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21 Abstract

22 Obesity is an epidemic internationally. While weight loss interventions are efficacious, they are 

23 compounded by heterogeneity with regards to clinically relevant metabolic responses. Thus, we 

24 sought to identify metabolic pathways and biomarkers that distinguish individuals with obesity 

25 who would most benefit from a given type of intervention. Liquid chromatography mass 

26 spectrometry-based profiling was used to measure 765 metabolites in baseline plasma from 

27 three different weight loss studies: WLM (behavioral intervention, N=443), STRRIDE-PD 

28 (exercise trial, N=163), and CBD (surgical cohort, N=125). The primary outcome was percent 

29 change in insulin resistance (as measured by the Homeostatic Model Assessment of Insulin 

30 Resistance [%∆HOMA-IR]) over the intervention. Overall, 92 individual metabolites were 

31 associated with %∆HOMA-IR after adjustment for multiple comparisons. Concordantly, the most 

32 significant metabolites were triacylglycerols (TAGs; p=2.3e-5) and diacylglycerols (DAGs; 

33 p=1.6e-4), with higher TAG and DAG levels associated with a greater improvement in HOMA-

34 IR. In tests of heterogeneity, 50 metabolites changed differently between weight loss 

35 interventions; we found amino acids, peptides, and their analogues to be most significant (4.7e-

36 3) in this category. Our results highlight novel metabolic pathways associated with heterogeneity 

37 in response to weight loss interventions, and related biomarkers which could be used in future 

38 studies of personalized approaches to weight loss interventions.
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39 Introduction

40 Obesity is a major epidemic in the developed world and is an increasing problem in developing 

41 countries, with a range of consequences including dyslipidemia, hypertension, cardiovascular 

42 disease (CVD), stroke, type 2 diabetes mellitus (T2DM), and overall mortality.[1–4] In the United 

43 States, one third of adults are obese and approximately 300,000 deaths are attributed to obesity 

44 every year.[5,6] Behavioral, pharmacologic, exercise, dietary, and surgical intervention methods 

45 have been attempted to curb the obesity epidemic. Ideally, these interventions would be 

46 effective in all adults equally; however even when accounting for the amount of weight loss, 

47 individuals show heterogeneity in improvement in obesity-related co-morbidities and CVD risk 

48 factors.[7] Further, compliance with obesity intervention protocols is low unless expensive and 

49 protracted intervention programs run by a trained interventionist are employed. Surgical obesity 

50 interventions can partially overcome compliance issues; however, these are costly, can have 

51 short- and long-term complications, and are characterized by frequent weight regain. In 

52 recognition of these issues, the American Heart Association (AHA), the American College of 

53 Cardiology (ACC), and The Obesity Society (TOS) released a call for researchers to focus on 

54 determining the “the best approach to identify and engage those who can benefit from weight 

55 loss”.[8]

56

57 Blood-based biomarkers, by serving as more granular snapshots into an individual’s unique 

58 biochemistry, could distinguish individuals who would benefit the most from surgical 

59 interventions from those who can benefit from lower cost, less-invasive solutions. Our previous 

60 work has demonstrated a clear disconnect between amount of weight loss during lifestyle 

61 obesity interventions and improvement in insulin resistance[9], as well as marked inter-individual 

62 heterogeneity in amount of weight loss and metabolic responses to a given weight loss 

63 intervention. In this study, we investigate an omics-driven personalized approaches to 
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64 understanding the molecular mechanisms of obesity and identifying biomarkers of response 

65 among diverse weight loss interventions including behavioral, exercise and surgical 

66 interventions.

67

68
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69 Methods

70 Study Populations and Study approval. The WLM cohort has been described previously[10] 

71 (NCT00054925); all participants provided written consent. Approval from the Duke University 

72 Institutional Review Board was given. Notably, overweight or obese adults with hypertension, 

73 dyslipidemia, or both were recruited from clinical research centers at Duke University, Johns 

74 Hopkins University, Pennington Biomedical Research Center, or the Kaiser Permanente Center 

75 for Health Research between 2003 and 2009. This study only involves samples collected during 

76 phase 1 of the WLM intervention in which all participants were involved in a group-based 

77 behavioral intervention. A trained interventionist led 20 weekly group sessions with the goals for 

78 participants to reach 180 minutes per week of moderate physical activity (e.g., walking), reduce 

79 caloric intake, adopt the Dietary Approaches to Stop Hypertension (DASH) dietary pattern, and 

80 lose approximately ~0.5-1 kg per week. DASH was chosen because it reduces CVD risk 

81 factors.[11–16] Only participants who lost at least 4 kg during the 6-month weight loss program 

82 were considered for this study. Relevant for this study, blood plasma was drawn at baseline and 

83 6-month follow-up, which we used for non-targeted metabolomics.

84

85 The STRRIDE-PD study[17,18] (NCT00962962) compared three 6-month exercise-only groups 

86 between 2009 and 2013; differing in amount or intensity to a fourth lifestyle intervention group: 

87 diet plus exercise similar to the first 6-months of the Diabetes Prevention Program (DPP). All 

88 participants in STRRIDE-PD provided written consent and approval from the Duke University 

89 Institutional Review Board was given. Sedentary, moderately overweight/obese (25 < BMI < 35 

90 kg/m2), nonsmoking adults between the ages of 45 and 75 years with prediabetes, but no 

91 history of diabetes mellitus (T2DM) or CVD, were randomly assigned to one of four groups. The 

92 STRRIDE-PD study defined prediabetes as high-normal to impaired fasting glucose (95-125 

93 mg/dL). The four groups were: 1) low-amount/moderate-intensity exercise; 2) high-
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94 amount/moderate-intensity exercise; 3) high-amount/vigorous-intensity exercise; 4) diet and 

95 exercise clinical lifestyle intervention. Relevant for this study, the blood plasma which we used 

96 for non-targeted metabolomics was drawn at baseline and 6-month follow-up.

97

98 The CBD cohort was a surgical weight loss cohort of individuals who underwent either Roux-en-

99 Y gastric bypass surgery (RYGB) or adjustable gastric banding surgery (AGB) at St Luke’s 

100 Roosevelt Hospital Center between 2006 and 2014. All participants signed a consent form prior 

101 to engaging in various research studies aiming to identify changes in gut hormones and 

102 metabolism after bariatric surgery (NCT01516320, NCT02287285, NCT02929212, 

103 NCT00571220) [19–23]. Approval from the Columbia University Institutional Review Board was 

104 given. As such, each participant had fasting blood plasma drawn at baseline, with body weight 

105 and HOMA-IR measured at multiple follow-up visits up to a year.

106

107 Metabolomic profiling. Four complementary liquid chromatography tandem mass 

108 spectrometry (LC-MS)-based methods were used to measure plasma lipids and polar 

109 metabolites as previously described [24–28]. The methods are characterized by the 

110 chromatography stationary phase and MS ionization mode used and are referred to as C8-pos, 

111 C18-neg, HILIC-pos, and HILIC-neg. The C8-pos, C18-neg, and HILIC-pos methods were 

112 configured on LC-MS systems comprised of Nexera X2 U-HPLCs (Shimadzu) coupled to Q 

113 Exactive series orbitrap mass spectrometers (Thermo Fisher Scientific) for high resolution 

114 accurate mass (HRAM) profiling of both hundreds of identified metabolites and thousands of 

115 unknowns, while the HILIC-neg method was operated on both a Nexera X2-Q Exactive system 

116 for HRAM profiling and a UPLC (Waters) coupled to a QTRAP 5500 (SCIEX) for targeted 

117 profiling.

118
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119 The C8-pos method measures polar and nonpolar lipids. Lipids were extracted from 10 μL 

120 plasma using 190 μL of isopropanol, separated using reversed phase C8 chromatography, and 

121 analyzed HRAM, full-scan MS in the positive ion mode. The C18-neg method measures free 

122 fatty acids, oxidized fatty acids and lipid mediators, bile acids, and metabolites of intermediate 

123 polarity; these metabolites were extracted from 30 μL plasma using 90 μL of methanol, then 

124 separated using reversed phase C18 chromatography, and analyzed using HRAM, full-scan MS 

125 in the negative ion mode. The HILIC-pos method measures amino acids, amino acid 

126 metabolites, acylcarnitines, dipeptides, and other cationic polar metabolites; these metabolites 

127 were extracted from 10 μL plasma using 90 μL of 25% methanol/75% acetonitrile, then 

128 separated using hydrophilic interaction liquid chromatography (HILIC), and analyzed using 

129 HRAM, full-scan MS in the positive ion mode. The HILIC-neg method measures sugars, organic 

130 acids, purines, pyrimidines, and other anionic polar metabolites; these metabolites were 

131 extracted from 30 μL plasma using 120 μL of methanol containing internal standards and 

132 analyzed using either HRAM, full-scan MS in the negative ion mode or targeted multiple 

133 reaction monitoring using the QTRAP 5500 triple quadruple MS system. 

134

135 Raw data from Q Exactive series mass spectrometers were processed using TraceFinder 

136 software (Thermo Fisher Scientific) to detect and integrate as subset of identified metabolites 

137 and Progenesis QI software (v 2.0, Nonlinear Dynamics) to detect, de-isotope, and integrate 

138 peak areas from both identified and unknown metabolites. MultiQuant (SCIEX) was used to 

139 integrate peak areas of metabolites measured using the QTRAP 5500. Identities of metabolites 

140 were confirmed by matching measured retention times (RT) and mass-to-charge ratios (m/z) to 

141 authentice reference standards. Since reference standards are not available for all lipids, 

142 representative lipids from each lipid class were used to characterize RT and m/z ratio patterns. 

143 Lipid identities are reported at the level of lipid class, total acyl carbon content, and total double 

144 bond content since the LC-MS method does not discretely resolve all isomeric lipids from one 
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145 another. Unknown features (unnamed metabolites) were not used in these analyses. 

146 Coefficients of variation (CVs) and missingness are reported in Supplemental Tables 1 & 2 for 

147 each metabolite. 

148

149 Statistical analysis. Percent change in Homeostatic Model Assessment of Insulin Resistance 

150 (HOMA-IR) over the intervention time period is the outcome used to represent metabolic health 

151 for this study. HOMA-IR is calculated from clinically determined blood glucose and insulin levels 

152 as previously described.[10,11] Individuals were excluded if HOMA-IR percent change was 

153 implausible, i.e., greater than five standard deviations from the cohort mean (N=2 removed). 

154 Metabolites measured at baseline in blood plasma by LC-MS are in the form of the natural log of 

155 the MS peak’s area under the curve (AUC). The primary study was association of baseline 

156 metabolites with percent change in HOMA-IR over the obesity intervention time period. The 

157 secondary study was of heterogeneity between cohorts in the primary study.

158

159 Within cohort analysis. Two statistical analyses were performed for this study within each of 

160 the three cohorts. 1) A univariate linear association model between percent change of HOMA-IR 

161 and baseline metabolite, in order to find metabolites that effect HOMA-IR. 2) The same model 

162 as before with the addition of covariates for age, sex, race, baseline clinical triglycerides, and 

163 percent change in weight over the follow-up time period in order to determine if the individual 

164 metabolite effects HOMA-IR independent of traditional clinical measures known to be 

165 associated with insulin resistance.

166

167 Meta-analysis. For both the primary univariate model and the full model, the three cohorts then 

168 were meta-analyzed together using an inverse-variance weighted random effects model 

169 implemented in R’s meta library.[29] To account for the multiple tests, a false discovery rate 

170 (FDR) correction was applied to the random effects p-values from the meta-analysis of the three 
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171 cohorts.[30] A Cochran q-test of heterogeneity also was performed to find metabolites having 

172 different effects between the three cohorts.[31] Metabolites were filtered for only known 

173 metabolites with less than 25% missingness after meta-analysis (N=199 removed). 

174

175 Metabolite set analysis. We used a variation of the Gene Set Enrichment Analysis (GSEA)  

176 method [32,33] to determine in an unbiased manner if any particular group of metabolites was 

177 overrepresented at the beginning or end of a sorted list of our 765 metabolite results. Lists of 

178 metabolite results were either sorted by z-score from the random effects meta-analysis (primary 

179 analysis) or by Cochran q-test statistic from the heterogeneity analysis (secondary analysis). 

180 The goal of GSEA is to determine whether the metabolites are randomly distributed throughout 

181 this sorted list or mainly found at the beginning or end by performing a random walk along the 

182 list and recording the maximum enrichment score (ES) along the way. Metabolite sets 

183 associated with the outcome will have positive or negative ES depending on the direction of 

184 effect; while metabolite sets unrelated to the outcome will have ES near zero. The 22 sets from 

185 HMDB’s taxonomic sub-classification of metabolites were used, with only sets with at least five 

186 metabolites in our data were tested. P-values were determined by one million permutations and 

187 FDR multi-test correction.

188
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189 Results

190

191 Study Populations. This study includes three intervention study cohorts: Weight Loss 

192 Maintenance (WLM) cohort, Studies of Targeted Risk Reduction Interventions through Defined 

193 Exercise in individuals with Pre-Diabetes (STRRIDE-PD), and Columbia Bariatric and Diabetes 

194 (CBD) cohort. Table 1 describes the demographics of these three cohorts.

195

196 Table 1: Baseline Characteristics of the Study Populations

Clinical Characteristics WLM STRRIDE-PD CBD

N 443 163 125

Female (%) 62% 63% 82%

Race (%, AA) 37% 18% 50%

Race (%, EA) 62% 78% 49%

Age (years) 56 ± 8.7 59 ± 7.5 42 ± 10

Weight (kg) 96 ± 16 86 ± 12 121 ± 22

Weight Loss (kg) -8.5 ± 3.8 -2.7 ± 4.0 -35 ± 16

BMI (kg/m^2) 34 ± 4.7 30 ± 2.8 44 ± 5.8

HOMA-IR 2.4 ± 1.6 2.0 ± 1.5 9.6 ± 5.8

HOMA-IR, Percent Change (%) -16 ± 105 -16 ± 42 -71 ± 21

Triglycerides (mg/dL) 127 ± 71 123 ± 64 158 ± 108

Total Cholesterol (mg/dL) 185 ± 35 190 ± 32 187 ± 39

HDL Cholesterol (mg/dL) 43 ± 14 46 ± 14 48 ± 12

LDL Cholesterol (mg/dL) 110 ± 27 119 ± 27 108 ± 31

197
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198 Unless otherwise stated, measures are at baseline timepoint. AA: African American. EA: 

199 European Ancestry. BMI: body mass index. HOMA-IR: Homeostatic Model Assessment of 

200 Insulin Resistance. HDL: high density lipoprotein cholesterol. LDL: low density lipoprotein 

201 cholesterol. Weight loss is measured over the follow-up period. Values are listed as mean ± 

202 standard deviation. “cm” is centimeters. “kg” is kilograms. “m” is meters. “mg” is milligrams. “dL” 

203 is deciliters. “%” is percent.

204

205 Metabolomic profiling. Four complementary liquid chromatography tandem mass 

206 spectrometry (LC-MS)-based methods were used to measure plasma lipids and polar 

207 metabolites. Figure 1 shows the Human Metabolome Database’s (HMDB’s)[34–37] superclass 

208 and subclass taxonomic identifications for the 765 known metabolites that were identified from 

209 all LC-MS methods in this study. Note that HMDB IDs ascribed to lipids are representative of 

210 one or more isomers sharing the same chemical formula.

211

212 Fig. 1: LC-MS Non-targeted Metabolite Classes

213
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214 Pie graph of the Human Metabolome Database’s (HMDB’s) superclass taxonomic identifications 

215 for the 765 known metabolites from all LC-MS methods in this study. Nearly half of known 

216 metabolites were lipids or lipid-like molecules shown in forest green color.

217

218 Association of baseline metabolites with percent change in HOMA-IR. Meta-analysis of the 

219 univariate linear regression models in the three weight loss intervention cohorts identified 92 

220 baseline metabolites (Figure 2, Supplemental Table 1) associated with percent change in 

221 HOMA-IR after adjustment for multiple comparisons (FDR<5%). The top metabolites were 

222 dominated by triacylglycerol (TAG) and diadylglycerol (DAG) species (in light-orange and red, 

223 respectively, in Figure 2) and are listed in Table 2. As evidenced by the negative beta 

224 coefficient, higher baseline levels of metabolites at baseline were associated with greater 

225 reduction in HOMA-IR. For instance, the top result is C34:0 DAG with a FDR adjusted p-value of 

226 5.42e-6 and an effect size of -36.08% change in HOMA-IR over the intervention. To determine if 

227 an individual metabolite had an effect on HOMA-IR independent of traditional clinical measures 

228 known to be associated with insulin resistance, we looked for nominal significance in the full 

229 model. In the full model adjusted for age, sex, race, baseline triglycerides, and percent change 

230 in weight over the follow-up time period, 90 of the 92 significant metabolites retained the same 

231 direction of effect, 38 of these remained nominally associated with percent change in HOMA-IR 

232 (Supplemental Table 2). Table 2 compares the effect size estimates of the univariate model with 

233 the full model for the top 10 metabolites, demonstrating significance and consistency of 

234 magnitude and directionality of effect.

235

236 Table 2: Comparison of effect sizes between univariate and full models
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237  

238 Comparison of univariate model individual metabolite analysis (the primary analysis) to the full 

239 model conditional analyses where traditional clinical measures of age, sex, race, baseline 

240 clinical triglycerides, and percent change in weight over the follow-up time period were added to 

241 the model. The lack of major changes in effect sizes between the two models indicates the 

242 individual metabolites identified in the primary analysis provide additional clinical value over the 

243 traditional clinical measures. “Metabolite” is the common name for the metabolite. “N” is the 

244 number of individuals in the meta-analysis model. “Pvalue” is the random-effects p-value for the 

245 model. “Pvalue_FDR” is the primary p-value after FDR multi-test correction. “Beta” is the 

246 random-effects effect size estimate for the model. Pvalues are colored green if < 0.05 and Betas 

247 and colored blue to red for being high or low, respectively.

248

249 Fig. 2: Meta-analysis of the Univariate Model

Metabolite Pvalue_FDR N Pvalue Beta Beta Pvalue N
C34:0 DAG 5.42E-06 580 1.44E-08 -36.08 -25.03 8.90E-03 571
C50:1 TAG 5.42E-06 677 1.92E-08 -14.55 -9.21 4.42E-03 661
C30:0 DAG 1.19E-05 676 8.83E-08 -9.02 -5.26 1.67E-01 660
C43:1 TAG 1.19E-05 662 9.07E-08 -5.35 -3.37 1.80E-01 646
C48:0 TAG 1.19E-05 677 1.26E-07 -7.80 -4.79 2.32E-03 661
C50:2 TAG 1.19E-05 677 1.16E-07 -14.34 -8.11 2.87E-02 661
C56:1 TAG 1.23E-05 677 1.52E-07 -8.31 -6.23 5.36E-02 661
C51:2 TAG 1.81E-05 677 2.56E-07 -17.08 -11.22 1.71E-03 661
C45:2 TAG 2.91E-05 677 4.63E-07 -7.89 -4.53 2.51E-02 661
C46:1 TAG 3.06E-05 677 5.40E-07 -7.09 -3.69 3.82E-02 661

Univariate Model Full Model
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250

251 Volcano plot of the main analysis results from meta-analysis of the three cohorts for the 765 

252 known metabolites from all LC-MS methods in this study. The x-axis is the random-effects 

253 effect-size estimate in percent change of HOMA-IR units (e.g., “-40” indicates a 40% drop in 

254 HOMA-IR over the intervention time period). Each dot is a metabolite colored by the Human 

255 Metabolome Database’s (HMDB’s) subclass taxonomic identification. The y-axis is the –

256 log10(P-value) from the random effects meta-analysis of the three cohorts in this study after 

257 FDR correction.

258

259 Metabolite set analysis to identify enriched biological pathways. We used metabolite set 

260 analysis to determine in an unbiased manner if any particular group of metabolites was 

261 overrepresented within the HMDB’s taxonomic sub-classification of metabolites. Figure 3 shows 

262 the enrichment plots for the top five sub-classification of metabolites most associated with 

263 increased in insulin resistance followed by the top five sub-classification of metabolites most 

264 associated with reduction in insulin resistance. TAGs (FDR adjusted p=2.3e-5) and DAGs (FDR 

265 adjusted p=1.6e-4) were the most significant sub-classifications associated with reduction in 
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266 insulin resistance over the intervention period in all 3 cohorts after FDR correction for the 22 

267 sub-classifications tested. In fact, both TAGs and DAGs are associated with reduction in insulin 

268 resistance over the intervention period in this regard. The “Glycerophosphocholines” (FDR 

269 adjusted p=3.8e-4), “Fatty acid esters” (FDR adjusted p=1.3e-3), and “Phosphosphingolipids” 

270 (FDR adjusted p=1.1e-2) sub-classifications were also significantly associated with insulin 

271 resistance after FDR multi-test correction; however, they were associated with increased insulin 

272 resistance over the intervention period. Supplemental Table 3 contains results from all tested 

273 HMDB sub-classifications.

274

275 Fig. 3: Metabolite Set Analysis of Univariate Model Meta-analysis

276

277 Main metabolite set analysis results for Human Metabolome Database’s (HMDB’s) subclass 

278 taxonomic identification of metabolites. Enrichment plots for the top 5 HMDB subclasses 

279 associated with increased insulin resistance followed by the top 5 HMDB subclasses associated 

280 with reduction in insulin resistance. The x-axis is the metabolome sorted by meta-analysis z-

281 score. The y-axis has a black line for each hit in the a priori defined set of metabolites with 
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282 length equal to the meta-analysis z-score. Triacylglycerols stand out as most significant overall 

283 HMDB subclass and most significantly associated with reduction in insulin resistance. “NES” is 

284 normalized enrichment score. “Pval” is the p-value for the test. “Padj” is the same p-value after 

285 FDR multi-test correction.

286

287 Metabolites showing heterogeneity of effect between different weight loss interventions. 

288 In analyses designed to determine which metabolites at baseline associate with heterogeneity in 

289 percent change in HOMA-IR between different weight loss intervention types, we performed a 

290 Cochran q-test of heterogeneity, with a linear correction for the co-variates of age, sex, race, 

291 baseline clinical triglycerides, and change in weight over the intervention time period. This type 

292 of analysis is designed to find individual metabolites that can be added to a traditional clinical 

293 model to aid in determining which of available obesity intervention a patient should be assigned 

294 to. These analyses identified 50 metabolites (Supplemental Table 2) with nominally significant 

295 p-values (p<0.05) for heterogeneity by weight loss intervention cohort. Table 3 shows results for 

296 the top 10 metabolites from these analyses. The top metabolite, for example, was N6,N6-

297 dimethyllysine (meta-analysis p=1.14e-4), which demonstrated an estimated effect size in 

298 percent change of HOMA-IR units of 14.63% in the CBD surgical cohort vs -10.57% in the 

299 STRRIDE-PD exercise cohort and -2.04% in the WLM behavioral cohort, suggesting that 

300 participants with higher baseline levels of this metabolite have a greater improvement of insulin 

301 sensitivity in response to exercise than to surgical weight loss. Figure 4 shows a volcano plot of 

302 these results. Unlike the findings in the primary analysis, no major HMDB classification 

303 dominates the top results.

304

305 Table 3: Top 10 Metabolites Heterogeneous in Effect among Interventions from Full Model
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306

307 Top 10 metabolites from the heterogeneity analysis of percent change in HOMA-IR. HOMA-IR is 

308 Homeostatic Model Assessment of Insulin Resistance. Beta is the random-effects effect-size 

309 estimate in percent change of HOMA-IR units (e.g . “-40” indicates a 40% drop in HOMA-IR 

310 over the intervention time period). Q_Pvalue is the p-value from the Cochran Q-test of 

311 heterogeneity. Subclass is the Human Metabolome Database’s (HMDB’s) subclass taxonomic 

312 identification for the metabolite.

313

314 Fig. 4: Heterogeneity Volcano Plot from Full Model Meta-analysis

315

Metabolite N Beta Q_Pvalue HMDB Sub-class
N6,N6-dimethyllysine 662 1.41 1.14E-04
N-acetyltryptophan 662 -5.30 7.13E-04 Amino acids, peptides, and analogues
proline 662 -2.57 9.40E-04 Amino acids, peptides, and analogues
gentisate 619 -5.51 2.25E-03 Benzoic acids and derivatives
ADMA 662 5.53 2.28E-03 Amino acids, peptides, and analogues
2-aminoheptanoate 643 -0.96 2.30E-03
phenylacetylglutamine 662 -1.54 2.79E-03 Amino acids, peptides, and analogues
tryptophan 662 -7.11 5.70E-03 Indolyl carboxylic acids and derivatives
C52:0 TAG 661 -8.87 6.56E-03 Triradylcglycerols
NMMA 662 1.56 6.71E-03 Amino acids, peptides, and analogues
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316 Volcano plot of the heterogeneity analysis results from meta-analysis of the three cohorts for the 

317 765 known metabolites from all LC-MS methods in this study. The x-axis is the random-effects 

318 effect-size estimate in percent change of HOMA-IR units (e.g., “-40” indicates a 40% drop in 

319 HOMA-IR over the intervention time period). Each dot is a metabolite colored by the Human 

320 Metabolome Database’s (HMDB’s) subclass taxonomic identification. The y-axis is the –

321 log10(P-value) from the Cochran Q-test of heterogeneity.

322

323 Metabolite set analysis for metabolites associated with heterogeneity of effect among 

324 weight loss interventions. Metabolite set analysis was again performed, this time for the set of 

325 metabolites associated with heterogeneity in response to intervention using the Cochran q-test 

326 statistic. Figure 5 shows the enrichment plots for the top five most heterogeneous followed by 

327 the five least heterogeneous sub-classification of metabolites. After FDR multi-test correction for 

328 the 22 sub-classifications tested, only the metabolite set “Amino acids, peptides, and 

329 analogues” was significant (FDR adjusted p=4.7e-3). This result is not clear from single 

330 metabolite analysis and therefore shows the power of metabolite set analyses like this one. 

331 Supplemental Table 4 contains results from all tested HMDB sub-classifications.

332

333 Fig. 5: Heterogeneity Metabolite Set Analysis of Full Model Meta-analysis
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334

335 Heterogeneity metabolite set analysis results for Human Metabolome Database’s (HMDB’s) 

336 subclass taxonomic identification of metabolites. Enrichment plots for top 5 most heterogeneous 

337 and top 5 least heterogeneous HMDB subclasses between the three cohorts in this study. The 

338 x-axis is the metabolome sorted by heterogeneity Q-score. The y-axis has a black line for each 

339 hit in the a priori defined set of metabolites with length equal to the heterogeneity Q-score. The 

340 amino acids, peptides, and analogues subclass stand out as most significantly heterogeneous 

341 HMDB subclass. “NES” is normalized enrichment score. “Pval” is the p-value for the test. “Padj” 

342 is the same p-value after FDR multi-test correction.

343
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344 Discussion

345 In the first-of-its-kind study using a comprehensive metabolomics platform in three large 

346 cohorts, we have identified metabolites that, measured at baseline, were associated with 

347 improvements in insulin resistance, an important metabolic health measure, across behavioral, 

348 exercise and surgical weight loss interventions in individuals with obesity. Specifically, we found 

349 that higher baseline levels of complex triglyceride lipid species, triacylglycerols and 

350 diacylglycerols, are associated with a more salutatory metabolic response across weight loss 

351 interventions. Perhaps more importantly, we identify metabolites that were associated with 

352 heterogeneity in improvement in insulin resistance depending on the type of weight loss 

353 intervention. Specifically, we found 14 amino acids, peptides, and analogues, measured at 

354 baseline, that were associated with differential response to weight loss intervention (N-

355 acetyltryptophan, proline, ADMA, phenylacetylglutamine, NMMA, phenylacetylglutamine, 

356 tyrosine, hydroxyproline, N-alpha-acetylarginine, N6-acetyllysine, betaine, histidine, 2-

357 aminooctanoate, and lysine; Supplemental Table 2). These metabolites have great potential in 

358 precision medicine for overweight/obese individuals, serving as baseline biomarkers that add to 

359 clinical models of metabolic response to weight loss interventions, and to help guide a 

360 personalized approach to weight loss intervention.

361

362 Most dietary fat is TAGs, which need to be broken down before absorption in the gut, then 

363 reassembled into circulating low and high-density lipoproteins (LDL/HDL). High levels of TAGs 

364 have been associated with atherosclerosis and stroke.[38] DAGs are precursors to TAGs that 

365 have themselves be associated with immune-independent mechanisms of developing insulin 

366 resistance and/or T2DM in muscle and liver tissues.[39,40]

367
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368 Previous work has indicated that individual TAGs with lower carbon number (44-52 vs 54-60 

369 carbons) and separately lower double-bond content (0-3 vs 4-12 double-bonds) are associated 

370 with a higher likelihood of developing T2DM (higher carbon number and higher double-bond 

371 content were neutral in effect towards  likelihood of developing T2DM).[41] In the current study, 

372 we find individual TAGs with carbon numbers between 50 and 55 and double-bond count 

373 between two and three were associated with reduction in insulin resistance over an intervention 

374 for obesity time period. Other TAG species were neutral in effect toward insulin resistance or 

375 slight reduction in insulin resistance (Supplemental Figure 1 and 2). This may mean low carbon 

376 number, saturated TAGs that indicated one may develop T2DM in the previous study[41] may 

377 also indicate an obesity intervention will be less effective.

378

379 Of note, using a much less comprehensive metabolomic platform, we have previously observed 

380 branched chain amino acids (BCAA) to be associated with insulin resistance and that higher 

381 baseline levels are associated with a greater decrease in insulin resistance[42,43]. In this study, 

382 we find amino acid analogues (including BCAAs) to be heterogeneous among our cohorts. In 

383 the case of the individual BCAAs (valine, leucine, isoleucine), they show no association in our 

384 CBD surgical cohort, while being positively associated with reduction in insulin resistance in 

385 WLM and STRRIDE-PD. The low standard error in the CBD cohort causes the overall inverse-

386 variance weighted meta-analysis of the three cohorts to be non-significant. It is know that gut 

387 bacteria can alter the bioavailability of BCAAs.[44] This may indicate that the microbiome is 

388 important to consider during exercise/behavioral obesity interventions and less so during 

389 surgical interventions perhaps due to antibiotic usage related to having a surgery.

390

391 Another item of note is although our top hit of N6,N6-dimethyllysine is relatively unknown in the 

392 literature, our second most significantly heterogeneous amino acid analogues, N-

393 acetyltryptophan, demonstrated the same pattern as the BCAAs; it is also been shown to be 
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394 associated with host-gut microbiota interactions in both blood and urine bio-specimens.[45–47] 

395 Namely that the amino acid tryptophan is modified into N-acetyltryptophan by the gut microbiota 

396 and then absorbed into the host human. This adds to our earlier statement that the microbiome 

397 is important to consider during exercise/behavioral obesity interventions and less so during 

398 surgical interventions. We would point to antibiotic usage related to having surgery “resetting” 

399 the microbiome after the baseline sample (used in this study to predict outcomes) has been 

400 collected as a plausible reason for this.

401

402 While this is the first study to compare a large number of metabolites measured at baseline 

403 across diverse weight loss interventions, the study has a few limitations. The included cohorts 

404 are prospective, but are observational and therefore causation of metabolite pathways on insulin 

405 resistance cannot be determined, although we note that these associations remained significant 

406 after adjustment for amount of weight loss and other important comorbidities. Further, these 

407 results highlight important metabolites that might be used in a prospective randomized 

408 biomarker-guided clinical trial of assignment to different weight loss interventions. Our study 

409 also primarily involves individuals of European and/or African ancestry and therefore has 

410 unclear implications for other ancestries. 

411

412 We believe this work demonstrates the validity and utility of evaluating the blood metabolome 

413 when determining the proper obesity intervention for a patient in a precision medicine context. 

414 Our work demonstrates the potential value of measuring individual TAGs and the differentiating 

415 ability of amino acid analogues in deciding the best obesity intervention for an individual. Future 

416 biomarker-guided intervention studies are necessary to determine clinical utility.

417
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589 Supporting information captions

590 Supplemental Table 1: HOMA-IR PC vs logMetabolite - Univariate Model - Analysis

591 Includes all meta-analysis results for univariate model after filtering (see methods). Metabolite: 

592 metabolite name, N_Samples: number of samples, N_Studies: number of cohorts that had data 

593 for the metabolite (up to 3), Beta_Fixed: effect size from fixed effects meta-analysis, SE_Fixed: 

594 standard error from fixed effects meta-analysis, Zvalue_Fixed: z-score from fixed effects meta-

595 analysis, Pvalue_Fixed: p-value from fixed effects meta-analysis, Beta_Random: effect size 

596 from random effects meta-analysis, SE_Random: standard error from random effects meta-

597 analysis, Zvalue_Random: z-score from random effects meta-analysis, Pvalue_Random: p-

598 value from from random effects meta-analysis, Q: Cochran q-test statistic, Q_df: Cochran q-test 

599 degrees of freedom, Q_Pvalue: Cochran q-test p-value, Tau2: tau-squared between-study 

600 variance, H: H-statistic, I2: I-squared statistic, WLM_GP1_Beta: Effect size within WLM, 

601 WLM_GP1_SE: standard error within WLM, WLM_GP1_Num: number of samples within WLM, 

602 StrridePD_Beta: effect size within STRRIDE-PD, StrridePD_SE: standard error within 

603 STRRIDE-PD, StrridePD_Num: Number of samples within STRRIDE-PD, CBD_Beta: effect size 

604 within CBD, CBD_SE: standard error within CBD, CBD_Num: number of samples within CBD, 

605 Method: LC-MS method used to measure metabolite, HMDB.ID...representative.ID.: HMDB ID 

606 for metabolite, super_class: HMDB metabolite taxonomy super class, class: HMDB metabolite 

607 taxonomy class, sub_class: HMDB metabolite taxonomy sub class, missingness: metabolite 

608 missingness rate, zeroness: metabolite rate of being zero value, CV: metabolite coefficient of 

609 variation, Pvalue_Adj_Fixed: FDR adjusted p-value from fixed effects meta-analysis, 

610 Pvalue_Adj_Random: FDR adjusted p-value from random effects meta-analysis.

611

612

613
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614 Supplemental Table 2: HOMA-IR PC vs logMetabolite - Full Model - Analysis

615 Includes all meta-analysis results for full model after filtering (see methods). Same columns as 

616 Supplemental Table 1.

617

618 Supplemental Table 3: GSEA HOMA-IR PC Taxonomy Subclass Results

619 Includes all Metabolite Set Analysis of univariate model meta-analysis results for the 22 

620 metabolite sets. Pathway: name of metabolite set, pval: p-value from GSEA test, padj: FDR 

621 adjusted p-value, ES: enrichment score, NES: normalized enrichment score, nMoreExtreme: 

622 number of 1 million permutation that were more extreme than data, size: number of metabolites 

623 in metabolite set.

624

625 Supplemental Table 4: GSEA HOMA-IR PC Heterogeneity Taxonomy Subclass Results

626 Includes all Heterogeneity Metabolite Set Analysis of full model meta-analysis results for the 22 

627 metabolite sets. Same columns as Supplemental Table 3.

628

629 Supplemental Figure 1: HOMA-IR PC logMetabolite Analysis - Univariate Model - 

630 Triradylcglycerols - Carbon Downsloping Plot - Sig

631 Plot of TAG metabolite effect size from random effects meta-analysis of univariate model vs 

632 number of carbon atom in the TAG.

633

634 Supplemental Figure 2: HOMA-IR PC logMetabolite Analysis - Univariate Model - 

635 Triradylcglycerols - Bond Downsloping Plot - Sig

636 Plot of TAG metabolite effect size from random effects meta-analysis of univariate model vs 

637 number of double bonds in the TAG.

638
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