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Significance Statement (144/150 words): 
Human and animal studies demonstrate somatostatin-positive GABAergic interneuron (“SST+ 
cell”) deficits as contributing factors to the pathology of major depressive disorder (MDD). These 
changes involve reduced SST and GABAergic markers, occurring across corticolimbic brain 
regions. Studies have identified roles for SST+ cells in regulating mood and cognitive functions, 
but employed genetic or region-specific ablation that is not representative of disease-related 
processes. Here, we developed a chemogenetic mouse model of brain-wide low SST+ cell 
function. This model confirmed a role for SST+ cells in regulating anxiety- and anhedonia-like 
behaviors, overall behavioral emotionality, and impaired working memory. We next showed that 
a positive allosteric modulator at α5-GABA-A receptors (α5-PAM, GL-II-73) rescued behavioral 
deficits induced by low SST+ cell function. These findings support a central role for brain-wide 
low SST+ cell function in MDD and validate targeting α5-GABA-A receptors as a therapeutic 
modality across MDD symptom dimensions. 
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Abstract 

 
Introduction: Deficits in somatostatin-positive gamma-aminobutyric acid interneurons 

(“SST+ cells”) are associated with major depressive disorder (MDD) and a causal link between 

SST+ cell dysfunction and depressive-like deficits has been proposed, based on rodent studies 

showing that chronic stress induces a low SST+ GABA cellular phenotype across corticolimbic 

brain regions, that lowering Sst, SST+ cell, or GABA functions induces depressive-like behaviors, 

and that disinhibiting SST+ cell functions has antidepressant effects. Recent studies found that 

compounds preferentially potentiating receptors mediating SST+ cell functions with α5-GABA-A 

receptor positive allosteric modulators (α5-PAMs) achieved antidepressant-like effects. Together, 

evidence suggests that SST+ cells regulate mood and cognitive functions that are disrupted in 

MDD and that rescuing SST+ cell function may represent a promising therapeutic strategy. 

Methods: We developed a mouse model with chemogenetic silencing of brain-wide SST+ 

cells and employed behavioral characterization 30 min after acute or sub-chronic silencing to 

identify contributions to behaviors related to MDD. We then assessed whether an α5-PAM, GL-

II-73, could rescue behavioral deficits induced by SST+ cell silencing.  

Results: Brain-wide SST+ cell silencing induced features of stress-related illnesses, 

including elevated neuronal activity and plasma corticosterone levels, increased anxiety- and 

anhedonia-like behaviors, and impaired short-term memory. GL-II-73 led to antidepressant-like 

improvements among all behavioral deficits induced by brain-wide SST+ cell silencing.  

Conclusion: Our data validate SST+ cells as regulators of mood and cognitive functions, 

support a role for SST+ cell deficits in depressive-like behaviors, and demonstrate that bypassing 

low SST+ cell function via α5-PAM represents a targeted antidepressant strategy.  

 

Key words: Somatostatin, GABA, Depression, Alpha 5, Antidepressant  
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Introduction 

Major depressive disorder (MDD) is a severe psychiatric illness affecting 322 million people,  a 

leading cause of disability worldwide (Friedrich, 2017; Vos et al., 2017; World Health 

Organization, 2017; Rehm and Shield, 2019) and is more common among females (5.1%) than 

males (3.6%) (World Health Organization, 2017). The diagnosis and treatment of MDD is limited 

by heterogeneity in pathological and clinical presentation, with low mood, anhedonia, 

physiological and cognitive impairments, and highly comorbid anxiety symptoms. Further, current 

first-line monoaminergic antidepressants are ineffective in 50% of treated patients (Gaynes et al., 

2009; Holtzheimer and Mayberg, 2011), highlighting a need to characterize contributing 

pathologies to develop targeted drug therapies that reverse or circumvent cellular deficits. Four 

decades of human and animal studies demonstrate reduced level, synthesis, and function of 

neurons expressing the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), 

associated with MDD (Luscher et al., 2011; Newton et al., 2019). Among these, GABA neurons 

co-expressing the neuropeptide somatostatin (“SST+ GABA cells” or “SST+ cells”) are selectively 

vulnerable in MDD (Lin and Sibille, 2013; Fee et al., 2017). 

GABA neurons play a critical role in information processing by cortical microcircuits to 

regulate mood and cognitive functions. Cortical microcircuits encode neuronal information 

through activity patterns of excitatory glutamatergic pyramidal neuron (PN) ensembles. GABA 

neurons shape this activity differently based on non-overlapping populations that co-express SST, 

the calcium-binding protein parvalbumin (PV+), or the ionotropic serotonin receptor 5HT3aR with 

or without vasoactive intestinal peptide (VIP+) (Rudy et al., 2011). SST+ cells gate excitatory PN 

input via dendritic inhibition and modulate output via perisomatic disinhibition through SST-PV+ 

cell afferents (Fee et al., 2017; Hu et al., 2019). Dendritic SST+ cell inhibition is partially mediated 

by GABA acting on GABA-A and GABA-B receptors (GABAA-R/GABAB-R) (Urban-Ciecko et al., 

2015; Schulz et al., 2018), whereas the SST peptide is released under distinct firing conditions 

(Katona et al., 2014; Yavorska and Wehr, 2016). SST has shared roles alongside GABA in pre- 

and post-synaptic PN inhibition (Tallent and Siggins, 1997; Schweitzer et al., 1998), plus distinct 

roles in negative regulation of stress-related hypothalamic-pituitary adrenal (HPA) axis activation 

(Stengel and Taché, 2017). 

 Histological studies in postmortem MDD subjects identified reductions of SST and GABA 

markers at the mRNA and protein level in the prefrontal cortex (PFC) (Sibille et al., 2011), anterior 

cingulate cortex (ACC) (Tripp et al., 2011), and amygdala (Guilloux et al., 2012) that were more 
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severe in females (Seney et al., 2013; Seney, M., Tripp, A., McCune, S., Lewis, D., Sibille, 2015). 

Follow-up studies indicated reduced SST mRNA per cell, spanning all ACC layers (Tripp et al., 

2011), and reduced detectable SST+ cell density without overall cell density changes in the 

amygdala (Douillard-Guilloux et al., 2016). In vivo studies also revealed MDD-related reductions 

in PFC (Hasler et al., 2007) and ACC (Price et al., 2009) GABA levels, with reduced GABAA-R 

and GABAB-R neurotransmission (Bajbouj et al., 2006; Levinson et al., 2010; Radhu et al., 2013). 

The regional and functional differentiation of GABAA-Rs depend upon heteropentameric subunit 

composition, commonly containing two α, two β, and one γ-subunit (Rudolph et al., 2001; Sieghart 

and Sperk, 2002). SST+ cell functions are partially mediated by a5 subunit-containing-GABAA-

Rs given their localization to PN dendrites and PV+ cells in the PFC, hippocampus (HPC), and 

ventral striatum (Ali and Thomson, 2008; Schulz et al., 2018; Hu et al., 2019). GABRA5 

transcripts, encoding α5GABAA-Rs, were also reduced in the PFC of MDD and aged subjects 

(Oh et al., 2019). Together, this evidence suggests that MDD involves a low SST+ GABA cellular 

phenotype affecting pre- and post-synaptic functions and arising from intrinsic cellular 

vulnerability, rather than layer- or region-specific origins.   

 Preclinical studies support a role for SST+ cells in regulating mood and cognitive functions, 

and suggest that disrupted SST+ cell function may contribute to deficits reflecting MDD symptom 

dimensions. Rodent chronic stress studies found reduced mRNA of Sst and the GABA-

synthesizing enzyme Gad67 in the cingulate cortex, and selectively altered SST+ cell and not PN 

transcripts, linked to disrupted growth factor signaling and cellular stress (Lin and Sibille, 2015; 

Girgenti et al., 2019). Studies in mice with genetic Sst deletion recapitulated elevated 

corticosterone, reduced growth factor and Gad67 expression, and elevated depressive-like 

behaviors (Lin and Sibille, 2015). Furthermore, acute chemogenetic or optogenetic PFC SST+ 

cell silencing induced depressive-like behaviors (Soumier and Sibille, 2014) and working memory 

impairment (Abbas et al., 2018), whereas genetic disinhibition had antidepressant-like effects 

(Fuchs et al., 2016). These results implicate SST+ cells as key regulators of mood and cognitive 

functions; however, genetic ablation or region-specific disruptions may not recapitulate disease-

related changes observed in humans (Fee et al., 2017). 

  Functional neuroimaging studies demonstrated normalization of GABA levels after 

antidepressant treatment across pharmacological, cognitive-behavioral, and neuromodulatory 

modalities (Fee et al., 2017). Although first-line antidepressants do not target GABA or SST 

deficits directly, mixed antidepressant efficacy has been observed from monotherapy or 

combination therapy with benzodiazepines (BZDs) (Benasi et al., 2018; Gomez et al., 2018; 
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Ogawa et al., 2019) that act as non-selective positive allosteric modulators (PAMs) at GABAA-Rs 

between ɣ2 and a1-3, 5 subunits (Gomez et al., 2018). However, BZDs have side effects and 

abuse liability attributed to their pan-a-subunit selectivity (Vgontzas et al., 1995). Recent 

preclinical studies assessing BZD-derivatives with selectivity for a5-GABAA-Rs (a5-PAMs), which 

have restricted corticolimbic distribution, found anxiolytic-, antidepressant-like, and pro-cognitive 

effects in young, aged, and chronic stress-exposed rodents (Koh et al., 2013; Piantadosi et al., 

2016; Prevot et al., 2019b). a5-PAMs may optimize a-subunit selectivity, wherein for instance, a1 

was associated with sedative, amnesic, and addictive properties, a2/3 with anxiolysis, and a5 

with mood and cognitive regulation (Prevot and Sibille, 2020).  

Based on the cumulative evidence for low SST+ cell function as a contributing pathology 

in MDD, we aimed to determine whether brain-wide low SST+ cell function induced behavioral 

deficits related to MDD symptom dimensions: anxiety- and anhedonia-like behavior, behavioral 

emotionality, and impaired memory. We employed behavioral characterization of mice with 

repeated acute chemogenetic brain-wide SST+ cell function silenced. We next determined 

whether an a5-selective PAM, GL-II-73 (Prevot et al., 2019b), could rescue behavioral deficits. 

We predicted that brain-wide SST+ cell silencing induces depressive-like behavioral deficits that 

can be rescued by a5-PAM. 
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Materials and Methods 

A complete description of methods/study designs can be found in Supplementary Information. 

Animals 

Viral transduction was validated in C57BL/6J SstGfp/+ mice (Taniguchi et al., 2011; Lin and Sibille, 

2015). Behavioral and molecular experiments were performed using C57BL/6J SstCre/+ mice 

(Ssttm2.1(cre)Zjh/J, Jackson Laboratories, ME; #913944), postnatal day zero (PND0) at surgery and 

9-16W at testing. Mice were maintained under 12-hour light/dark cycle (7am-7pm) with food and 

water ad libitum, group-housed (4/cage), except during behavioral testing (1/cage). Tests were 

performed according to Institutional and Canadian Council on Animal Care (CCAC) guidelines. 

AAV Vectors and Neonatal Injection 

Enhanced serotype inhibitory Designer Receptors Exclusively Activated by Designer Drugs 

(DREADD) vectors used were AAV-PHP.eB-hSyn-DIO-hM4D(Gi)-mCherry (Addgene #44362, 

ME) (Chan et al., 2017). Control vectors used were AAV-PHP.eB-hSyn-DIO-mCherry (Addgene 

#50459). 

Brain-wide SST+ cell-specific hM4Di expression was achieved by low-dose bilateral 

intracerebroventricular (i.c.v.) infusion of PHP.eB serotype Flip-Excision (FLEx-ed) AAVs in PND0 

SstCre/+ mice (Kim et al., 2013) (Supplementary Methods). For validation experiments, SstGfp/+ 

neonates received DREADD vectors. For characterization experiments, SstCre/+ neonates 

received DREADD (SsthSyn-hM4Di-mCherry mice) or Control (SsthSyn-mCherry mice) vectors. 

Chemogenetic Inhibition of Brain-wide SST+ cells & α5-PAM Co-administration 

For the first characterization experiment, SsthSyn-hM4Di-mCherry mice received clozapine-N-oxide 

(CNO=3.5mg/kg) or vehicle (Veh=0.9% saline) intraperitoneally (i.p.) 30 min before testing 

(n=16/group; 50% female; Fig 2a). We confirmed that locomotor activity and anxiety-like behavior 

were not affected by CNO in separate SstCre/+
 cohorts not expressing hM4Di (Fig S1). 

For the second characterization experiment, we assessed whether deficits induced by 

SST+ cell silencing could be rescued by co-administering CNO and GL-II-73 (Prevot et al., 

2019b). SsthSyn-mCherry and SsthSyn-hM4Di-mCherry mice were generated and all groups received 

3.5mg/kg CNO, achieving SST+ cell silencing only in hM4Di-expressing mice (“SST-
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silenced”=SsthSyn-hM4Di-mCherry, “SST-control”=SsthSyn-mCherry). Mice were randomly assigned to 

receive Veh (vehicle+CNO) or 10mg/kg GL-II-73 (+vehicle+CNO) totaling 4 groups (n=10-

12/group; 50% female; Fig 4a). 

Behavioral Analyses  

In adulthood, anxiety-like behavior was assessed with the PhenoTyper test (PT), elevated plus-

maze (EPM), open field test (OFT) and novelty-suppressed feeding test (NSF), anhedonia-like 

behavior with sucrose consumption test (SCT), mixed anxiety-/anhedonia-like behavior with 

novelty-induced hypophagia test (NIH), antidepressant-predictive behavior in the forced-swim test 

(FST), and memory impairment in the Y-maze (YM) and novel object recognition test (NORT), 

following past study designs (Fee et al., 2020). CNO was administered 30 min prior to test 

initiation, except for the PT where CNO was administered 30 min prior to the dark cycle (90 min 

prior to light challenge) to allow habituation. 

Z-score normalization captured changes along behavioral dimensions, directionally, 

relative to controls (i.e., increase = deficit, decrease = improvement) for anxiety- (PT, EPM, OFT, 

NSF, NIH) and anhedonia-like behavior (NIH, SCT), overall behavioral emotionality (all previous 

+ FST), and working- and short-term memory impairment (YM, NORT) (Guilloux et al., 2011) 

(Supplementary Methods). Viral transduction efficiency and SST+ cell specificity was visually 

inspected via immunohistochemistry (IHC) in all mice following behavioral experiments. 

Immunohistochemistry and Microscopy 

The transduction efficiency and SST+ cell specificity of neonatally-delivered i.c.v. AAV-PHP.eB-

hSyn-DIO-hM4D(Gi)-mCherry was assessed via IHC in sections from paraformaldehyde-

perfused SstGfp/+ mice fluorescently labeled for GFP and mCherry (n=8, 2 fields/region/mouse; 

Fig 1a).  

Forty-eight hours after the last test, SsthSyn-hM4Di-mCherry mice from behavioral experiments 

were injected with Veh or CNO and perfused 110 minutes later (approximating CNO + c-Fos 

peaks) to quantify neuronal activation following SST+ cell silencing, indexed by c-Fos+ cell 

counts, (Dragunow and Faull, 1989; Ferguson et al., 2011; Lin and Sibille, 2015) (Fig 2a). Cell 

counts were collected in every third section (N=4-5 sections/region/mouse) for medial PFC 

(mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (Amy). Image processing and 
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counting was performed under blinded conditions for Veh/CNO groups (n=8/group) using Fiji 

(Schindelin et al., 2012).  

Corticosterone Measurement 

In SsthSyn-hM4Di-mCherry mice from behavior & c-Fos experiments, plasma corticosterone was 

assessed by ELISA (Arbor Assays, MI) 110 minutes after Veh/CNO administration  from blood 

collected via cardiac puncture prior to perfusions (n=16 mice/group). 

Data Analysis 

Data were analyzed using SPSS (IBM, NY) and expressed as mean ± standard error of the mean 

(SEM). For Veh vs. CNO, data were analyzed using one-way analysis of covariance (ANCOVA) 

with treatment as independent variable and sex as covariate. For SST-control vs. SST-silenced, 

data were analyzed using two-way ANCOVA with group and treatment (Veh vs. GL-II-73) as 

independent variables and sex as covariate, using Bonferroni-adjusted post hoc where 

appropriate. Timecourse parameters were assessed by repeated-measures ANCOVA with 

Greenhouse-Geisser correction. Object recall in the NORT was assessed using paired-samples 

t-tests. 
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Results 

Intracerebroventricular AAV-PHP.eB DREADD infusion in neonatal SstCre mice enables 
brain-wide manipulation of SST+ cells in adulthood 

Validation of SST+ cell viral targeting was performed in SstGfp/+ mice administered low-dose 

(2x1010vg) AAV-PHP.eB-DIO-hM4Di-mCherry via neonatal i.c.v. infusion (Soumier and Sibille, 

2014; Lin and Sibille, 2015) (Fig 1a-d). In adults, IHC quantification revealed high viral 

transduction efficiency (mPFC=95±2%, dHPC=96±2%, Amy=56±9%, Overall=82±5%) and SST+ 

cell specificity (mPFC=99±1%, dHPC=98±1%, Amy=99±1%, Overall=99±1%) that was consistent 

with Sst expression patterns (NCBI, 2020) (Fig 1b-d). 

Based on established roles for GABA and SST in inhibitory regulation of local neuronal 

activity and endocrine signaling (Yavorska and Wehr, 2016), chemogenetic SST+ cell silencing 

was next validated in a separate cohort of SsthSyn-hM4Di-mCherry mice by quantifying neuronal activity 

(via c-Fos+ cell counts (Kovács, 1998)) and plasma corticosterone levels 110 minutes following 

SST+ cell inactivation by CNO (Fig 2a). Compared to Veh, CNO increased the number of c-Fos+ 

cells in the mPFC (F1,13=19.42; p=.001), HPC (F1,13=14.05; p=.002), and Amy (F1,13=19.35; 

p=.001; Fig 2b). CNO induced a trend-level elevation in corticosterone as assessed by ELISA 

(F1,28=3.51; p=.071; Fig 2c). Sex did not influence c-Fos or corticosterone levels.  

 

Brain-wide SST+ cell silencing increases anxiety-like behaviors, overall behavioral 
emotionality, and memory impairment 

In the characterization experiment 1 cohort, we sought to determine whether SST+ cell silencing 

induced anxiety-like behavior (PT, EPM, OFT, NSF), anhedonia-like behavior (NIH, SCT), 

antidepressant-predictive behavior (FST), and memory impairment (YM, NORT). 

Analysis of PT shelter zone activity before, during, and after a 1h light challenge in the 

dark cycle revealed significant main effects of time (F7.51,217.82=2.42;p< .05), group (F1,29=6.75; 

p<.05), and group*time interaction (F7.51,217.82=2.18; p<.05; Fig 3a). CNO significantly increased 

shelter zone time after injection and persisting for 6 hours after light challenge (p<.05). Overall 

anxiogenic response, indexed by shelter zone time area under the curve (AUC) from light 

challenge initiation until test completion confirmed that CNO significantly increased shelter zone 

time (F1,29=11.97; p<.01; Fig 3b).  
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Anxiogenic CNO effects were also detected from decreased EPM open arm time 

(F1,25=7.06; p<.05; Fig 3c) and OFT center zone time (F1,29=5.86; p<.05; Fig 3d). Distance 

travelled was unchanged between groups in the OFT and EPM (Table S1). In the NSF, no group 

differences were detected for novel environment latency to feed (Fig 3e). In the NIH, CNO induced 

a trend-level increase in novel environment latency to drink (F1,27=3.26; p=.082; Fig 3f). 
Locomotor activity (PT, EPM, OFT) and home cage latencies to feed or drink (NSF/NIH) did not 

differ between groups (Table S1). There were no effects of sex for PT, EPM, OFT, NSF, or NIH 

parameters.  

In the SCT, no group differences were detected for sucrose consumed (Fig 3g), or sucrose 

ratio [sucrose/(sucrose + water consumed)]; Table S1). Covariate analyses revealed that females 

consumed significantly less sucrose (F1,28=7.7; p<.01; Table S1).  

FST analysis revealed a significant effect of time (F3.46, 100..39=15.15; p< .001) and trend-

level time*treatment interaction (F3.46,100.39=2.32; p=.071) as CNO increased immobility in minute 

two (p<.05; Fig 3h).  

In the YM, group differences were not detected for pre-trial (Table S1) or trial alternation 

rates (Fig 3i). In the NORT pre-trial, left/right familiar object times were equivalent for both groups 

(Fig 3j). In the NORT trial, Veh-treated mice spent significantly more time with the novel vs. 

familiar object (t=4.44, df=15; p<.001), while CNO-treated mice did not (t=1.56; df=15; p=.14), 

indicating impaired short-term recall. There was no effect of sex for FST, YM, or NORT 

parameters.  

Given the well-characterized variability associated with preclinical behavioral tests 

(Willner, 2017; Prevot et al., 2019c), we next used Z-scores to assess the consistency of 

behavioral responses across tests assessing a priori related dimensions (Guilloux et al., 2011). 

CNO significantly increased Z-anxiety scores, reflecting PT, EPM, OFT, NSF and NIH parameters 

(F1,29=17.53; p<.001; Fig 3k). Z-anhedonia scores did not differ between groups, reflecting SCT 

and NIH (Fig 3l). CNO significantly elevated Z-emotionality scores, reflecting all previous tests 

plus FST (F1,29=13.96; p<.01; Fig 3m). CNO induced a trend-level increase in Z-memory 

impairment scores, reflecting YM and NORT (F1,29=3.49; p=.072; Fig 3n).  

α5-PAM (GL-II-73) rescues behavioral deficits induced by brain-wide SST+ cell silencing 
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SST-control (SsthSyn-mCherry) and SST-silenced (SsthSyn-hM4Di-mCherry) mice were generated by 

neonatal infusion of Control or DREADD viruses in SstCre/+ mice, and in adulthood administered 

Veh (vehicle+CNO) or GL-II-73 (vehicle+CNO+GL-II-73) prior to behavioral testing (Fig 4a).  

Analysis of PT shelter zone time revealed a significant main effect of time (F9.5,389.4=6.971; 

p<.001) and time*group*treatment interaction (F9.5,389.4=2.1; p<.05), wherein SST-silenced+Veh 

mice had significantly increased shelter zone time after the light challenge (p<.05 vs. SST-

control+Veh; Fig 1b). This effect was reversed by GL-II-73 in SST-silenced mice (p<.05). For 

shelter zone AUC, ANOVA revealed a group*treatment interaction (F1,41=8.45; p<.01), wherein 

SST-silenced+Veh mice had increased AUC (p<.01 vs. SST-control+Veh) that was similarly 

reversed by GL-II-73 treatment (p<.05; Fig 4c). Increased shelter zone AUC was also detected 

in SST-control+GL-II-73 vs. SST-control+Veh mice (p<.05). Covariate analyses revealed that 

males had significantly increased shelter zone AUCs (F1,41=22.83; p<.001; Table S2). Locomotor 

activity did not differ between groups (F1,41=.65; p>.59; Table S2). 

Analysis of EPM open arm time revealed a significant main effect of group (F1,35=11.63; 

p=.002) and group*treatment interaction (F1,35=8.83; p=.005) (Fig 4d). GL-II-73 increased open 

arm time in SST-silenced mice (p<.05 vs. SST-silenced+Veh). OFT center zone time was 

unchanged between groups (Fig 4e). However, CNO+GL-II-73 significantly increased distance 

travelled in EPM (p=.044) and OFT (p<.001) (Table S2). In the NSF, no group differences were 

detected for novel environment latency to feed (Fig 4f). Analyses of NIH novel environment 

latency to drink revealed significant main effects of group (F1,40=5.31; p<.05), treatment 

(F1,40=16.66; p<.001), and trend-level group*treatment interaction (F1,40=2.93; p=.095), wherein 

SST-silenced+Veh mice had increased latency (p<.01 vs. SST-control+Veh) that was rescued by 

GL-II-73 (p<.05) (Fig 4g). Covariate analysis revealed that females had significantly increased 

latency to drink (F1,40=6.57; p<.05; Table S2). Home cage latencies to feed (NSF) or drink (NIH) 

did not differ between groups (Table S2).  

In the SCT, a significant main effect of treatment was detected; GL-II-73 increased 

sucrose consumption (F1,38=6.25; p<.05; Fig 4h), but not sucrose ratio (Table S2), indicating 

increased overall fluid consumption rather than preference. 

In the FST, a significant main effect of time (F3.19,102=6.74; p<.001), time*group interaction 

(F3.19,102=3.2; p<.05), and group*treatment interaction were detected (F1,32=6.87; p<.05; Fig 4i). 
GL-II-73 decreased immobility in SST-silenced mice (p<.05 vs. SST-silenced+Veh, SST-
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control+GL-II-73). However, this may have been confounded by the previously identified 

hyperlocomotor effect of GL-II-73. 

In the YM, pre-trial (Table S2) and trial (Fig 4j) alternation rates did not differ between 

groups. In the NORT pre-trial, only SST-silenced+GL-II-73 mice spent significantly more time with 

the right-located object, indicating side preference that was balanced by rotating novel object 

position in the trial (t=2.84, df=10; p=.018; Fig 4k). In the NORT trial, significant short-term recall 

was detected for SST-control+Veh (t=1.62, df=11; p<.001) and SST-control+GL-II-73 (t=3.89, 

df=10; p=.003). SST+ cell silencing impaired familiar object recall (t=.695, df=10; p=.503) that was 

partially rescued by GL-II-73 (t=1.85, df=10; p=.09). 

For Z-score analysis, EPM, OFT (Z-anxiety), and FST parameters (Z-emotionality) were 

excluded due to potential locomotor bias, whereas this effect was not detected in other tests. 

Analysis of Z-anxiety scores (PT, NSF, NIH) revealed a significant main effect of treatment 

(F1,41=11.18; p<.01), a trend-level group effect (F1,41=3.94; p=.054), and a significant 

group*treatment interaction (F1,41=4.32; p<.05) (Fig 4l). SST-silenced+Veh mice had elevated 

anxiety-like behavior (p<.05 vs. SST-control+Veh). GL-II-73 had anxiolytic effects in SST-

control+GL-II-73 mice and reversed elevated anxiety-like behavior in SST-silenced+GL-II-73 mice 

(ps<.01 relative to SST-silenced+Veh; Fig 4l). Z-anhedonia scores (NIH, SCT), ANCOVA 

detected significant treatment effects (F1,41=20.13; p<.001), and trend-level group (F1,41=3.34; 

p<.075) and group*treatment effects (F1,41=3.8; p=.056). Z-anhedonia was significantly elevated 

in SST-silenced+Veh mice (p<.05 vs. SST-control+Veh) and reduced or rescued in SST-

Control+GL-II-73 and SST-Silenced+GL-II-73 mice, respectivey (ps<.01 relative to SST-

silenced+Veh; Fig 4m). Z-emotionality scores (all previous tests) were significantly affected by 

treatment (F1,41=17.5; p<.001), trend-level group effects (F1,41=4.1; p=.05), and a significant 

group*treatment interaction (F1,41=4.77; p<.05). Z-emotionality scores were increased in SST-

silenced+Veh mice (p<.05 vs. SST-control+Veh) and reduced or rescued in in SST-Control+GL-

II-73 and SST-Silenced+GL-II-73 mice (p<.01; Fig 4n). Analysis of Z-memory impairment (YM, 

NORT) revealed a main effect of group (F1,41=15.18; p<.001) and trend-level group*treatment 

interaction (F1,41=3.29; p=.07), wherein SST+ cell silencing increased scores (p<.05 vs. SST-

control+Veh) and GL-II-73 partially rescued these (p=.059; Fig 4o). There was no effect of sex 

for all Z-scores.  

 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.05.326306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326306


 13 

Discussion 

In this report, we validated an approach to manipulate brain-wide SST+ cell function by selectively 

expressing hM4Di DREADD via i.c.v. infusion of AAV-PHP.eB in neonatal SstCre mice. In 

adulthood, brain-wide SST+ cell silencing increased neuronal activity in the PFC, HPC, and 

amygdala, elevated plasma corticosterone, and increased anxiety- and anhedonia-like behaviors, 

behavioral emotionality, and memory impairment. Treatment with GL-II-73, an a5-GABAA-R-

selective PAM, rescued each of these behavioral changes. These results independently confirm 

prior evidence that SST+ cells regulate mood and cognitive functions, suggesting that their 

disruption may contribute to MDD-related symptom dimensions, and show for the first time that 

augmenting a5-GABAA-R function can rescue behavioral deficits induced directly by reduced 

SST+ cell function. 

Silencing brain-wide SST+ cell activity 

To selectively silence brain-wide SST+ cell function, we employed neonatal i.c.v. infusion 

of FLEx-ed AAV-PhP.eB hM4Di vectors in SstCre/+ mice. AAV-PHP.eB capsids have enhanced 

GABAergic interneuron transduction (Gholizadeh et al., 2013), but previously relied on high-dose 

systemic administration (Deverman et al., 2016; Chan et al., 2017). Here, we validated high SST+ 

cell transduction via low-dose i.c.v. infusion in neonates (Kim et al., 2013) as a cost-effective 

technique overcoming transgenic colony maintenance and genetic leakage that is sometimes 

reported in lox-stop-lox models (Madisen et al., 2012). In SstGfp/+ mice, cell specificity (~98-99%) 

and efficiency (56-95%) were high, but not complete, consistent with systemic AAV-PHP.eB in 

SstCre/+ mice (Allen et al., 2017). This may be due to lower IHC detectability in SstCre mice that 

have reduced Sst levels and contain small numbers of non-SST Cre- or GFP-expressing cells 

(Ma et al., 2006; Taniguchi et al., 2011; Hu et al., 2013; Viollet et al., 2017). Of note, high but 

incomplete SST+ cell silencing may more closely reflect the low (but not ablated) cellular 

phenotype observed in human MDD. 

Whereas past approaches used region-specific cell knockdown or Sst deletion (Soumier 

and Sibille, 2014; Lin and Sibille, 2015), our approach silenced intact SST+ cells, decreasing both 

GABA and SST release. These changes may be more closely related to circuit changes in MDD, 

where an intrinsic vulnerability causes low SST and GABA markers per cell and across 

corticolimbic brain regions (Fee et al., 2017). SST+ cell silencing was validated by increased 

neuronal activity in the PFC, HPC, and Amy in the absence of a stimulus, implying inhibitory 
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neuron silencing and consistent with past approaches (Soumier and Sibille, 2014; Allen et al., 

2017). SST+ cell targeting was validated via qualitative inspection throughout the neocortex, and 

confirmed in all mice. Our approach did not distinguish SST vs. GABA roles, modeling evidence 

of both markers being reduced in MDD (Fee et al., 2017). However, corticolimbic hyperactivation 

is an expected outcome reflecting silencing both mediators given their shared roles in PN 

inhibition (Tallent and Siggins, 1997; Schweitzer et al., 1998; Stengel and Taché, 2017), and 

consistent with past chemogenetic SST+ cell silencing studies (Soumier and Sibille, 2014; Allen 

et al., 2017) and chronic stress studies wherein GABA and SST markers are selectively reduced 

(Lin and Sibille, 2015; Girgenti et al., 2019; Fee et al., 2020). Plasma corticosterone elevation 

also validated reduced SST function, given its role in inhibitory regulation of corticosteroid release 

(Engin and Treit, 2009; Prévôt et al., 2016, 2018). That corticosterone effects only reached trend 

level may reflect the long measurement window chosen (i.e., designed for c-Fos analyses); 

indeed Sst ablated mice had elevated corticosterone at baseline, but not during or after stress 

(Lin and Sibille, 2015). Behavioral findings were also consistent with mice having low GABAA-R 

signaling (Ren et al., 2016) or SST knockdown (Soumier and Sibille, 2014; Lin and Sibille, 2015). 

Given that GABA-AR-acting BZDs and SST receptor-acting analogs confer anxiolytic- and 

antidepressant-like effects in rodents (Sanders and Shekhar, 1995; Engin et al., 2008; Yeung et 

al., 2011; Prévôt et al., 2016), evidence suggests that both systems regulate mood and cognitive 

functions.  

Behavioral deficits were induced sub-chronically (i.e., repeated acute exposure across 9 

tests), and were relatively lasting (i.e., detected 6 hours after CNO injection in PT), consistent with 

past chemogenetic studies (Guettier et al., 2009; Alexander et al., 2010). The CNO dosage was 

selected based on brain penetrant levels >EC50 for hM4Di from ~15-30+ minutes after 

administration and clearing from plasma within two hours (Jendryka et al., 2019). Thus, behavioral 

deficits likely reflect direct consequences of reduced SST+ cell regulation of corticolimbic 

functions.  

The DREADD approach has several technical caveats, including CNO to clozapine back-

metabolism that may confer off-target effects (Gomez et al., 2017; Jendryka et al., 2019). 

However, CNO-derived clozapine did not exceed hM4Di EC50 at the selected dose (Gomez et al., 

2017), and CNO alone did not alter behavior in SstCre/+ control mice (Fig S1) or locomotion in 

SsthSyn-hM4Di-mCherry mice (Fig 3). Furthermore, when all groups received CNO, behavioral changes 

were detected only in hM4Di-expressing mice (Fig 4). As human pathologies reflect chronic 

conditions, we tested chronic SST+ cell silencing via repeated i.p. injections or oral CNO delivery 
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but found no behavioral changes (unpublished data). Rather than this being a consequence of 

chronic SST+ cell silencing, we attributed these effects to technical limitations of DREADDs, 

including that CNO has a rapid half-life and is challenging to administer at levels exceeding hM4Di 

EC50
 orally over long time-periods, without back-metabolism and accumulation of lipophilic 

clozapine (Gomez et al., 2017; Jendryka et al., 2019). Indeed, evidence of chronic chemogenetic 

hM4Di activation is sparse, including null or opposite effects compared to acute hM4Di activation 

(Soumier and Sibille, 2014; Carvalho Poyraz et al., 2016; Urban et al., 2016). Conversely, chronic 

excitatory DREADD activation has been achieved using larger CNO doses and due to the unique 

pharmacokinetic properties of hM3Dq (Jain et al., 2013). These challenges justify the ongoing 

development of improved DREADD actuators or delivery systems (Bonaventura et al., 2019). 

 SST+ cells and depressive-like behavior 

Low SST and GABA markers in postmortem MDD subjects, and depressive-like deficits in 

mice with altered SST+ cell function, suggest a contributing role in MDD (Fee et al., 2017). We 

replicated past findings, including anxiety-like behaviors (OFT, EPM) observed in Sst knockout 

(Lin and Sibille, 2015) and acute chemogenetic PFC SST+ cell-silenced mice (Soumier and 

Sibille, 2014). Our findings extended roles for SST+ cell regulation of behavioral deficits to 

antidepressant-predictive (e.g., FST) and short-term memory dimensions (e.g., NORT). However, 

we did not find working memory impairment as with optogenetic PFC SST+ cell silencing, possibly 

due to distinct inhibition timing, i.e., initiated before vs. during the test (Abbas et al., 2018) or 

anxiogenic reactivity of Sstcre mice to frequent experimenter handling (Viollet et al., 2017). 

Notably, past studies found that acute and chronic blockade of PFC SST+ cell function had 

opposite physiological and anxiogenic outcomes (Seybold et al., 2012; Soumier and Sibille, 

2014). However, region-specific manipulations may confer compensatory neural circuit 

adaptations that are not reflective of human pathology, wherein reductions in SST+ cell markers 

are evident across multiple brain regions in human and animal studies (Fee et al., 2017). Indeed, 

we found behavioral changes that closely paralleled past rodent chronic stress studies (Nikolova 

et al., 2018; Prevot et al., 2019c; Fee et al., 2020) that also found selective impingement upon 

SST+ cell functions via dysregulated cell integrity pathways (Lin and Sibille, 2015; Girgenti et al., 

2019; Oh et al., 2019). These findings suggest that SST+ cell deficits are an intermediary causal 

factor between upstream risk factors (e.g., chronic stress, altered proteostasis and neurotrophic 

factor signaling) and MDD symptom emergence (Fee et al., 2017; Prevot and Sibille, 2020).  
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In SST-control vs. SST-silenced mice (using control vs. hM4Di viruses), we replicated 

anxiogenic findings from the first characterization experiment (using veh vs. CNO), but found 

stronger loading on anhedonia-like deficits. Given that anxiogenic changes were consistent in the 

PT, a test showing enhanced reproducibility and reliability compared to classical tests (Nikolova 

et al., 2018; Prevot et al., 2019c), inter-cohort differences may be due to the variability of classical 

tests that were designed to detect pharmacological treatment effects rather than disease-related 

processes (Willner, 2017; Prevot et al., 2019c).  

Given that SST+ cell deficits are more severe in females (Seney et al., 2013; Seney, M., 

Tripp, A., McCune, S., Lewis, D., Sibille, 2015), we included sex as a covariate. However, 

differences were sparse as, for example, we identified increased anhedonia-like behavior in 

female mice overall that was unrelated to SST+ cell silencing. 

Antidepressant potential of a5-PAM 

  a5-GABAA-R potentiation via GL-II-73 had antidepressant-, anxiolytic-like, and pro-

memory effects in mice with brain-wide low SST+ cell function. GL-II-73 rescued deficits in the 

EPM and FST, consistent with effects in wildtype mice (Prevot et al., 2019b) and with phenotypes 

of mice having disinhibited SST+ cell function (Fuchs et al., 2016). However, CNO+GL-II-73 

induced hyperlocomotor effects in the EPM, OFT, and presumably the mobility-dependent FST 

(Table S2), so these results were excluded from Z-score analysis. These changes did not appear 

in past studies of GL-II-73 alone (Prevot et al., 2019b), so we cannot preclude potential drug-drug 

interactions. However, upon exclusion of these tests, Z-scoring revealed that GL-II-73 reduced 

anxiety-, anhedonia-like behavior, overall emotionality and (trend-level) memory impairment in 

both SST-control and SST-silenced mice, consistent with past studies (Prevot et al., 2019b). 

Contrasting findings in chronic stress-exposed mice,  GL-II-73 did not improve YM performance, 

potentially due to increased Sstcre mice reactivity to experimenter handling necessary for this test 

(Viollet et al., 2017). Indeed, SST-controls had lower YM alternation rates compared to wildtype 

mice in past studies (Prevot et al., 2019b). Further, GL-II-73 induced trend-level rescue of NORT 

deficits (a low-handling test), consistent with HPC a5-GABA-AR mediation of short-term memory 

(Möhler and Rudolph, 2017).  

Others have reported antidepressant-like and pro-cognitive properties from a5-knockdown 

or negative allosteric modulators (NAMs) (Martin et al., 2010; Fischell et al., 2015; Zanos et al., 

2017; Bugay et al., 2020). Although these findings appear to conflict with a5-PAMs, it may be that 
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SST+ cell regulation of microcircuit activity benefits from “tightening” in contexts characterized by 

under-inhibition (i.e., poor information encoding) and “loosening” in contexts characterized by 

over-inhibition (i.e., poor information transfer), supporting the utility of a5-PAM/NAM for different 

contexts, behaviors, or disorders (Prevot and Sibille, 2020). Indeed, we found that a5-PAM had 

therapeutic effects in SST-silenced mice with corticolimbic hyperactivity. Another possibility is that 

a5-PAMs and NAMs could increase the signal-to-noise ratio of corticolimbic microcircuits through 

different mechanisms, for example by promoting phasic vs. tonic PN activity with a5-PAMs or by 

normalizing PN signaling through ketamine-like synaptic plasticity with a5-NAMs (Bugay et al., 

2020). 

Future directions 

 Despite marked improvement in sedative and amnesic side-effect profiles of BZDs, a5-

selective derivatives such as GL-II-73 have mild a1-3 GABAA-R potentiation (Prevot et al., 2019b) 

that may worsen or improve therapeutic efficacy. For example, more selective a5-PAMs 

(Stamenić et al., 2016) had weaker antidepressant-like and pro-cognitive effects only in chronic 

stress-exposed female (Piantadosi et al., 2016) and non-stressed male mice (Prevot et al., 

2019b). Given that regional localization impacts a1-5-subunit functional differentiation (Sieghart 

and Sperk, 2002), characterization studies using gene profiling (Lin and Sibille, 2015) or RNA  

labeling (Hu et al., 2019) may inform therapeutic strategies.  

 In conclusion, we demonstrated that brain-wide SST+ cell function regulates mood and 

cognitive functions and found support that acute disruptions contributing to anxiety- and 

anhedonia-like behaviors, overall behavioral emotionality, and impaired memory may reflect 

similar processes in psychiatric diseases over a longer scale. Deficits arising from brain-wide low 

SST+ cell function were rescued by α5-PAM, representing a promising new avenue for the 

development of targeted antidepressants.  
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Figure Legends 

 
Figure 1. Validation of brain-wide SST+ cell targeting. (A) Experimental design for validation 

of SST+ cell targeting by 2x1010vg AAV-PHP.eB-DIO-hM4Di-mCherry i.c.v. in PND0 SstGfp/+ mice, 

validated by immunohistochemistry (IHC). (B) Representative images of brain-wide viral 

transduction in adult mice (red = conditional mCherry expression; scale = 500 μm). (C) 

Representative images of hM4Di-mCherry (red) and SST-GFP (green) co-expression (white 

arrow) in the mPFC. (D) Efficiency (mCherry/GFP) and specificity (GFP/mCherry) of viral 

transduction in mPFC, dHPC, and Amy (n=8 mice). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.05.326306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326306


 20 

 
Figure 2. Validation of brain-wide SST+ cell manipulation. (A) Experimental design for 

behavioral and biological characterization following chemogenetic SST+ cell silencing in SsthSyn-

hM4Di-mCherry mice. (B) Representative image of c-Fos+ cells 110 min after treatment with vehicle 

(Veh, top) or 3.5 mg/kg clozapine-N-oxide (CNO, bottom). CNO-hM4Di activation increased 

neuronal activity (c-Fos+ cell counts) in the mPFC, HPC, and amygdala (Amy) (n=8 mice/group). 

(C) From the same group, CNO induced a trend elevation in plasma corticosterone (n=16 

mice/group). **p<.01; #p<.1.  
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Figure 3. Brain-wide SST+ cell silencing in SsthSyn-hM4Di-mCherry mice elevates anxiety-like 
behavior, overall behavioral emotionality, and memory impairment. (A-J) Behavioral tests 

administered 30 minutes after injection of vehicle (Veh) or 3.5mg/kg clozapine-N-oxide (CNO) i.p. 

except for the PhenoTyper Test (PT) (administered 90 min prior to light challenge). (A) Shelter 

zone time before, during and after light challenge in the PT. (B) Summary area under the curve 

(AUC) of shelter zone time from light challenge initiation until the test completion. (C) Time spent 

in open arms of the elevated plus maze (EPM). (D) Time spent in center zone of the open field 

test (OFT). (E) Novel environment latency to feed in the novelty suppressed feeding (NSF) test. 

(F) Novel environment latency to drink milk reward in the novelty-induced hypophagia test (NIH). 

(G) Sucrose consumed in the sucrose consumption test (SCT). (H) Immobility time in the forced 

swim test (FST). (I) Percent correct alternations in Y-maze (YM). (J) Pre-trial left/right familiar 

object recall (left) and trial familiar/novel object recall (right). (K-N) Z-scores integrating test 

parameters assessing anxiety-like behavior (K), anhedonia-like behavior (L), behavioral 
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emotionality (M), and memory impairment (N). n=16 mice/group; 50% male/female. ***p<.001; 

**p<.01; *p<.05; #p<.01. Sex effects and homecage measures in Table S1. 

 
Figure 4. GL-II-73 rescues behavioral deficits induced by brain-wide SST+ cell silencing. 
(A-J) Behavioral tests administered 30 minutes following i.p. injection of vehicle + CNO (Veh) or 

vehicle + CNO + GL-II-73 (GL-II-73) in SST-control (SsthSyn-mCherry) or SST-silenced (SsthSyn-hM4Di-

mCherry) mice (except in PhenoTyper as indicated). (B) Shelter zone time before, during, and after 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.10.05.326306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.05.326306


 23 

light challenge and (C) derived shelter zone area under the curve (AUC) from light challenge 

initiation until PhenoTyper test (PT) completion. (D) Time spent in open arms of the elevated plus 

maze (EPM). (E) Time spent in center zone of the open field test (OFT). (F) Novel environment 

latency to feed for the novelty suppressed feeding (NSF) test. (G) Novel environment latency to 

drink milk reward for the novelty-induced hypophagia test (NIH). (H) Sucrose consumed in the 

sucrose consumption test (SCT). (I) Immobility time in the forced swim test (FST). (J) Percent 

correct alternations in Y-maze (YM). (K) Pre-trial left/right familiar object recall (left) and trial 

familiar/novel object recall (right) in the novel object recognition test (NORT). (L-O) Z-scores 

integrating test parameters assessing anxiety-like behavior (L), anhedonia-like behavior (M), 

overall behavioral emotionality (N), and memory impairment (O). n = 16 mice/group; 50% 

male/female. ***p<.001; **p<.01; *p<.05; #p<.01; †=p<.05 SST-Control+Veh vs. SST-

Silenced+Veh; $=p<.05 SST-Silenced+GL-II-73 vs. SST-Silenced+Veh; § = significant main 

effect of treatment; ¥ = significant main effect of group. Sex effects and homecage parameters in 

Table S2. 
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