X is 100 

any amino acid) that is crucial for their enzymatic activity (Lima et al., 1999; Iyer and 101 

Aravind, 2002; Gallagher et al., 2006). Many TTM proteins also possess additional 102 

domains, such as a nucleotide kinase (P-loop kinase) or a conserved histidine α-helical 103 

(CHAD) domain (Iyer and Aravind, 2002), which also suggests that these TTM proteins 104 

act on nucleotide or polyphosphate substrates (Lorenzo-Orts et al., 2019).  105 

To date, an enzymatic function has only been reported for a few TTM proteins, 106 

which have diverse activities including RNA triphosphatase, adenylate cyclase, thiamine 107 

triphosphatase, and tripolyphosphatase (Iyer and Aravind; 2002; Bettendorff and Wins, 108 

2013, Moeder et al., 2013). Known TTM substrates include nucleotides and 109 

organophosphates such as ATP, thiamine triphosphate, the 5 end of nascent RNAs, 110 

and tripolyphosphate (Lima et al., 1999; Gallagher et al., 2006; Lakaye et al., 2004; 111 
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Keppetipola et al., 2007; Moeder et al., 2013). In addition, TTMs require a divalent metal 112 

cation cofactor, usually magnesium (Mg2+) or manganese (Mn2+) (Bettendorff and Wins, 113 

2013).  114 

 Plant genomes usually encode two types of TTM proteins: a small TTM protein 115 

containing only one TTM domain, termed TTM3 in Arabidopsis (Arabidopsis thaliana) 116 

(Moeder et al., 2013; Martinez et al., 2015), and another type having a fusion of a TTM 117 

and a P-loop kinase domain (Iyer and Aravind, 2002; Ung et al., 2014; Ung and Karia et 118 

al., 2017). Arabidopsis has two TTM proteins of the second type, TTM1 and TTM2, 119 

each with a P-loop kinase/uridine kinase-like domain (UK) followed by a TTM domain 120 

(Ung et al., 2014). Both proteins also have an extended C-terminal tail region containing 121 

a coiled-coil domain and a transmembrane (TM) domain. Previously, we reported that 122 

Arabidopsis TTM1 and TTM2 are tail-anchored proteins that are localized to the 123 

mitochondrial outer membrane via their TM domain (Ung and Karia et al., 2017; 124 

Kriechbaumer et al., 2009). Most dicot plants have both TTM1 and TTM2 homologues, 125 

while monocots have only one homologue (in addition to one TTM3 homologue). We 126 

demonstrated that both TTM1 and TTM2 display pyrophosphatase activity (Ung et al., 127 

2014; Ung and Karia et al., 2017), which is unique among TTM proteins, as they usually 128 

hydrolyze triphosphate substrates (Bettendorff and Wins, 2013).  129 

Although TTM1 and TTM2 share over 92% sequence similarity and 66% 130 

sequence identity, which is even higher in the UK (81% identity) and TTM domains 131 

(73% identity), they play distinct roles in plant immunity (Ung et al., 2014) and 132 

senescence (Ung and Karia et al., 2017). Their biological roles are determined by their 133 

expression patterns, since TTM2 can complement the ttm1 mutant phenotype when 134 

expressed under the control of the TTM1 promoter, and vice versa (Ung and Karia et 135 

al., 2017). Each protein is also connected to a different type of PCD: TTM2 negatively 136 

regulates immunity-related cell death (Ung et al., 2014), whereas TTM1 positively 137 

regulates senescence-associated cell death (Ung and Karia et al., 2017). 138 

 Here, we show that the mitochondrial outer membrane protein TTM1 is regulated 139 

by senescence cues such as dark or ABA through its phosphorylation and accelerates 140 

senescence-related PCD. TTM1 is phosphorylated at multiple serine residues upon 141 

treatment with ABA, and phosphorylation at serine 437 (S437) is required for its 142 
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function. We identified multiple MAP kinases that phosphorylate TTM1 at S437, as well 143 

as at two other residues, S10 and S490. Our data indicate that phosphorylation at these 144 

two additional positions marks TTM1 for degradation by the 26S proteasome, revealing 145 

a role for TTM1 in linking senescence, ABA, and mitochondria. 146 

 147 

 148 

RESULTS 149 

TTM1 is involved in ABA-induced senescence 150 

In our previous study, we showed that TTM1 plays a positive regulatory role in 151 

senescence, as ttm1 mutant plants displayed delayed natural and dark-induced 152 

senescence (Ung and Karia et al., 2017). The phytohormones ABA, ethylene, and JA 153 

are associated with senescence (Breeze et al., 2011), and treatment with any of these 154 

hormones leads to senescence/chlorophyll degradation over the course of 3–4 days 155 

(Kim et al., 2011). Therefore, we tested whether TTM1 is a general senescence 156 

regulator or is part of a specific phytohormone-associated senescence pathway.  157 

To this end, we quantified chlorophyll levels from detached leaves after floating 158 

them on water containing ABA, the ethylene precursor 1-aminocyclopropane-1-159 

carboxylic acid (ACC), or methyl jasmonate (MeJA). MeJA and ACC treatment induced 160 

accelerated senescence, as seen by reduced chlorophyll levels in wild-type Columbia 161 

(Col) plants, compared to buffer control (Figure 1A). By contrast, we observed no 162 

differences between treated ttm1 and wild-type plants (Figure 1A). However, we noticed 163 

a substantial delay in chlorophyll degradation in ABA-treated ttm1 leaves (Figure 1B). 164 

The delay in ttm1 was comparable to that observed in the ABA-insensitive mutant abi5 165 

(Figure 1B), indicating that TTM1 is part of the ABA-mediated senescence signaling 166 

pathway.  167 

 168 

TTM1 is phosphorylated upon dark treatment  169 

TTM1 is transcriptionally up-regulated during dark-induced senescence (Ung and 170 

Karia et al., 2017). Therefore, we tested whether TTM1 is transcriptionally regulated by 171 

ABA. At 24 h, ABA treatment induced the expression of the ABA marker gene 172 

RESPONSIVE TO DESICCATION 29A (RD29A) (Supplemental Figure S1). At 72 h, 173 
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ABA treatment caused the up-regulation of the senescence marker gene 174 

SENESCENCE-ASSOCIATED GENE 12 (SAG12), coinciding with chlorophyll loss. By 175 

contrast, we observed no transcriptional up-regulation of TTM1 after treatment with ABA 176 

(Supplemental Figure S1A). This observation is also supported by publicly available 177 

microarray datasets (Supplemental Figure S1B; Goda et al., 2008).  178 

These data indicated that ABA does not transcriptionally regulate TTM1 179 

expression. Therefore, we hypothesized that TTM1 might be regulated post-180 

translationally. Indeed, several proteomics studies have reported increased 181 

phosphorylation of TTM1 at S437 upon ABA treatment (Kline et al., 2010; Wang et al., 182 

2013). These observations prompted us to investigate the phosphorylation status of 183 

TTM1.  184 

First, we tested whether an increase in S437 phosphorylation occurred during 185 

dark treatment. For this purpose, we transiently overexpressed yellow fluorescent 186 

protein (YFP)-tagged TTM1 in Nicotiana benthamiana leaves. This system has 187 

successfully been used to induce senescence/cell death (Ung and Karia et al., 2017). 188 

YFP-TTM1 has been shown to functionally complement the delayed senescence 189 

phenotype of ttm1 similar to untagged TTM1 (Ung and Karia et al., 2017).  190 

To measure phosphorylation, YFP-TTM1 was immunoprecipitated from dark-191 

treated and control N. benthamiana leaves transiently expressing the 35Spro:YFP-192 

TTM1 construct. Our LC-MS/MS analysis after immunoprecipitation and trypsin 193 

digestion identified 172 and 262 total spectra for TTM1 in control and dark-treated 194 

samples, respectively, with a minimum of 2 peptides and a 0.8% false discovery rate 195 

(FDR). We observed a 50% increase in phosphorylation at S437 in dark-treated 196 

samples relative to controls (Supplemental Table 1), showing that S437 is 197 

phosphorylated both during dark-induced senescence and after ABA treatment (Kline et 198 

al., 2010; Wang et al., 2013). 199 

 200 

Phosphorylation at S437 is required for TTM1 function 201 

Considering that ABA and dark treatment both lead to TTM1 phosphorylation at 202 

S437, we hypothesized that phosphorylation at this position is required for TTM1 203 

function. To test this idea, we expressed phospho-dead (TTM1S437A) and phospho-204 
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mimetic (TTM1S437D) variants of TTM1 under the control of the native TTM1 promoter, in 205 

ttm1 knockout plants and performed functional complementation assays (Ung and Karia 206 

et al., 2017). We confirmed that all complementation lines had comparable expression 207 

levels for all TTM1 variants by RT-PCR (Supplemental Figure S2). 208 

As expected, ttm1 mutant plants showed a significant delay in senescence, as 209 

they retained significantly more chlorophyll than wild type at day 3 after ABA treatment 210 

(Figure 2A, B). Also as expected, two independent transgenic ttm1 lines expressing 211 

wild-type TTM1 (TTM1pro:TTM1) complemented the senescence phenotype back to 212 

that seen in wild-type (Figure 2A, B, Ung and Karia et al., 2017). Similarly, the phospho-213 

mimetic TTM1pro:TTM1S437D construct complemented the ttm1 phenotype. However, 214 

the construct for the phospho-dead variant of TTM1, TTM1pro:TTM1S437A, did not 215 

complement the ttm1 mutant (Figure 2A, B).  216 

We tested the same lines in the dark-induced senescence assay, which 217 

confirmed that only the phospho-dead version of TTM1 failed to complement the ttm1 218 

mutant phenotype (Figure 2C), indicating that phosphorylation at S437 upon ABA and 219 

dark treatment is required for TTM1 function. Taken together, these data indicate that 220 

phosphorylation at S437 is essential for TTM1 function to induce senescence-221 

associated cell death. 222 

 223 

TTM1 is targeted by multiple MAP kinase  224 

In order to understand the regulation of TTM1 and its role in senescence 225 

signaling, we aimed to identify the kinase(s) that phosphorylate TTM1 upon perception 226 

of senescence cues such as ABA and dark treatment. The ABA-induced 227 

phosphorylation of TTM1 was greatly reduced in the snrk2.2/2.3/2.6 triple mutant (Wang 228 

et al., 2013). Thus, we first hypothesized that these SnRK2 kinases might 229 

phosphorylate TTM1 and tested this by an in vitro kinase assay using purified 230 

glutathione S-transferase (GST)-tagged SnRK2.2, SnRK2.3 and SnRK2.6 protein and 231 

maltose binding protein (MBP)-His-tagged TTM1. However, we detected only the auto-232 

phosphorylation of SnRK2.6 protein on the autoradiograph, and no phosphorylation of 233 

the recombinant MBP-His-TTM1 protein (Supplemental Figure S3A).  234 
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The fact that S437 is followed by a proline residue suggested that S437 might be 235 

phosphorylated by a MAP kinase (Sörensson et al., 2012; Rayapuram et al., 2018). The 236 

Arabidopsis thaliana genome encodes 20 MAP kinases (Xu and Zhang, 2015). The 237 

group C kinases MPK1, MPK2, MPK7, and MPK14 had previously been shown to be 238 

activated by ABA (Danquah et al., 2015). MPK12 is also activated by ABA (Jammes et 239 

al., 2009). MPK6 from group A has also been connected to senescence (Zhou et al., 240 

2009). In addition, publicly available transcriptome datasets indicate that MPK3, MPK4, 241 

MPK11, and MPK5 are transcriptionally up-regulated in senescing leaves (Klepikova et 242 

al., 2016; Supplemental Figure S4). We therefore tested these ten MAP kinases with 243 

connections to ABA or senescence through in vitro kinase assays. Of the four group C 244 

kinases, MPK1 and MPK7, but not MPK2 or MPK14, phosphorylated TTM1 (Figure 3A). 245 

MPK6 also phosphorylated TTM1 in vitro (Figure 3A), as did MPK3 and MPK4 (Figure 246 

3B), but not MPK5, MPK11, or MPK12 (Supplemental Figure S3B).  247 

To test if these MAP kinases phosphorylate TTM1 at the functionally essential 248 

S437 residue, we next tested the phospho-dead variant TTM1S437A for phosphorylation. 249 

However, TTM1S437A still acted as a substrate for MPK1, MPK6, and MPK7 in our in 250 

vitro kinase assay (Figure 3C). This data suggested that these MAP kinases may 251 

phosphorylate residues in TTM1 other than S437. Thus, to identify the other 252 

phosphorylation sites, we conducted an LC-MS/MS phospho-peptide analysis using 253 

MPK7 as kinase. MPK7 did not phosphorylate TTM1 at S437 as predicted, but did 254 

phosphorylate two other residues: S10, located at the N-terminus before the uridine 255 

kinase domain, and S490 in the junction domain before the coiled-coil domain (Table 1; 256 

Figure 3D). We thus conducted in vitro phosphorylation assay with the kinases MPK1, 257 

MPK6, and MPK7, using a TTM1S10A/S490A double phospho-dead mutant. As expected, 258 

we detected no phosphorylation of TTM1S10A/S490A by MPK1, MPK6, or MPK7 (Figure 259 

3C), demonstrating that these three kinases phosphorylate S10 and S490 rather than 260 

S437. 261 

This finding prompted us to expand our analysis of TTM1 phosphorylation with a 262 

LC-MS/MS phospho-peptide analysis of MPK3 and MPK4 in vitro phosphorylation 263 

products. Interestingly, both kinases phosphorylated not only S437, but also S10 and 264 

S490, thereby adding MPK3 and MPK4 to the list of kinases targeting these two 265 
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residues (Table 1). The in vitro kinase assay showed no reduction of phosphorylation of 266 

TTM1S437A by either kinase, but reduced levels of TTM1S10A/490A phosphorylation by 267 

MPK3 and almost no TTM1S10A/490A phosphorylation by MPK4, confirming the phospho-268 

peptide analysis (Figure 3B).  269 

Taken together, these results imply that MPK3 and MPK4 regulate TTM1 270 

function via phosphorylation at S437. Furthermore, we identified additional kinases, 271 

including MPK1, MPK6, MPK7, MPK3, and MPK4, that phosphorylate TTM1 at two 272 

additional sites, S10 and S490.  273 

 274 

Phosphorylation status of TTM1 regulates its function and turnover 275 

Transient expression of wild-type TTM1 in N. benthamiana leaves causes cell death 276 

when plants are maintained in the dark for prolonged time suggesting that TTM1 277 

functions as a positive regulator of dark-induced cell death (Ung and Karia et al., 2017). 278 

To further investigate the role of TTM1 phosphorylation at S10 and S490, we tested the 279 

effect of transient overexpression of wild-type, phospho-mimetic, and phospho-dead 280 

variants of TTM1 on dark-induced cell death in N. benthamiana leaves. The single 281 

(S437A), double (S10A, S490A), and triple phospho-dead TTM1 variants displayed a 282 

similar degree of cell death to wild-type TTM1, indicating that the phosphorylation of 283 

these residues does not affect protein function itself (Figure 4A). By contrast, the TTM1 
284 

S437D single variant displayed cell death similar to TTM1 wild type, whereas both the 285 

TTM1 S10D/S490D double and TTM1 S10D/S437DS490D triple variants showed a significant 286 

reduction in the cell death phenotype where the phospho-mimetic triple variant exhibited 287 

almost 50% reduction in cell death (Figure 4B, C). These results suggest that unlike 288 

S437, phosphorylation at S10 and S490 negatively affects the ability of TTM1 to induce 289 

cell death.   290 

TTM1 is a tail-anchored protein that localizes to the mitochondrial outer 291 

membrane (Ung and Karia et al., 2017). We analyzed the protein levels and localization 292 

of the different phosphorylation mutants by confocal microscopy. As reported 293 

previously, wild-type TTM1 showed a punctate pattern (Figure 5A; Ung and Karia et al., 294 

2017). A similar punctate pattern was also observed with the phospho-dead and 295 

phospho-mimetic single variants at the S437 residue (TTM1S437D, TTM1S437A), indicating 296 
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that the phosphorylation status at S437 does not affect subcellular localization or protein 297 

degradation (Figure 5B, E). However, we noticed a strong reduction in puncta and the 298 

appearance of a cytosolic pattern for the phospho-mimetic variants TTM1S10D/S490D and 299 

TTM1S10D/S437D/S490D (Figure 5F, G), while the corresponding phospho-dead variants 300 

displayed a normal localization pattern (Fig 5C, D).  301 

This raised the possibility that phosphorylation at S10 and S490 may lead to 302 

enhanced turnover of the TTM1 protein, possibly via the 26S proteasome. Therefore, 303 

we monitored YFP-TTM1 protein levels in the presence and absence of the proteasome 304 

inhibitor MG132 (Genschik et al., 1998). Again, we detected virtually no YFP-positive 305 

puncta in the control double phospho-mimetic variant (TTM1S10D/S490D, Figure 6A, B). 306 

However, MG132 treatment resulted in a significant increase in YFP-positive puncta 307 

(Figure 6C, D), suggesting that phosphorylation at the S10 and S490 residues regulates 308 

TTM1 degradation via the 26S proteasome.  309 

 310 

DISCUSSION 311 

In animals, the role of mitochondria in PCD is well established (Peña-Blanco et 312 

al., 2018). For example, the pro-apoptotic B-cell lymphoma 2 (Bcl-2) homologous 313 

antagonist/killer (BAK) and Bcl-2-associated X (BAX) proteins are tail-anchored proteins 314 

that, like TTM1, are targeted to the mitochondrial outer membrane, where they play 315 

important roles in apoptosis and tumorigenesis (Wilfling et al., 2012). Interestingly, even 316 

though no BAK and BAX homologues have been identified in plants, there is mounting 317 

evidence for a role of mitochondria in PCD in plants, mostly via a connection to reactive 318 

oxygen species (ROS) production (Wang et al., 2017; Zhang et al., 2017; Van Aken and 319 

Pogson, 2017). Recently several Arabidopsis mitochondrial outer membrane proteins 320 

(e.g. OM66 and OM47) have been connected to cell death and senescence (Zhang et 321 

al., 2014; Li et al., 2016). However, many questions regarding the role of mitochondria 322 

in plant PCD remain unanswered. In this study, we show that the mitochondrial outer 323 

membrane protein TTM1 is regulated by the plant hormone ABA at the post-324 

translational level to accelerate senescence-related cell death, revealing a link between 325 

ABA, senescence, and mitochondria. 326 
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We had previously shown that TTM1 acts as a positive regulator of natural and 327 

dark-induced senescence (Ung and Karia et al., 2017). Here, we demonstrate that 328 

TTM1 is specifically connected to ABA-mediated senescence. Treatment with 329 

exogenous ABA, or prolonged dark treatment, lead to increased phosphorylation of 330 

TTM1 at S437 (Kline et al., 2010; Wang et al., 2013; Supplemental Table 1). Since our 331 

functional complementation analysis revealed that phosphorylation at this site is 332 

essential for TTM1 function, we embarked on the identification of the upstream signaling 333 

components (i.e. kinases) that modify TTM1 to understand the regulation of this 334 

mitochondrial protein.  335 

In the phosphoproteomics study conducted by Wang et al., (2013), TTM1 was 336 

reported to be one of 58 proteins with increased phosphorylation upon ABA treatment 337 

and reduced phosphorylation in the snrk2.2/2.3/2.6 triple mutant, suggesting that these 338 

SnRK2 kinases may directly phosphorylate TTM1 (Wang et al., 2013). This notion was 339 

supported by the delayed ABA-induced senescence phenotype in snrk2 triple mutants, 340 

reminiscent of the ttm1 phenotype (Gao et al., 2016; Zhao et al., 2016). However, we 341 

discovered that none of these SnRK2 kinases directly phosphorylate TTM1 342 

(Supplemental figure S3A).  343 

Since these SnRK2 kinases have been shown to activate at least one MAP 344 

kinase cascade upon ABA treatment, and based on the observation that the S437 345 

residue is located within a conserved MAP kinase phosphorylation site, we focused on 346 

MAP kinases related to ABA and/or senescence. We tested ten such MAP kinases in 347 

this study, which revealed that MPK3 and MPK4, but not MPK1, MPK6, or MPK7, 348 

phosphorylate S437. MPK3 and MPK4 were not our prime candidates, since they had 349 

not previously been strongly connected to senescence. The only connection between 350 

MPK4 and senescence comes from several studies that reported ABA-mediated 351 

activation of MPK4 (Xing et al., 2008; Ichimura et al., 2000) and MKK1, the MAPKK 352 

upstream of MPK4 (Brock et al., 2010; Xing et al., 2008). Similarly, several studies 353 

reported a weak activation of MPK3 by ABA (de Zelicourt et al., 2016; Brock et al., 354 

2010) and both kinases are transcriptionally up-regulated in senescing leaves 355 

(Supplemental Figure S4; Klepikova et al., 2016). Thus, in this study, we discovered a 356 

previously unrecognized mechanistic connection between MPK3 and MPK4 and 357 
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senescence, via phosphorylation of the mitochondrial protein TTM1. Whether SnRK2 358 

kinases also activate the upstream cascades of these MAP kinases remains to be 359 

investigated, but this may help explain the loss of TTM1 phosphorylation in the 360 

snrk2.2/2.3/2.6 triple mutant (Wang et al., 2013).  361 

In addition to the S437 residue, we identified two additional phosphorylation sites 362 

through our phospho-proteomic analyses: S10 and S490. Our confocal microscopic 363 

analysis revealed that TTM1 undergoes an intriguing change in its sub-cellular 364 

localization upon phosphorylation at these sites, and also provided evidence of TTM1 365 

degradation. Phosphorylation is often accompanied by other post-translational 366 

modifications such as ubiquitination and interdependency between different post-367 

translational modifications is seen for timed execution of protein function or turnover 368 

(Hunter, 2007). Previous studies have indicated that signals like light and ABA lead to 369 

protein phosphorylation, which in turn targets proteins for degradation (Cheng et al., 370 

2017; Yang et al., 2017). The exact ubiquitination sites and the identity of the ligases 371 

that target TTM1 for degradation are under investigation. Interestingly, the animal 372 

apoptotic protein Bcl2, which also localizes at the mitochondrial outer membrane, 373 

undergoes phosphorylation at multiple sites for proper function, as well as ubiquitination 374 

for its turnover (Breitschopf et al., 2000). It will be interesting to understand the precise 375 

molecular mechanisms underlying TTM1 function and turnover in plant PCD and 376 

explore the extent to which it parallels Bcl2 in animals. 377 

Our mass spectrometry analysis identified an additional phosphorylation event at 378 

the S535 residue upon dark treatment (Supplemental Table 1). This site does not have 379 

a typical MAP kinase target motif (Sörensson et al., 2012; Rayapuram et al., 2018) and 380 

was not phosphorylated by MPK3, MPK4, or MPK7 in our in vitro assays (Table 1). 381 

Therefore, TTM1 is likely regulated by another undetermined kinase at the S535 382 

residue, suggesting its regulation by additional phosphorylation events.  383 

TTM1 is anchored in the mitochondrial outer membrane by its C-terminal TM 384 

domain, which is followed by a tail-region of about 200 amino acids that includes a 385 

coiled-coil domain. The N-terminus of TTM1 comprises the two putative catalytic 386 

domains: the TTM and the uridine kinase-like domain. The S437 phosphorylation site is 387 

located 30 amino acids after the catalytic TTM domain, while S10 is located within the 388 
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N-terminus, before the P-loop kinase domain and S490 lies just before the coiled-coil 389 

domain (Figure 3D; Supplemental Figure S5). The location of S437 indicates that 390 

phosphorylation at this position is unlikely to directly affect the enzymatic activity, since 391 

it is not in the catalytic domains, but may instead cause a general conformational 392 

change of the TTM1 protein. S437 must be an essential site for TTM1 function, as it is 393 

well conserved among both dicot and monocot TTM1 homologues. In fact, ABA 394 

treatment also leads to the phosphorylation of the same conserved site in the rice 395 

(Oryza sativa) TTM1 homologue (Qiu et al., 2017), further stressing the importance of 396 

phosphorylation at this residue for TTM1 function.  397 

Taking these results together, we propose a model for TTM1 function and 398 

regulation, shown in Figure 7. ABA and other potential senescence cues lead to the 399 

activation of multiple MAP kinase cascades, resulting in the phosphorylation of TTM1 at 400 

S437 (via MPK3 and MPK4). The conformational change induced by S437 401 

phosphorylation activates its enzymatic activity by allowing its substrate access. Thus, 402 

phosphorylation at S437 is essential for TTM1 function. This conformational change 403 

may also allow the S10 and S490 residues to be phosphorylated by multiple MAP 404 

kinases, leading to TTM1 degradation to prevent over-activation of cell death. 405 

Our data strongly connect TTM1 to ABA signaling, which appears to regulate 406 

both the activation and the degradation of TTM1 via phosphorylation. The fact that 407 

S10/S490 phosphorylation triggers TTM1 protein turnover suggests that TTM1 is 408 

required during a specific and short window during senescence to positively regulate 409 

cell death execution. Indeed, constitutive over-expression (for instance, when driven by 410 

the 35S promoter) triggers cell death (Ung and Karia et al., 2017), suggesting that 411 

TTM1 levels have to be maintained at low levels to avoid unwanted cell death. It will be 412 

important to confirm whether the in vivo substrate is also pyrophosphate (Ung and Karia 413 

et al., 2017) and to establish the connection between TTM1 and other signaling 414 

components in the mitochondria. 415 

In summary, this study reveals a previously unknown molecular link between the 416 

mitochondrial outer membrane-localized TTM1 protein and ABA signaling in 417 

senescence-related cell death. Further studies to identify the substrate of TTM1 and to 418 
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understand the purpose of TTM1 localization to the mitochondrial outer membrane and 419 

its connection to PCD are in progress.  420 

 421 

 422 

MATERIAL AND METHODS 423 

Plant material and growth conditions 424 

The ttm1 knockout plants used in this study have been previously described (Ung et al., 425 

2017). Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana plants were 426 

grown on Sunshine mix in a growth chamber at 22°C, 60% relative humidity, 140 μE m-2 427 

s-1 with a 9 h photoperiod (9 h light: 15 h dark).  428 

 429 

Dark and phytohormone-induced senescence assay 430 

A combination of non-senescing leaves (leaves 4, 5, and 6, with leaf #1 being the first 431 

true leaf) of four- to five-week-old plants were detached and floated on water in petri 432 

dishes in the dark for the specified period. For phytohormone assays, leaves were 433 

floated on water containing either 50 µM ABA, 50 µM ACC, or 25 µM MeJA in a 16 h 434 

photoperiod (16 h light: 8 h dark) in a growth chamber.  435 

 436 

Chlorophyll quantification 437 

Frozen leaves were ground to a fine powder before being resuspended in 80% acetone 438 

(v/v), 25 mM HEPES, pH 7.5. Total chlorophyll a and b amounts were quantified by 439 

measuring their absorbance using a spectrophotometer. We used the equation for total 440 

chlorophyll = 17.76 (A646) + 7.34 (A663), followed by normalization to fresh weight (Porra 441 

et al., 1989). 442 

 443 

Transgenic complementation analysis 444 

TTM1 variants were cloned into the pORE R2 vector, containing the TTM1 promoter 445 

(Coutu et al.,2007; Ung et al., 2017). Stable transformation of ttm1 plants was carried 446 

out using Agrobacterium (Agrobacterium tumefaciens)-mediated transformation by the 447 

floral dip method (Clough and Bent, 1998). Primer sequences are provided in 448 

Supplemental Table 2. 449 
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 450 

RNA extraction, cDNA synthesis, and quantitative real time PCR 451 

Arabidopsis leaf samples were frozen in liquid nitrogen and ground to a fine powder. 452 

RNA extraction was performed using TRIzol reagent (Life Technologies), according to 453 

the manufacturer’s instructions. First strand cDNAs were synthesized using SuperScript 454 

II Reverse Transcriptase (Life Technologies) according to the manufacturer’s 455 

instructions. RT-qPCR assays were performed using SYBR Green Master Mix (Life 456 

Technologies). Gene expression was normalized to the expression of ELONGATION 457 

FACTOR1-ALPHA (EF1A). Primer sequences are provided in Supplemental Table 2. 458 

 459 

Transient expression in N. benthamiana 460 

Transient infiltration was performed via infiltration of 4-to 5-week-old N. benthamiana 461 

leaves with Agrobacterium strain GV2260. Agrobacterium cultures for all relevant 462 

constructs were grown for 6 h in Luria-Bertani (LB) broth, 10 mM MES (pH 5.7), 20 μM 463 

acetosyringone at 28ºC, then pelleted by centrifugation and resuspended in infiltration 464 

buffer (10 mM MES, 10 mM MgCl2, 150 μM acetosyringone) to a final OD600 of 0.5. 465 

Agrobacterium cell suspensions carrying CaMV35S::HC-Pro from Tobacco etch virus 466 

were infiltrated alone (TEV) or co-infiltrated in a 1:1 ratio with the construct of interest. N 467 

terminally YFP-tagged TTM1 variants were cloned into pEARLEYGATE104 (Earley et 468 

al., 2006). We moved N. benthamiana plants to the dark 24 h after infiltration, for the 469 

indicated number of days (Ung et al., 2017). 470 

 471 

Bacterial induction and protein expression 472 

TTM1 variants were cloned as MBP-His-TTM fusions in the pET28MAL vector. These 473 

constructs lacked the C-terminal TM-domain (ending at S621) (Ung et al., 2017). All 474 

kinases were GST-tagged using the pGEX- 4T-3 vector. Plasmids were transformed 475 

into Escherichia coli, strain BL21 RIPL, for protein expression. E. coli containing the 476 

plasmids were grown at 37ºC until they reached a cell density equivalent to OD600 = 0.4. 477 

Protein production was then induced by the addition of 0.1 mM isopropyl β-D-1-478 

thiogalactopyranoside (IPTG); growth was allowed to continue overnight at 18ºC before 479 

harvesting the cells by centrifugation.  480 
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 481 

Protein purification 482 

Bacterial pellets were resuspended in 1 phosphate buffered saline (PBS), 1% Triton X-483 

100, 1 mM DTT, 0.5 mM PMSF, and protease inhibitor cocktail (BioShop) (GST-fusion 484 

proteins) or in 50 mM Tris-Cl, pH 7.5, 500 mM NaCl, 5% glycerol, 3 mM imidazole, 0.5 485 

mM PMSF, and protease inhibitor cocktail (BioShop) (MBP-His fusion proteins). Cells 486 

were lysed under a French press. Soluble fractions were obtained by centrifugation at 487 

13,000 rpm for 20 min at 4ºC; fusion proteins were purified using either glutathione 488 

agarose (GST) or Ni-NTA agarose (MBP-His). GST proteins were eluted with 20 mM 489 

reduced glutathione, while MBP-His proteins were eluted with 200 mM imidazole. Eluted 490 

proteins were concentrated using an Amicon Ultra Centrifugal Filter Unit (50 kDa cut 491 

off), according to the manufacturer’s instructions. Protein concentration was determined 492 

by the Bradford assay at OD595. Proteins were stored at –80ºC until use. 493 

 494 

In vitro kinase assay 495 

For MAP kinase assays, 3 μg of MBP-His-TTM1 variants was incubated with 1 μg 496 

constitutively active (CA) GST-MKK and 1 μg GST-MPK in 25 mM Tris-Cl, pH 7.5, 10 497 

mM MgCl2, 1 mM Na3VO4, 2.5 mM β-glycerophosphate, 1 mM DTT. Reactions were 498 

initiated by the addition of ATP (final concentration 100 μM ATP+2 μCi [γ-32P]-ATP) 499 

(Cao et al., 2018).  500 

For SnRK2 kinase assays, 3 μg of MBP-TTM1 protein was incubated with 3 μg 501 

GST-SnRK2 in 25 mM Tris-Cl, 10 mM MgCl2, 1 mM DTT. Reactions were initiated by 502 

the addition of ATP (final concentration 50 μM ATP+2 μCi [γ-32P]-ATP) (Wang et al., 503 

2013). 504 

Following incubation at 30ºC for 2 h, reactions were stopped by the addition of 1x 505 

SDS loading buffer and heating at 95ºC for 10 min. Proteins were separated on 12% 506 

SDS-PAGE gels. Radiolabeled proteins were detected by film exposure. 507 

 508 

Immunoprecipitation 509 

N. benthamiana plants transiently expressing 35Sp:YFP-TTM1 were used for 510 

immunoprecipitation and liquid chromatography tandem mass spectrometry ((LC-511 
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MS/MS) phosphoproteomics analysis. After 5 d of dark treatment, we collected 2 g of 512 

leaves expressing YFP-TTM1 from control and dark samples. Tissue was frozen in 513 

liquid nitrogen and ground to fine powder. Total proteins were extracted in 50 mM Tris-514 

HCl, pH 7.5, 50 mM NaCl, 5% glycerol, 1 mM EDTA, 5 mM DTT, 0.5% PVP, protease 515 

inhibitor cocktail (BioShop), 1% (v/v) IGEPAL, 1 mM Na2MoO4, 1 mM NaF, 0.5 mM 516 

Na3VO4; homogenized at 4ºC for 30 min; and centrifuged at 4ºC and 13,000 rpm for 20 517 

min. After passing the supernatant through one layer of Miracloth, samples were diluted 518 

1:1 with detergent-free extraction buffer. We added 20 μL of GFP-Trap (Chromotek) 519 

magnetic beads to each sample and incubated the mixtures at 4ºC for 3 h. After 520 

centrifugation at 500g for 30 sec at 4ºC. beads were washed 3 times with 1 mL 1x PBS 521 

and transferred to LoBind protein microfuge tubes. (Schwessinger et al., 2011). 522 

 523 

Mass spectrometry 524 

In vitro kinase assays were performed as indicated above, using 5 μg MBP-His-TTM1 525 

and 2 μg GST-MPK3/4/7 and incubated for 3 h. Kinase reactions were sent for in-526 

solution trypsin digestion and LC-MS/MS phosphopeptide analysis at the Mass 527 

Spectrometry Facility, SPARC BioCentre (The Hospital for Sick Children, Toronto). 528 

Phosphopeptide analysis was also performed using immunoprecipitated and trypsin 529 

digested TTM1 samples from N. benthamiana leaves.  530 

 531 

Confocal microscopy 532 

Confocal microscopy images of N. benthamiana leaves were collected with a Leica TCS 533 

SP5 confocal system (Leica Microsystems). Leaf discs from Agrobacterium-infiltrated 534 

areas were imaged 48 h post infiltration. The indicated samples were treated with 100 535 

μM MG132 24 h prior to visualization. YFP (520-590 nm) or chloroplast 536 

autofluorescence (650-700 nm) was detected under a 63x oil immersion objective lens 537 

with 3x zoom, using the 514-nm OPSL laser set to 33%. 538 

 539 

Statistical analysis 540 
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Statistical analysis was performed using one-way analysis of variance (ANOVA) and 541 

Tukey’s post hoc test using Python scripts in Jupyter notebook and Student’s t-test 542 

using Microsoft Excel. 543 

 544 

Accession numbers: 545 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 546 

GenBank/EMBL databases under the following accession numbers: Arabidopsis 547 

thaliana TTM1 (At1g73980), EF1A (At5g60390), β-tub (At5g23860), MPK1 (At1g10210), 548 

MPK2 (At1g59580), MPK7 (At2g18170), MPK14 (At4g36450), MPK6 (At2g43790), 549 

MPK3 (At3g45640), MPK4 (At4g01370), MPK11 (At1g01560), SnRK2.2 (At3g50500), 550 

SnRK2.3 (At5g66880), SnRK2.6 (At4g33950), RD29A (At5g52310), SAG12 551 

(At5g45890) 552 
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Figure 1. ttm1 displays delayed leaf senescence upon ABA treatment. 
(A). Leaves of 4-5-week-old Arabidopsis thaliana accession Columbia (Col) wild type and ttm1 mutants were detached and 
floated for 6 days on de-ionized water ± 25 µM MeJA or de-ionized water containing 3 mM MES (pH 5.8) ± 50 µM ACC (Controls: 
ACC, 3 mM MES, MeJA, 0.1% ethanol).  
(B) 4-5-week-old Arabidopsis thaliana wild type (Col), ttm1, aao3 and abi5 mutant leaves were detached and floated for 3 days 
on de-ionized water +/- 50 µM ABA (Control, 0.1% ethanol). abi5 served as a positive (ABA insensitive) control.  
Leaves were under 16/8 hr light/dark conditions. Total chlorophyll content was measured from samples before and after 
treatment. Each bar represents the mean ± SE (n = 3). ABA and MeJA experiments were repeated three times and the ACC 
experiment was performed twice. Measurements are plotted as box plots displaying the first and third quartiles, split by the 
median; whiskers extend to a maximum of 1.5× interquartile range beyond the box. Statistical analysis was performed using (A) 
student’s t-test and (B) one- way ANOVA with Tukey’s HSD post hoc test. Different letters denotes a significant difference 
between two samples. 
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Figure 2 : TTM1S437A does not complement the delayed senescence phenotype of ttm1.  
(A, B) Leaves of 4-5-week-old Arabidopsis thaliana wild type (Col), ttm1, two independent ttm1/TTM1 lines, three independent 
ttm1/TTM1S437A and three independent lines ttm1/TTM1S437D were floated for 3 days on water + 50 µM ABA. (A) Images of leaves 
on day 0 and 3 after ABA treatment. (B) Total chlorophyll content was measured from samples before/after treatment, 
normalized values of chlorophyll content after treatment are plotted. (C) Leaves from the same lines were detached and floated 
for 5 days on water in the dark and chlorophyll was quantified. Both experiments were repeated independently three times. 
Measurements are plotted as box plots displaying the first and third quartiles, split by the median; whiskers extend to a 
maximum of 1.5× interquartile range beyond the box. Statistical analysis was performed using a one-way ANOVA with Tukey’s 
HSD post hoc test. Different letters denote a significant difference between samples. 
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Figure 3 : In vitro phosphorylation of TTM1 by MAP kinases.   

(A-C) Autoradiographs (top panel) and Coomassie R-250 stained SDS-PAGE (bottom panel) are shown. All MPKs 

used were GST-tagged and TTM1 variants were MBP-His tagged. The presence of proteins in each of the reactions is 

shown above the images. The MPK and TTM bands are marked by arrows.  

(A) Phosphorylation of TTM1 by different MAP kinases.  

(B) Phosphorylation of TTM1, TTMS10A/S490A, and TTM1S437A by MPK1, MPK7, and MPK6.  

(C) Phosphorylation of TTM1, TTMS10A/S490A, and TTM1S437A by MPK3 and MPK4 

(D) Positions of the phosphorylation sites relative to protein domains. UK = Uridine kinase domain, TTM =TTM domain, 

JD = Junction domain, CC = Coiled-coil domain, TM = Transmembrane domain 

TTM UK 

D 

CC COO- NH3
+ 

P P P 

B 

TTM1 

TTM1 

  -      -     +      -     -      + 

  -      +     -      -     +      - 

  +      -     -      +     -      - 

  +      +     +      +     +      + 

MPK3 MPK4 

MPK 

► 

► 

► ► ► 
► 

► ► 

► 
► 

► 
► ► 

► 
► 

► 

► 

JD TM 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.06.328278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328278


a a a a 

b 

Figure 4: Double and triple phospho-mimetic TTM1 variants show reduced cell death upon dark treatment. 

(A, B) Cell death caused by the expression of TTM1 variants. N. benthamiana plants expressing YFP-tagged TTM1 

and (A) phospho-dead variants (TTM1S437A, TTM1S10A/S490A, TTM1S10A/S437A/S490A), and (B) phospho-mimetic variants 

(TTM1S437D, TTM1S10D/S490D, TTM1S10D/S437D/S490D) were shifted to  the dark 24 hpi. Agrobacterium carrying HcPro from 

tobacco etch virus (TEV) was coninfiltrated to suppress gene silencing and TEV alone served as a negative control. 

Cell death was scored after 9 days in the dark. (C) Examples of cell death areas. 3: Strong cell death, 2: mild cell death, 

1: weak cell death, 0: No cell death. Each bar represents the mean ± SE (n >= 12), the experiment was repeated 3 

times with similar results. 
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Figure 5. Double and triple phospho-mimetic TTM1 variants show alteration in their subcellular localization. 

Subcellular localization of TTM1 variants: (A) TTM1 wild type, phospho-dead variants (B) TTM1S437A, (C) 

TTM1S10A/S490A and (D) TTM1S10A/S437A/S490A, and the phospho-mimetic variants (E) TTM1S437D, (F) TTM1S10D/S490D, and 

(G) TTM1S10D/S437D/S490D. All YFP-tagged variants were transiently overexpressed in N. benthamiana. Leaf discs were 

visualized by confocal microscopy at 48 hpi. Left panel: YFP signal, Middle panel: Auto fluorescence, Right panel: 

Overlay. 
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Figure 6. Phosphorylation of TTM1 S10 and S490 leads to protein degradation through the 26S proteasome. 
YFP-tagged TTM1 variants were transiently overexpressed in N. benthamiana leaves and visualized by confocal microscopy at 48 
hpi. Leaves expressing TTM1 and phospho-mimetic TTM1S10D/S490D were infiltrated at 24 hpi with (A,B) de-ionized water (control)  
or (C,D) 100 μM MG132. (A, C) Left panel: YFP signal, Middle panel: Auto fluorescence, Right panel: Overlay. (B, D) The number of 
puncta were counted from multiple confocal images and plotted as box plots displaying the first and third quartiles, split by the 
median; whiskers extend to a maximum of 1.5× interquartile range beyond the box. Number of images used to count puncta in (B) 
n=3 and (D) n>=4. 
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Figure 7. Proposed model of TTM1 function and turnover. 

Aging cues (or ABA) trigger the MAP kinase cascades that activate MPK3 and MPK4. They phosphorylate S437, 

which may cause a conformational change that leads to the activation of TTM1 (shown here as the conversion of 

pyrophosphate to two phosphates). This conformational change may also allow other MAP kinases (MPK6, MPK1, 

and MPK7) to phosphorylate S10 and S490. Once TTM1 is phosphorylated at these sites, it is marked for protein 

turnover by the 26S proteasome. Arrows with broken lines represent  experimental findings from this study and solid 
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CA-MKK3/MPK7 CA-MKK6/MPK3 CA-MKK6/MPK4 

Residue Total spectra p-spectra % p Total Spectra p-spectra %p Total Spectra p-spectra %p 

371 (92%) 17 4.58 1110 (91%) 52 4.68 1184 (90%) 42 3.55 

Ser6 - - - - - - 64 1 1.56 

Ser10 47 7 14.89 36 19 52.78 64 18 28.12 

Ser436 - - - 27 3 11.11 - - - 

Ser437 - - - 27 13 48.14 20 6 30 

Ser490 26 10 38.46 43 16 37.20 42 15 35.71 

Thr493 - - - 43 1 2.32 42 2 4.76 

Table 2: Mass spectrometry of MBP-His-TTM1 upon in vitro phosphorylation with MPK7, MPK3, and MPK4.   
 

Summary of data obtained from LC-MS/MS analysis of TTM1 protein after in vitro phosphorylation by GST-tagged MPK7, MPK3 or 

MPK4. In solution trypsin digestion was performed prior to LC-MS/MS. Numbers indicate the total number of peptide spectra observed 

for each site, as well as the total phosphorylated peptide spectra observed for those sites. Peptides identified with < 95% confidence 

were excluded from analysis. Total percentage sequence coverage of TTM1 is indicated in parentheses for each reaction. 
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