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13 Abstract

14 Infectious diseases are a threat to elderly people, whose immune systems become depressed 

15 with age. Among the various infectious diseases, Clostridium difficile infections in particular 

16 lead to significant mortality in elderly humans and are a serious problem worldwide, especially 

17 because of the increasing infection rates. Probiotics have been proposed as an effective 

18 countermeasure against C. difficile infection. The aim of this study was to evaluate the effects 

19 of heat-killed Enterococcus faecalis T-110 on intestinal immunity, intestinal flora, and 

20 intestinal infections, especially C. difficile infections, in naturally ageing animals, for 

21 extrapolation to elderly human subjects. Twenty female hamsters were randomly distributed 

22 into two groups. Group 1 was fed a basal diet, and group 2 was fed a basal diet supplemented 

23 with heat-killed E. faecalis for 7 days. Heat-killed E. faecalis T-110 improved gut immunity 

24 and microflora, especially Clostridium perfringens and C. difficile, of the normal aged hamsters. 

25 Heat-killed E. faecalis T-110 may, therefore, be a countermeasure against age-related immune 

26 dysfunction and intestinal infections, especially C. difficile infection, in elderly humans. 

27 However, further investigation in humans is needed.

28

29 Introduction

30 Infectious diseases are a leading cause of mortality and significant morbidity in elderly adult 

31 humans, who are at greater risk than younger populations [1]. Increasing age has been 
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32 associated with diminished humoral and cell-mediated immunity against newly encountered 

33 pathogens or vaccines [2-6], which suggests the need for countermeasures against age-related 

34 immune dysfunction.

35 Among the many infectious diseases, Clostridium difficile infections are a social problem in 

36 elderly humans. These bacteria produce a toxin resulting in symptoms ranging from mild 

37 diarrhoea to inflammation of the bowel (pseudomembranous colitis), which can cause death. 

38 Clostridium difficile-associated diarrhoea is a severe form of diarrhoea caused by C. difficile 

39 in humans. There are three key risk factors associated with the development of this infection: 

40 antibiotic use [7], increasing age [8], and hospitalisation [9]. Clostridium difficile-associated 

41 diarrhoea is responsible for approximately 10%–20% of all cases of antibiotic-associated 

42 diarrhoea [10] and can occur up to 8 weeks after antibiotic therapy [11]. With the increasing 

43 threat of C. difficile infection, probiotics have been proposed as one of the effective 

44 countermeasures against C. difficile infection [12-14].

45 Probiotics have been defined as live, microbial, food components that are beneficial for human 

46 health. Recently, because they have been shown to exhibit beneficial effects equal to those of 

47 live microbes; genetically engineered microbes and nonviable microbes are regarded as 

48 probiotics [15,16]. Lactic acid bacteria, one of the most common types of probiotic bacteria, 

49 have been reported to exhibit beneficial effects on host homeostasis, including activation of the 

50 immune function [17,18]. To date, many heat-killed lactic acid bacteria have been shown to 
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51 modulate specific and/or non-specific immune responses in animal models and occasionally in 

52 human subjects [19].

53 Regarding the use of probiotics for infection control, it is important that the probiotics 

54 administered are not infectious. Enterococcus faecalis T-110 (TOA Pharmaceutical Co. Ltd., 

55 Tokyo, Japan), which belongs to the group of lactic acid bacteria, is unlikely to be a causative 

56 agent of opportunistic infection [20]. Enterococcus faecalis T-110 is approved for medical use 

57 and is widely used in Japan, China, and India for the treatment and prevention of infectious 

58 diseases. In terms of safety, E. faecalis T-110 is considered suitable for treating and preventing 

59 infectious diseases.

60 Several studies have shown that the ageing process affects the gut flora [21-24]. Generally, 

61 senescence-accelerated animals are often used to investigate the effects of ageing. However, 

62 few studies have shown that the gut flora of senescence-accelerated animals is similar to that 

63 of normal, ageing animals. Stephan et al. [25] reported that laboratory mice have a different 

64 gut microbiota than free-living mammals and humans, making them unsuitable for the study 

65 of gut immunity. Clostridium difficile is a bacterium endemic to the intestine of hamsters. 

66 Elderly hamsters often suffer from diarrheal infections, especially C. difficile infections [26]. 

67 These factors suggest that they are the best model of C. difficile infections in elderly animals. 

68 Challenge tests are generally conducted in bacterial infection tests, but these are considered to 

69 be unsuitable as infection models for indigenous intestinal bacteria caused by 
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70 immunosuppression due to ageing. Few studies have investigated the effects of safety-

71 guaranteed, heat-killed bacteria on intestinal immunity, gut flora, or intestinal infections in 

72 normally aged animals. Therefore, the aim of this study was to evaluate the effects of heat-

73 killed E. faecalis T-110 on intestinal immunity, flora, and infections in naturally ageing animals, 

74 for prospective extrapolation of such information to studies on elderly humans.

75

76 Materials and Methods

77 Ethical approval

78 This study was conducted at Inatomi Animal Clinic in Tokyo Prefecture, Japan. It was 

79 performed under the fundamental guidelines for the proper conduct of animal experiments and 

80 related activities at academic research institutions under the jurisdiction of the Ministry of 

81 Education, Culture, Sports, Science and Technology. It was approved by the Ethics Committee 

82 of the Inatomi Animal Clinic (Tokyo, Japan; approval number 2020-001).

83

84 Animals, diets, and management

85 A total of 20 healthy, 547-day-old female hamsters (Phodopus sungorus) were purchased from 

86 Japan SLC, Inc., Hamamatsu, Japan, and acclimatised for 10 days prior to use in the 

87 experiments. These animals were healthy and did not receive any treatments prior to the study. 

88 They were randomly divided into two treatment groups (groups 1 and 2) of 10 hamsters each 
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89 and housed individually in a cage (27 × 15 × 10 cm) in a 24 h light/dark cycle for 14 days. 

90 Temperature was maintained at 26 ± 1 ℃, and a basic diet (Rodent Diet CE-2, CLEA JAPAN, 

91 Tokyo, Japan) and water were provided ad libitum.

92 Group 2 of hamsters received 0.1 ml heat-killed E. faecalis T-110 saline suspensions (1.0 × 

93 10⁷ cfu/ml) daily from days 1 to 7. Heat-killed E. faecalis T-110, a commercial product of a 

94 heat-killed and dried cell preparation (TOA Biopharma, Tokyo, Japan), was used. The heat-

95 killed E. faecalis T-110 saline suspensions were prepared, as previously described [27]. The 

96 faeces from individual hamsters was checked daily during this experiment and was categorised 

97 according to a faecal score (0, normal faeces; 1, loose stool; 2, moderate diarrhoea; 3, severe 

98 diarrhoea).

99

100 Immunological study

101 On days 1, 7, and 14, the faeces of all hamsters were also measured for total immunoglobulin 

102 A (IgA) concentration using a commercial enzyme-linked immunosorbent assay (ELISA) kit 

103 (Hamster Immunoglobulin A ELISA Kit, My BioSource, Inc, California, USA). The ELISA 

104 procedure was conducted according to the protocol of the manufacturer.

105

106 Microbiological study

107 The faeces of hamsters were used for the microbiological study. Bacterial genomic DNA from 
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108 the samples was extracted using a commercial extraction system (QuickGene 810 and Quick 

109 Gene DNA tissue kit; KURABO, Osaka, Japan), as previously described [28]. Quantitative 

110 real-time polymerase chain reaction (PCR) analyses of Bifidobacterium sp., Clostridium 

111 perfringens, Lactobacillus spp., and C. difficile were performed using the Rotor-Gene system 

112 6200 (Qiagen, Tokyo, Japan), as previously described [29]. The primer sequences and PCR 

113 conditions for each bacterium are given in Table 1.

114

115 Table 1 Primers and thermal cycling profiles in this study

Primers Sequencing Annealing

Temperature

(°C)

Reference

Bifidobacterium sp.-F 5′-GATTCTGGCTCAGGATGAACGC-3′ 60 ℃ Gueimonde et al. [49]

Bifidobacterium sp.-R 5′-CTGATAGGACGCGACCCCAT-3′ 60 ℃ Gueimonde et al. [49]

Lactobacillus group-F 5′-AGCAGTAGGGAATCTTCCA-3′ 58 ℃ Rinttila et al. [50]

Lactobacillus group-R 5′-CACCGCTACACATGGAG-3′ 58 ℃ Rinttila et al. [50]

Clostridium perfringens-F 5′-CGCATAACGTTGAAAGATGG-3′ 60 ℃ Wise & Siragusa [51]

Clostridium perfringens-R 5′-CCTTGGTAGGCCGTTACCC-3′ 60 ℃ Wise & Siragusa [51]

Clostridium difficile-F 5′-

TTGAGCGATTTACTTCGGTAAAGA-

3′

58 ℃ Rinttila et al. [50]

Clostridium difficile-R 5′-CCATCCTGTACTGGCTCACCT-3′ 58 ℃ Rinttila et al. [50]

116 F – forward primer, R – reverse primer.

117
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118 Statistical analysis

119 Values are presented as means ±standard errors. The Mann–Whitney U-test was applied to 

120 analyse differences between mean values in all parameters. Differences between mean values 

121 were considered significant at P < 0.05 in all statistical analyses. The Mann–Whitney U-test 

122 was performed using EZR software (Saitama Medical Center, Jichi Medical University); EZR 

123 is a graphical user interface for R (The R Foundation for Statistical Computing, version 2.13.0) 

124 [30]. The significance level was set at P < 0.05.

125

126 Results

127 Total number of days of abnormal defaecation

128 From days 1 to 7, the total number of days in which abnormal faeces were observed improved 

129 in group 2 compared with group 1 (P < 0.05) (Table 2). In the second week, there was no 

130 difference in the total number of days in which abnormal faeces was detected in group 1 and 

131 group 2.

132

133 Table 2 Total number of days in which abnormal faeces were apparent in hamsters fed a 

134 basal diet (group 1) and a 1.0 × 10⁷ cfu/ml supplement of heat-killed Enterococcus faecalis 

135 (group 2)

　 Days 1–7 Days 8–14
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Group 1 1.4 ± 0.3ª 1.2 ± 0.2

Group 2 0.3 ± 0.2b 0.9 ± 0.2

136 a, b Different letters within columns indicate differences between treatment groups (P < 0.05).

137

138 Immunological study

139 Total immunoglobulin A (IgA) concentration of faeces was significantly higher in group 2 than 

140 that in group 1 at day 7 (Table 3). At days 1 and 14, no difference in total immunoglobulin A 

141 (IgA) concentration was detected between group 1 and group 2.

142

143 Table 3 Total immunoglobulin A (IgA) concentration (mg/g) of faeces in hamsters fed a 

144 basal diet (group 1) and a 1.0 × 10⁷ cfu/ml supplement of heat-killed Enterococcus faecalis 

145 (group 2)

　 Day 1 Day 7 Day 14

Group 1 2.12 ± 0.09 1.98 ± 0.08a 2.01 ± 0.12

Group 2 2.08 ± 0.09 2.31 ± 0.08b 1.99 ± 0.11

146 a, b Different letters within columns indicate differences between treatment groups (P < 0.05).

147

148 Microbiological study

149 On the first day, the numbers of Bifidobacterium sp., C. perfringens, Lactobacillus spp., and 
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150 C. difficile in faeces were not significantly different between the two groups (Table 4). On day 

151 7, the number of C. perfringens and C. difficile in faeces was lower in the group 2. The numbers 

152 of Bifidobacterium sp. and Lactobacillus spp. were not significantly different between the two 

153 groups. After day 14, the numbers of Bifidobacterium sp., C. perfringens, Lactobacillus spp., 

154 and C. difficile was similar in faeces of the two groups.

155

156 Discussion

157 Immunological study

158 Immunoglobulin A is one of the main defence elements that prevents pathogenic 

159 microorganisms from crossing the intestinal epithelial cell barrier and is important in protecting 

160 the intestinal mucosa [31, 32]. In the present study, heat-killed E. faecalis T-110 increased total 

161 immunoglobulin A (IgA) concentration in the faeces (Table 3). Similar effects have been 

162 observed in other studies [33-38]. Havenaar and Spanhaak [39] demonstrated that probiotics 

163 stimulate the immunity of animals in two ways: 1) flora from the probiotic migrate throughout 

164 the gut wall and multiply to a limited extent and 2) antigens released by dead microorganisms 

165 are absorbed and stimulate the immune system. The responsible mechanisms remain unclear; 

166 however, it has been suggested that heat-killed E. faecalis T-110 stimulates gut immunity, 

167 consistent with the results of previous studies.

168
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169 Microbiological study

170 In this study, heat-killed E. faecalis T-110 decreased the number of C. perfringens and C. 

171 difficile in aged hamsters (Table 4). Similar effects have been noted in other studies [40-47]. 

172 Considering the increased faecal IgA in the current study, it is likely that heat-killed E. faecalis 

173 T-110 decreased the number of C. perfringens and C. difficile by improving gut immunity of 

174 ageing animals, consistent with the results of previous studies.

175

176 Table 4 Microbiological analyses of faeces (log cells/g) of hamsters fed a basal diet (group 

177 1) and a 1.0 × 10⁷ cfu/ml supplement of heat-killed Enterococcus faecalis (group 2)

　

　

Day Group 1 Group 2

1 5.72 ± 0.20 5.62 ± 0.20

7 5.40 ± 0.16 5.45 ± 0.20Lactobacillus spp.

14 5.62 ± 0.24 5.85 ± 0.23

1 5.35 ± 0.12 5.53 ± 0.21

7 5.60 ± 0.14 5.82 ± 0.22Bifidobacterium sp.

14 5.61 ± 0.14 5.88 ± 0.15

Clostridium perfringens 1 5.83 ± 0.07 5.69 ± 0.11
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7 5.72 ± 0.13a 4.51 ± 0.13b

14 5.47 ± 0.04 5.40 ± 0.09

1 5.34 ± 0.05 5.14 ± 0.10

7 5.48 ± 0.06a 4.25 ± 0.09bClostridium difficile

14 5.62 ± 0.06 5.67 ± 0.06

178 a, b Different letters within rows indicate differences between treatment groups (P < 0.05).

179

180 Total number of days of abnormal defaecation

181 In this study, heat-killed E. faecalis T-110 decreased the total number of days of abnormal 

182 defaecation. Clostridium perfringens and C. difficile cause diarrhoea in hamsters [48]. 

183 Considering the decreased number of C. perfringens and C. difficile in the current study, it is 

184 likely that heat-killed E. faecalis T-110 decreased the total number of days of abnormal 

185 defaecation by improving gut immunity in ageing animals.

186

187 Conclusions

188 Administration of heat-killed E. faecalis T-110 improved the gut immunity and flora in normal, 

189 ageing animals. However, further elucidation of the mechanism underlying improved 

190 immunity is needed.

191
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