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Abstract  

White matter dysfunction and degeneration have been a topic of great interest in healthy 

and pathological aging. While ex vivo studies have investigated age-related changes in 

canines, little in vivo canine aging research exists. Quantitative diffusion MRI such as 

diffusion tensor imaging (DTI) has demonstrated aging and neurodegenerative white 

matter changes in humans. However, this method has not been applied and adapted in 

vivo to canine populations. This study aimed to test the hypothesis that white matter 

diffusion changes frequently reported in human aging are also found in aged canines. 

The study used Tract Based Spatial Statistics (TBSS) and a region of interest (ROI) 

approach to investigate age related changes in fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AxD) and radial diffusivity (RD). The results show that, compared 

to younger animals, aged canines have significant decreases in FA in parietal and 

temporal regions as well as the corpus callosum and fornix. Additionally, AxD decreases 

were observed in parietal, frontal and midbrain regions. Similarly, an age-related increase 

in RD was observed in the right parietal lobe while MD decreases were found in the 

midbrain. These findings suggest that canine samples offer a model for healthy human 

aging as they exhibit similar white matter diffusion tensor changes with age. 
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1. Introduction  

 

Canine populations are increasingly studied as a translational model for the neuro-

mechanisms behind human aging and cognitive decline. Aging canine subjects exhibit 

similar neuropathology to aging humans, such as the development of beta-amyloid 

plaques (Aβ) and tauopathy (Cummings et al., 1996, 1993; Head, 2013a; Mazzatenta et 

al., 2017). Additionally, as in human cohorts a high percentage of dogs exhibit age-related 

cognitive decline in memory, mood and processing speed related cognitive domains 

(Cotman and Head, 2008; Head, 2013b). An estimated 60% of older dogs are affected 

by canine cognitive dysfunction (CCD) (Fast et al., 2013) which is defined by a decline in 

cognitive function accompanied by cerebral degeneration and decreases in cortical 

volume (De Angelis et al., 2015; Kimotsuki et al., 2005), similar to that observed in mild 

cognitive impairment as related to early Alzheimer’s disease in humans (Reisberg et al., 

1982; Schütt et al., 2018).  

 

Volumetric MRI studies utilizing voxel based morphometry have reported comparable 

volumetric changes in canines to those observed in the aging human such as reductions 

in the hippocampus and frontal, parietal, temporal and occipital lobes (Kimotsuki et al., 

2005; Pugliese et al., 2010; Su et al., 1998). The aging canine brain exhibits age-

dependent myelin loss (Chambers et al. 2012) similar to the white matter abnormalities 

associated with cognitive decline in humans. However, to date, white matter 

microstructure in the aging canine has not been evaluated in vivo.  
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Diffusion tensor magnetic resonance imaging (DTI), a form of MRI that can quantify 

restriction of Brownian motion of water molecules in brain tissue, is particularly well suited 

to study underlying microstructural properties of white matter (Alexander et al., 2007). 

The tensor based diffusivity metric fractional anisotropy (FA) quantifies anisotropy of 

diffusion (Basser et al., 1994; Basser and Jones, 2002). In white matter, FA is relatively 

high due to the underlying axonal structure constraining diffusion orthogonal to the 

direction of the tract. While diffusion tensor metrics in white matter are influenced by 

several underlying cellular properties, including axonal density, fiber orientation, and 

myelination, FA is often interpreted as a general measure of axonal coherence and 

microstructural integrity (Madden et al., 2009a; Niogi et al., 2007). Other complementary 

tensor metrics, including mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity 

(AxD) are commonly utilized to provide additional characterization of molecular diffusion 

within a voxel. Measures of AxD and RD have been respectively associated with axonal 

loss and myelination in preclinical models and thus may aid in the interpretation of DW-

MRI results (Bennett et al., 2011; Budde et al., 2007; Nair et al., 2005; Song et al., 2002, 

2003).  

 

In the human brain, DTI has proven to be an essential tool for detecting and monitoring 

white matter degeneration in aging and has even shown potential to accurately predict 

conversion to age-related cognitive impairment (Kruggel et al., 2017). Typically, studies 

of healthy aging humans report widespread FA decreases and MD increases in white 

matter that appear to follow an anterior to posterior gradient of neurodegeneration over 

time (Coutu et al., 2014; Pfefferbaum et al., 2000). Longitudinal studies have found an 

inverse parabolic relationship between myelination, FA, and aging across the healthy 
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lifespan, which is particularly prominent in the frontal lobe and corpus callosum (Bartzokis 

et al., 2012; Lebel et al., 2019; Lebel and Deoni, 2018). These findings correspond well 

with ex vivo reports that indicate age-dependent demyelination (Chambers et al., 2012).  

 

Despite the strengths of DTI in evaluating white matter degeneration in aging and the 

unique benefits offered by canines as a model of human aging, to our knowledge, no DTI 

study has reported on in-vivo white matter changes in the aging dog brain. Accordingly, 

this study aimed to assess white matter changes associated with aging in a canine 

population using DTI to quantify white matter changes in vivo. Using well-validated tract-

based spatial statistic (TBSS) and region of interest (ROI) techniques, we investigated 

differences in FA, MD, AxD, and RD between neurologically typical younger and old aged 

canine cohorts. We hypothesize that, consistent with human aging literature (Madden et 

al., 2009a; Sexton et al., 2011), i) there will be widespread FA and AxD decreases 

throughout the brain in the aged subjects compared to young controls and associated 

widespread MD and RD increases and ii) aged associated FA and AxD decreases and 

MD and RD increases will follow an anterior-posterior pattern with significant differences 

being more prominent in rostral ROIs.   
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2. Materials and Methods 

2.1 Subjects 

Twenty canine subjects were recruited from research populations (Cornell University 

College of Veterinary Medicine). Subjects were included if they were evaluated as healthy 

on physical and neurological examinations. Brachycephalic dogs were excluded in order 

to limit variation of brain structure between subjects secondary to cranial conformation. 

The recruited population was divided into two groups according to age: dogs  ³greater 

than 10 years and dogs £ 7years of age. The aged cohort included 10 subjects (Female 

= 6, Male = 4) with a median age of 10 (range=10-11 years) years and a median weight 

of 22 kg (range=20-31kg). The control cohort included 10 subjects (Female = 7, Male = 

3) with a median age of 5 (range 4-6 years) years old and a median weight of 13 kg 

(range=10-30kg). All subjects conformed to mesaticephalic cranial conformation (Carreira 

and Ferreira, 2015; Hecht et al., 2019; Pilegaard et al., 2017). All aspects of this study 

were approved by the Cornell University Institutional Animal Care and Use Committee 

(IACUC protocol number: 2015-0115) (Table 1).  

 

2.2 MRI Examination 

Dogs underwent magnetic resonance imaging (MRI) under general anesthesia performed 

by a board-certified veterinary anesthesiologist. Dogs were premedicated with 

Dexmedetomidine (3 mcg/kg) and Dexdomitor (0.5 mg/ml, Zoetis Inc, Kalamazoo, MI), 

and induced to general anesthesia with propofol (3.2-5.4 mg/kg Sagent Pharmaceuticals, 

Schaumburg, III), and then intubated. They were maintained under anesthesia with 

inhalant isoflurane and oxygen with a dexmedetomidine continuous rate infusion (1 

mcg/kg/hr Dexdomitor 0.5 mg/ml, Zoetis Inc, Kalamazoo, MI). MRI was performed in a 
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3.0T GE Discovery MR750 (GE Healthcare, Milwaukee, WI) whole-body scanner (60 cm 

bore diameter), operating at 50 mT/m amplitude and 200 T/m/s slew-rate. Subjects were 

placed in dorsal recumbency with their head centered in a 16-channel medium flex radio-

frequency coil (NeoCoil, Pewaukee, WI 53072 USA). A high-resolution T1-weighted 3D 

inversion-recovery fast spoiled gradient echo sequence (Bravo) was performed in each 

subject with the following parameters; isotropic voxels 0.5mm3, TE=3.6ms, TR=8.4ms, 

TI=450ms, NEX=3, 12° flip angle, and acquisition matrix size=256x256. Diffusion tensor 

images were acquired in the transverse plane (TR=7000ms, TE=89.6ms, flip angle=90°, 

isometric voxel size of 1.5x1.5x1.5mm, in-plane field of view=135x135mm, matrix size 

90x90 with 60 gradient directions, b=800 s/mm2 and a single unweighted (b=0) diffusion 

image.  

 

2.3 DW-MRI Preprocessing 

DWI images were corrected for noise (Veraart et al., 2016), phase distortion (Andersson 

et al., 2003; Smith et al., 2004), removing Gibbs artifact (Kellner et al., 2016), eddy current 

distortion and motion correction (Andersson and Sotiropoulos, 2016) using the FSL  

(https://fsl.fmrib.ox.ac.uk/) and MRTrix (https://www.mrtrix.org) software packages. 

Diffusion tensors were then modeled using FSL’s dtifit from the FSL diffusion toolbox 

(Behrens et al., 2007, 2003). Each tensor was defined by three principal eigenvalues 

(i.e.,. λ!, 	λ", 	λ#). Tensor maps were then calculated for fractional anisotropy (FA; 

√(%!&%")"((%"&%#)"(%!&%#)""(%!"(%""(%#")
), mean diffusivity (MD; (λ! + λ" + λ#) 3	⁄ ), radial diffusivity (RD; 

(λ" + λ#) 2	⁄ ), and axial diffusivity (AxD; λ1) (Basser and Jones, 2002; Beaulieu, 2002).  

Diffusion tensor maps for each diffusivity parameter were generated for each subject and 
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visually inspected to ensure the quality of between volume registration, orientation, and 

preprocessing. 

 

2.4 TBSS Analysis 

A modified tract-based spatial statistic (TBSS) analysis was conducted (Jbabdi et al., 

2010) Smith 2006?. Subjects’ FA images were first organized according to TBSS 

protocols (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide). The first step of TBSS 

processing was conducted according to human protocols using tbss_1_preproc, to 

slightly erode each FA image and set the end slices of each FA image to zero to eliminate 

outliers from tensor fitting. tbss_2_reg, was then used to perform nonlinear registration 

from each subject to every other subject in order to find the most representative subject 

of the group. Once all the combinations of registrations were complete, and the target 

subject was chosen using tbss_3_postreg.  

 

From this step forward modifications from the human pipeline were implemented. Since 

there is no standardized template available for canine populations at this time, Advanced 

Normalization Tools (ANTs) nonlinear registration symmetric image normalization (SyN) 

(Avants et al., 2008) was used to register each subject’s FA image to the target FA image. 

The target space FA images were then concatenated into a single 4D file that was then 

averaged using fslmaths to create a mean FA image. This mean FA image was then 

masked at a lower threshold of 0.2 and an upper threshold of 0.8 to create a mean FA 

skeleton which was then binerized to create a FA skeleton mask to isolate voxels in 

subsequent processing. The FA skeleton mask was then applied to each subject’s FA 

image in target space. The resulting subject’s FA skeletons were concatenated into a 
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single 4D FA skeleton image. The other tensor measures, MD, RD, and AxD, were 

processed according to the same steps outlined above and extracted using the FA 

skeleton. FA, MD, RD and AxD values at the location of the FA skeleton mask were then 

exported for statistical analysis.    

 

2.5 Statistics 

Permutation testing using FSL’s randomise tool was used to conduct independent t-test 

to evaluated differences in the groups using both Threshold Free Cluster Enhancement 

(TFCE) and Family-Wise Error correction (FWE) to control for multiple comparisons 

(Salimi-Khorshidi et al., 2011; Smith and Nichols, 2009; Winkler et al., 2014). A two-group 

design with a continuous covariate interaction test adjusted for the effect of weight (an 

estimator of breed) on the design matrix (Barnett et al., 1975). A two-group design with 

continuous covariate interaction test was implemented to adjust for the effect of weight 

(an estimator of breed) on the design matrix (Barnett et al., 1975). Due to nonparametric 

nature of the data, Mann-Whitney U tests were used to test differences in FA, MD, AxD, 

and RD between the young and aged groups.  Mann-Whitney U tests were used across 

20 regions of interest within the white matter skeleton to investigate regional patterns of 

aging (Table 1.). False discovery rate (FDR) was applied to correct for multiple 

comparisons (Benjamini and Hochberg, 1995).  

 

2.6 ROI Analysis 

To assess the potential regional pattern of diffusivity changes, regions of interest (ROI) 

were selected to be tested across age groups. A stereotaxic canine cortical atlas was 

used to apply specific ROIs for each hemisphere that included the cingulate, frontal, 
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occipital, temporal, sensory-motor and parietal (Johnson et al., 2020). The same atlas 

was used to source the following structures: the fornix, midbrain, cerebellum, genu, body, 

and splenium. These regions were selected to represent human brain regions most 

effected by age and test for an anterior-posterior effect. The masks from the atlas were 

linearly registered to the target space from the TBSS analysis and manually inspected by 

two investigators for quality assurance. The ROI masks were applied to the mean FA 

skeleton masked subjects’ tensor maps in target space to ensure sampling from white 

matter voxels only. The delineation of these regions is visualized in Figure 1. These 

masks were then used as ROIs across subjects in target space in order to find the mean 

for each diffusion tensor measure (FA, MD, AxD, and RD) across subjects using fslstats 

(Jenkinson et al., 2012).  

 

 

3. Results 

3.1 Voxel-based analysis with TBSS  

Compared with control canine subjects, the TBSS analysis showed widespread 

significant decreases in FA particularly in the medial aspects of the white matter skeleton 

in aged subjects, Figure 2. Furthermore, compared with control canine subjects, aged 

canines showed significant decreases in AxD in several white matter regions Figure 2. 

No significant differences in the white matter RD or MD between control and aged 

subjects were observed. 
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3.2 ROI analysis  

An ROI analysis of 20 regions was conducted for all tensor measures masked within the 

white matter skeleton. Boxplots showing significant differences in diffusivity parameters 

in bilateral and unilateral ROIs between control and aged subjects are shown in Figure 3. 

A Mann-Whitney U-test showed significant decreases in FA in the aged group compared 

with the young group in the left parietal (Mann Whitney U=6, old median=0.30, young 

median=0.34, p<0.05), right parietal (Mann Whitney U=3, old median=0.30, young 

median=0.36, p<0.001), and right temporal regions (Mann Whitney U=21, old 

median=0.34, young median=0.37, p<0.05). Bilateral significant decreases in the aged 

group were observed in the genu (Mann Whitney U=16, old median=0.34, young 

median=0.39, p<0.05), body (Mann Whitney U=8, old median=0.26, young median=0.30, 

p<0.05) and splenium of the corpus callosum (Mann Whitney U=11, old median=0.32, 

young median=0.40, p<0.05) as well as the fornix (Mann Whitney U=21, old median=0.34, 

young median=0.37, p<0.05).  

 

Significant decreases in AxD were also observed in the aged group compared with the 

young group in the left frontal (Mann Whitney U=12, old median=0.00102, young 

median=0.00107, p<0.05), right frontal (Mann Whitney U=23, old median=0.00101, 

young median=0.00105, p<0.05), left parietal (Mann Whitney U=19, old median=0.00103, 

young median=0.00106, p<0.05), right parietal (Mann Whitney U=21, old 

median=0.00102, young median=0.00106, p<0.05), and bilateral midbrain (Mann 

Whitney U=20, old median=0.00131, young median=0.00137, p<0.05) regions. 

Significance levels are reported in Table 1.  
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A significant increase in RD in the young group (N=10) compared with the old group 

(N=10) in the right parietal region (Mann Whitney U=79.5, old median=0.00079, young 

median=0.00077, p<0.05) was observed, while a significant decrease in MD was 

observed in the midbrain of the older group (Mann Whitney U=24, old median=0.00097, 

young median=0.0010, p<0.05).  

 

4. Discussion  

This study aimed to investigate if canine populations show age-associated changes in 

diffusion tensor metrics similar to those previously observed in humans. Using TBSS, we 

observed significant decreases in FA and AxD in aged canine subjects compared to 

younger canines. Secondary ROI analysis found widespread decreases in white matter 

FA and AxD associated with age bilaterally in the parietal regions with a corresponding 

increase in RD in the right parietal region. Other tensor metric decreases with age 

appeared to be metric specific such as the FA decrease in the corpus callosum, fornix 

and right temporal region and AxD decrease in the frontal and midbrain regions. These 

specific tensor metric results suggest a driving axonal degeneration or loss which may 

differentiate normal aging from typical demyelination findings with pathological aging.  

 

The widespread age related FA decreases found in the TBSS analysis is consistent with 

the majority of human aging studies (Abe et al., 2008; Borowski et al., 2018; De Groot et 

al., 2016; Sullivan and Pfefferbaum, 2006). Corresponding AxD decreases found in the 

current analysis indicate AxD as the major component driving FA changes in these 

overlapping regions. The decrease in AxD but the lack of RD increase in these regions 

may be an indication of histological changes associated with AxD such as neuronal loss 
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(Song et al., 2003). These other results suggest AxD measures may serve as an imaging 

biomarker to distinguish normal aging from pathological demyelination, which has been 

associated with RD increases (Gatto et al., 2018; Madden et al., 2012, 2009b; Nir et al., 

2013). Conversely, increased white matter MD with age has been observed in many 

human aging studies (Kantarci et al., 2017; Lebel et al., 2012), but not in the current study. 

Since MD is determined by the mean of the 3 eigenvalues the observed decrease in AxD 

and a small increase in the other 2 eigenvalues (constituting RD) could offset an expected 

MD decrease. Another explanation for this is that because MD because a general 

measure of diffusivity, this measure may have been affected by a variety of underlying 

aspects of the neuronal environment rather than a specific neuromechanism. Therefore 

there is potential for multiple underlying neuromechanisms in which MD is sensitive too 

could have opposing effects on the MD measure and reduce the overall measure   

 

Though FA decreases were found to be widespread in the TBSS analysis, the ROI 

analysis located decreases in the parietal lobes, right temporal, fornix and the corpus 

callosum. These results are consistent with human aging studies which found significant 

decreases in the corpus callosum specifically (Abe et al., 2002; Bennett et al., 2017; 

Frederiksen, 2013; Sullivan and Pfefferbaum, 2006). In regards to ROI results of this 

study, aging networks including the fronto-parietal, and default mode network could also 

be implicated due the specific ROIs FA decreases in our study being found in comparable 

regions within those networks including the frontal, and parietal regions (Betzel et al., 

2014; Brown, 2017). Similarly, our results are consistent with canine aging studies finding 

cortical atrophy with age and beta-amyloid plaque accumulation associated with 

behavioral changes including drinking, appetite, social orientation, day-night rhythm and 
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memory in the parietal regions (Rofina et al., 2006; Head et al., 2011). The significant 

decreases in the parietal lobe is also consistent with findings from human aging literature 

which have found overactivation in the parietal lobe on a series of attention tasks (Madden 

2007; Davis 2008) as well as reduced volume, metabolic decline and cortical thinning 

(Greenwood et al., 2000). The fronto-parietal network hub disruption is suggested to be 

a potential mechanism for these changes though these findings need further replication 

in the human literature (Greenwood et al., 2000). Future studies in canine subjects could 

seek to use atlases to further delineate the parietal and frontal lobes into sections for 

hypothesis driven investigations of this network. 

  

 

Though significant decreases in AxD and FA were found in the frontal and parietal lobes 

our results did not show a clear anterior-posterior gradient associated with aging. The 

cross-sectional nature of this study potentially was not sensitive enough to capture 

diffusion gradient changes that have been shown to vary across lifespan (Coutu et al., 

2014; Pfefferbaum et al., 2000). Future studies could include larger samples and more 

groups of a similar breed of various ages to compare across the lifespan or additionally 

could conduct longitudinal studies following a reasonably sized cohort across the canine 

lifespan with multiple timepoints per year to account for the rapid aging of canine 

populations compare to humans. Additionally, this study faces limitations related to the 

interpretation of diffusion tensor measures. This is due to the fact that numerous 

microstructural elements in addition to fiber orientation within a voxel (crossing, fanning, 

or kissing fibers) may effect these measures (Wheeler-Kingshott and Cercignani, 2009); 

(Tournier et al., 2012).  Despite these limitations, diffusion measures of FA, MD, AxD, 
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and RD remain the most commonly reported metrics in human literature. Because no 

studies have previously examined these measures in vivo within the canine population, 

we opted to explore the most commonly reported metrics for comparison with the majority 

of human aging diffusion literature. However, new acquisition techniques such as 

Diffusion Kurtosis Imaging (Jensen et al., 2005) or more complex representations of the 

3D diffusion profile such as HARDI (Alexander et al., 2002) and Diffusion Spectrum 

Imaging (Wedeen et al., 2005) are being applied to human samples in order to to resolve 

intra-voxel tract orientations. Similarly, advanced post-processing methods such as 

BEDPOSTX (Woolrich et al., 2008) and constrained spherical deconvolution (Johansen-

Berg and Behrens, 2014; Tournier et al., 2019) can be used to compute multiple fiber 

orientation distributions unlike DTI which is limited to modeling single fiber orientation.  

Combining diffusion measurements with biophysical profile models such as NODDI 

(Zhang et al., 2012) can potentially increase specificity of our interpretation through 

additional metrics such as neurite density and orientation dispersion. Taken together, the 

age-related changes in DTI measures in this canine sample indicate the canine as a 

valuable translational model of human aging. 

 

In conclusion, this study aimed to investigate difference in diffusion tensor metrics 

between aged and younger control canine subjects. Decreases in measures of FA in the 

aged canine group corresponded well to consistent findings in the human literature. 

Although more research is needed to investigate aging trajectories for in vivo canine 

samples and the effects of aging on specific networks of interest, the canine population 

has been shown to have excellent potential as a model for human aging.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

Acknowledgments  

We would like to acknowledge the assistance of Zonia Clancy, Carol Frederick and 

Nora Mathews for their assistance in handling and anesthesia during magnetic 

resonance imaging. We would also thank the Vaika foundation and the Bowman, 

Boesch and Cheetham Labs based at Cornell University College of Veterinary Medicine 

for contributing subjects for this study. 

 

Disclosure Statement 

There were no actual or potential conflicts of interest in regard to this study. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

5. References  

Abe, O., Yamasue, H., Aoki, S., Suga, M., Yamada, H., Kasai, K., Masutani, Y., Kato, 

Nobuyuki, Kato, Nobumasa, Ohtomo, K., 2008. Aging in the CNS: Comparison of 

gray/white matter volume and diffusion tensor data. Neurobiol. Aging 29, 102–116. 

https://doi.org/10.1016/j.neurobiolaging.2006.09.003 

Alexander, A.L., Hurley, S.A., Samsonov, A.A., Adluru, N., Hosseinbor, A.P., Mossahebi, 

P., Tromp,  do P. m., Zakszewski, E., Field, A.S., 2011. Characterization of Cerebral 

White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains. 

Brain Connect. https://doi.org/10.1089/brain.2011.0071 

Alexander, A.L., Lee, J.E., Lazar, M., Field, A.S., 2007. Diffusion Tensor Imaging of the 

Brain. Neurotherapeutics 4, 316–329. https://doi.org/10.1016/J.NURT.2007.05.011 

Alexander, D.C., Barker, G.J., Arridge, S.R., 2002. Detection and modeling of non-

Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. 

Med. 48. https://doi.org/10.1002/mrm.10209 

Alves, G.S., Oertel Knöchel, V., Knöchel, C., Carvalho, A.F., Pantel, J., Engelhardt, E., 

Laks, J., 2015. Integrating retrogenesis theory to alzheimer’s disease pathology: 

Insight from DTI-TBSS investigation of the white matter microstructural integrity. 

Biomed Res. Int. 2015. https://doi.org/10.1155/2015/291658 

Andersson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions 

in spin-echo echo-planar images: application to diffusion tensor imaging. 

Neuroimage 20, 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7 

Andersson, J.L.R., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-

resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 

1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C., 2008. Symmetric diffeomorphic 

image registration with cross-correlation: Evaluating automated labeling of elderly 

and neurodegenerative brain. Med. Image Anal. 12, 26–41. 

https://doi.org/10.1016/J.MEDIA.2007.06.004 

Barnett, V., Neter, J., Wasserman, W., 1975. Applied Linear Statistical Models. J. R. Stat. 

Soc. Ser. A 138. https://doi.org/10.2307/2984653 

Bartzokis, G., Lu, P.H., Heydari, P., Couvrette, A., Lee, G.J., Kalashyan, G., Freeman, 

F., Grinstead, J.W., Villablanca, P., Finn, J.P., Mintz, J., Alger, J.R., Altshuler, L.L., 

2012. Multimodal magnetic resonance imaging assessment of white matter aging 

trajectories over the lifespan of healthy individuals. Biol. Psychiatry 72. 

https://doi.org/10.1016/j.biopsych.2012.07.010 

Basser, P.J., Jones, D.K., 2002. Diffusion-tensor MRI: Theory, experimental design and 

data analysis - A technical review. NMR Biomed. https://doi.org/10.1002/nbm.783 

Basser, P.J., Mattiello, J., LeBihan, D., 1994. MR diffusion tensor spectroscopy and 

imaging. Biophys. J. 66, 259–267. https://doi.org/10.1016/S0006-3495(94)80775-1 

Beaulieu, C., 2002. The basis of anisotropic water diffusion in the nervous system - a 

technical review. NMR Biomed. 15, 435–455. https://doi.org/10.1002/nbm.782 

Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W., 2007. 

Probabilistic diffusion tractography with multiple fibre orientations: What can we 

gain? Neuroimage 34, 144–155. https://doi.org/10.1016/j.neuroimage.2006.09.018 

Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, 

S., Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and 

Propagation of Uncertainty in Diffusion-Weighted MR Imaging. Magn. Reson. Med. 

50, 1077–1088. https://doi.org/10.1002/mrm.10609 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 289–300. 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Bennett, I.J., Madden, D.J., Vaidya, C.J., Howard, J.H., Howard, D. V., 2011. White 

matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol. 

Aging 32, 2317.e1-2317.e12. https://doi.org/10.1016/j.neurobiolaging.2010.03.017 

Bennett, I.J., Madden, D.J., Vaidya, C.J., Howard, D. V., Howard, J.H., 2009. Age-related 

differences in multiple measures of white matter integrity: A diffusion tensor imaging 

study of healthy aging. Hum. Brain Mapp. 31, NA-NA. 

https://doi.org/10.1002/hbm.20872 

Borowski, B., Jack, C.R., Weiner, M.W., Thompson, P.M., Zavaliangos-Petropulu, A., Nir, 

T.M., Thomopoulos, S.I., Jahanshad, N., Reid, R.I., Bernstein, M.A., 2018. Ranking 

diffusion tensor measures of brain aging and Alzheimer’s disease, in: Romero, E., 

Lepore, N., Brieva, J. (Eds.), 14th International Symposium on Medical Information 

Processing and Analysis. SPIE, p. 9. https://doi.org/10.1117/12.2506694 

Budde, M.D., Kim, J.H., Liang, H.-F., Schmidt, R.E., Russell, J.H., Cross, A.H., Song, S.-

K., 2007. Toward accurate diagnosis of white matter pathology using diffusion tensor 

imaging. Magn. Reson. Med. 57, 688–695. https://doi.org/10.1002/mrm.21200 

Chambers, J.K., Uchida, K., Nakayama, H., 2012. White matter myelin loss in the brains 

of aged dogs. Exp. Gerontol. 47, 263–269. 

https://doi.org/10.1016/j.exger.2011.12.003 

Coutu, J.-P., Chen, J.J., Rosas, H.D., Salat, D.H., 2014. Non-Gaussian water diffusion in 

aging white matter. Neurobiol. Aging 35, 1412–1421. 

https://doi.org/10.1016/J.NEUROBIOLAGING.2013.12.001 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

Cummings, B.J., Head, E., Ruehl, William, Milgram, Norton W, Cotman, Carl W, E Head, 

B.J., Ruehl, W, Milgram, N W, Cotman, C W, 1996. The Canine as an Animal Model 

of Human Aging and Dementia, Neurobiology of Aging. 

Cummings, B.J., Su, J.H., Cotman, C.W., White, R., Russell, M.J., 1993. β-Amyloid 

accumulation in aged canine brain: A model of early plaque formation in Alzheimer’s 

disease. Neurobiol. Aging 14, 547–560. https://doi.org/10.1016/0197-

4580(93)90038-D 

De Groot, M., Cremers, L.G.M., Arfan Ikram, M., Hofman, A., Krestin, G.P., Van Der Lugt, 

A., Niessen, W.J., Vernooij, M.W., 2016. White matter degeneration with aging: 

Longitudinal diffusion MR imaging analysis. Radiology 279, 532–541. 

https://doi.org/10.1148/radiol.2015150103 

Fast, R., Schütt, T., Toft, N., Møller, A., Berendt, M., 2013. An Observational Study with 

Long-Term Follow-Up of Canine Cognitive Dysfunction: Clinical Characteristics, 

Survival, and Risk Factors. J. Vet. Intern. Med. 27, 822–829. 

https://doi.org/10.1111/jvim.12109 

Feldman, H.M., Yeatman, J.D., Lee, E.S., Barde, L.H.F., Gaman-Bean, S., 2010. 

Diffusion tensor imaging: A review for pediatric researchers and clinicians. J. Dev. 

Behav. Pediatr. https://doi.org/10.1097/DBP.0b013e3181dcaa8b 

Head, E., 2013. A canine model of human aging and Alzheimer’s disease. Biochim. 

Biophys. Acta - Mol. Basis Dis. https://doi.org/10.1016/j.bbadis.2013.03.016 

Jbabdi, S., Behrens, T.E.J., Smith, S.M., 2010. Crossing fibres in tract-based spatial 

statistics. Neuroimage 49, 249–256. 

https://doi.org/10.1016/j.neuroimage.2009.08.039 

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

FSL. Neuroimage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015 

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional kurtosis 

imaging: The quantification of non-Gaussian water diffusion by means of magnetic 

resonance imaging. Magn. Reson. Med. 53, 1432–1440. 

https://doi.org/10.1002/mrm.20508 

Johansen-Berg, H., Behrens, T.E.J., 2014. Diffusion MRI : from quantitative 

measurement to in-vivo neuroanatomy. Elsevier Science. 

Johnson, P.J., Luh, W.M., Rivard, B.C., Graham, K.L., White, A., Fitz-Maurice, M., Loftus, 

J.P., Barry, E.F., 2020. Stereotactic Cortical Atlas of the Domestic Canine Brain. Sci. 

Rep. 10. https://doi.org/10.1038/s41598-020-61665-0 

Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M., 2016. Gibbs-ringing artifact removal 

based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581. 

https://doi.org/10.1002/mrm.26054 

Kimotsuki, T., Nagaoka, T., Yasuda, M., Tamahara, S., Matsuki, N., Ono, K., 2005. 

Changes of magnetic resonance imaging on the brain in beagle dogs with aging. J. 

Vet. Med. Sci. 67, 961–967. https://doi.org/10.1292/jvms.67.961 

Kruggel, F., Masaki, F., Solodkin, A., 2017. Analysis of longitudinal diffusion-weighted 

images in healthy and pathological aging: An ADNI study. J. Neurosci. Methods 278, 

101–115. https://doi.org/10.1016/j.jneumeth.2016.12.020 

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C., 2012. Diffusion 

tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60, 340–

352. https://doi.org/10.1016/j.neuroimage.2011.11.094 

Lebel, C., Walker, L., Leemans, A., Phillips, L., Beaulieu, C., 2008. Microstructural 

maturation of the human brain from childhood to adulthood. Neuroimage 40, 1044–

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

1055. https://doi.org/10.1016/j.neuroimage.2007.12.053 

Madden, D.J., Bennett, I.J., Burzynska, A., Potter, G.G., Chen, N. kuei, Song, A.W., 2012. 

Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim. 

Biophys. Acta - Mol. Basis Dis. https://doi.org/10.1016/j.bbadis.2011.08.003 

Madden, D.J., Bennett, I.J., Song, A.W., 2009. Cerebral white matter integrity and 

cognitive aging: Contributions from diffusion tensor imaging. Neuropsychol. Rev. 

https://doi.org/10.1007/s11065-009-9113-2 

Mazzatenta, A., Carluccio, A., Robbe, D., Giulio, C. Di, Cellerino, A., 2017. The 

companion dog as a unique translational model for aging. Semin. Cell Dev. Biol. 

https://doi.org/10.1016/j.semcdb.2017.08.024 

Nair, G., Tanahashi, Y., Low, H.P., Billings-Gagliardi, S., Schwartz, W.J., Duong, T.Q., 

2005. Myelination and long diffusion times alter diffusion-tensor-imaging contrast in 

myelin-deficient shiverer mice. Neuroimage 28, 165–174. 

https://doi.org/10.1016/J.NEUROIMAGE.2005.05.049 

Pfefferbaum, A., Sullivan, E. V., Hedehus, M., Lim, K.O., Adalsteinsson, E., Moseley, M., 

2000. Age-related decline in brain white matter anisotropy measured with spatially 

corrected echo-planar diffusion tensor imaging. Magn. Reson. Med. 44, 259–268. 

https://doi.org/10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6 

Pugliese, M., Carrasco, J.L., Gomez-Anson, B., Andrade, C., Zamora, A., Rodríguez, 

M.J., Mascort, J., Mahy, N., 2010. Magnetic resonance imaging of cerebral 

involutional changes in dogs as markers of aging: An innovative tool adapted from a 

human visual rating scale. Vet. J. 186, 166–171. 

https://doi.org/10.1016/J.TVJL.2009.08.009 

Salimi-Khorshidi, G., Smith, S.M., Nichols, T.E., 2011. Adjusting the effect of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

nonstationarity in cluster-based and TFCE inference. Neuroimage 54, 2006–2019. 

https://doi.org/10.1016/J.NEUROIMAGE.2010.09.088 

Schütt, T., Pedersen, J.T., Berendt, M., 2018. The Domestic Dog as a Model for Human 

Brain Aging and Alzheimer’s Disease, in: Conn’s Handbook of Models for Human 

Aging. Academic Press, pp. 177–194. https://doi.org/10.1016/b978-0-12-811353-

0.00015-4 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-

Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., 

Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 

2004. Advances in functional and structural MR image analysis and implementation 

as FSL, in: NeuroImage. pp. S208–S219. 

https://doi.org/10.1016/j.neuroimage.2004.07.051 

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: Addressing 

problems of smoothing, threshold dependence and localisation in cluster inference. 

Neuroimage 44, 83–98. https://doi.org/10.1016/J.NEUROIMAGE.2008.03.061 

Song, S.-K., Sun, S.-W., Ramsbottom, M.J., Chang, C., Russell, J., Cross, A.H., 2002. 

Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) 

Diffusion of Water. Neuroimage 17, 1429–1436. 

https://doi.org/10.1006/NIMG.2002.1267 

Su, M.Y., Head, E., Brooks, W.M., Wang, Z., Muggenburg, B.A., Adam, G.E., Sutherland, 

R., Cotman, C.W., Nalcioglu, O., 1998. Magnetic resonance imaging of anatomic and 

vascular characteristics in a canine model of human aging. Neurobiol. Aging 19, 479–

485. https://doi.org/10.1016/S0197-4580(98)00081-5 

Sullivan, E. V., Pfefferbaum, A., 2006. Diffusion tensor imaging and aging. Neurosci. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2006.06.002 

Tournier, J.-D., Calamante, F., Connelly, A., 2012. MRtrix: Diffusion tractography in 

crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66. 

https://doi.org/10.1002/ima.22005 

Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, 

D., Jeurissen, B., Yeh, C.H., Connelly, A., 2019. MRtrix3: A fast, flexible and open 

software framework for medical image processing and visualisation. Neuroimage 

202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137 

Veraart, J., Novikov, D.S., Christiaens, D., Ades-aron, B., Sijbers, J., Fieremans, E., 2016. 

Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406. 

https://doi.org/10.1016/j.neuroimage.2016.08.016 

Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M., 2005. Mapping 

complex tissue architecture with diffusion spectrum magnetic resonance imaging. 

Magn. Reson. Med. 54. https://doi.org/10.1002/mrm.20642 

Wheeler-Kingshott, C.A.M., Cercignani, M., 2009. About “axial” and “radial” diffusivities. 

Magn. Reson. Med. 61. https://doi.org/10.1002/mrm.21965 

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., 2014. 

Permutation inference for the general linear model. Neuroimage 92, 381–397. 

https://doi.org/10.1016/j.neuroimage.2014.01.060 

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., 

Beckmann, C., Jenkinson, M., Smith, S.M., 2008. Bayesian analysis of neuroimaging 

data in FSL ☆. Neuroimage 45, S173–S186. 

https://doi.org/10.1016/j.neuroimage.2008.10.055 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: 

Practical in vivo neurite orientation dispersion and density imaging of the human 

brain. Neuroimage 61, 1000–1016. 

https://doi.org/10.1016/J.NEUROIMAGE.2012.03.072 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.10.05.327205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.327205


22 
 

6. Figure Legends 

Figure 1. Sagittal, axial and transverse views of the delineation of lobes for ROI analysis. 

The frontal (magenta), sensory-motor (light blue), cingulate (lavender), parietal (red), 

genu (light purple), body of corpus callosum (purple), splenium (dark purple), fornix (dark 

blue), midbrain (yellow), occipital (orange), cerebellum (teal) and temporal (green) ROI 

mask outlines are overlaid on a template FA and white matter skeleton mask (light green). 
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Figure 2. Light green overlay of the average white matter mask over sample FA template 

showing FA (heatmap) and AxD (cool-map) levels of significant decreases from 

p<0.05(0.95) to p<0.0001 (1) featuring slices in sagittal, axial and transverse plans to 

show TBSS analysis results. 
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Figure 3. Boxplots featuring bilateral FA, AxD, MD and RD age differences with significance levels highlighted in red featuring the 

relevant p-values (a). Boxplots featuring unilateral FA and AxD age differences with significance levels highlighted in red featuring the 

relevant p-values (b). Darker boxes indicate old subjects and white boxes indicating younger subjects. ROIs are ordered in an anterior 

to posterior fashion and columns are arranged by diffusion tensor measures starting with FA and continuing with AxD, MD and RD.
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7. Tables  

Region of Interest Diffusivity Parameter 
 

  FA AxD RD MD 
Frontal Left  --   
 Right 

 
 -   

Sensory-motor Left     
 Right 

 
    

Cingulate Left     
 Right 

 
    

Parietal Left -- -   
 Right 

 
-- - +  

Temporal Left     
 Right 

 
-    

Occipital Left     
 Right 

 
    

Corpus Callosum Genu -    
 Body --    
 Splenium 

 
--    

Other Fornix -    
 Mid Brain  -  - 
 Cerebellum     

 

Table 1. Results of t-tests conducted to identify significant differences between younger 
and aged groups for each ROI to explore regional patterns of FA, AxD, MD, and RD 
changes with age. The single symbol indicates a decrease (-) or increase (+) at the p<0.05 
significance level while the double symbol indicates a decrease (--) or increase (++) at 
the p<0.01 significance level (young=10, old=10).  
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