
1 
 

Somatic chromosomal number alterations affecting driver genes inform in-vitro and 

clinical drug response in high-grade serous ovarian cancer 

 

 

Filipe Correia Martins*
!1,2,3,4

, Dominique-Laurent Couturier*
3
, Ines de Santiago

3
, Carolin 

Margarethe Sauer
3
, Maria Vias

3
, Mihaela Angelova

4
, Deborah Sanders

3
, Anna Piskorz

3
, 

James Hall
3
, Karen Hosking

5
, Anumithra Amirthanayagam

5
, Sabina Cosulich

6
, Larissa 

Carnevalli
6
, Barry Davies

6
, Tom B. K. Watkins

4
, Gabriel Funingana

3,7
, Helen Bolton

8
, 

Krishnayan Haldar
8
, John Latimer

8
, Peter Baldwin

8
, Robin Crawford

8
, Matthew Eldridge

3
,  

Bristi Basu
7
, Mercedes Jimenez-Linan

9
, Nicholas McGranahan

10
, Kevin Litchfield

4
, Sohrab P. 

Shah
11

, Iain McNeish
12

, Carlos Caldas
3,7

, Gerard Evan
13

, Charles Swanton
!,4,10

, James D. 

Brenton
! 3,7 

 

*Equal contributions 
! 
Co-corresponding authors 

 

 
1
Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK;

 2
Experimental Medicine 

Initiative, University of Cambridge, Cambridge, UK;
 3

Cancer Research UK Cambridge Institute, University of 

Cambridge, Cambridge, UK; 
4
Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 

London, UK; 
5
Cambridge University Hospitals, Cambridge, UK; 

6
Early Oncology R&D, Astrazeneca, Cambridge, 

UK; 
7
Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK; 

8
Department of Gynaecological Oncology and 

9
Department of Histopathology, Addenbrookes Hospital, 

Cambridge, UK; 
10

Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer 

Institute, London, UK; 
11

Computational Oncology, Department of Epidemiology and Biostatistics, Memorial 

Sloan Kettering Cancer Center, NYC, USA; 
12

Department of Surgery and Cancer, Imperial College of London, 

London, UK;
 13

Department of Biochemistry, University of Cambridge, Cambridge, UK.
 

 

 

 

Abstract 

The genomic complexity and heterogeneity of high-grade serous ovarian cancer (HGSOC) 

has hampered the realisation of successful therapies and effective personalised treatment is 

an unmet clinical need. Here we show that primary HGSOC spheroid models can be used to 

predict drug response and use them to demonstrate that somatic copy number alterations 

(SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene 

expression and drug response. These genes are often located in areas of the genome with 

frequent clonal SCNAs. MYC chromosomal copy number is associated with ex-vivo and 

clinical response to paclitaxel and ex-vivo response to mTORC1/2 inhibition. Activation of 

the mTOR survival pathway in the context to MYC-amplified HGSOC is mostly due to 

increased prevalence of SCNAs in genes from the PI3K pathway. These results suggest that 

SCNAs encompassing driver genes could be used to inform therapeutic response in the 

context of clinical trials testing personalised medicines.  
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Main 

Progressing precision medicine for high grade serous ovarian carcinoma (HGSOC) has been 

significantly impeded by its highly heterogeneous nature, driven by chromosomal instability 

(CIN) resulting in divergent evolution (1, 2). Homologous recombination deficiency (HRD) is 

the commonest actionable mutational state, notably from germline or somatic deleterious 

BRCA1 and BRCA2 mutations, and routine use of PARP maintenance therapy has 

significantly extended progression-free survival(3, 4). PARP therapy targets a loss of function 

phenotype exploiting synthetic lethality but biomarker-driven approaches to identify and 

target gain of function drivers have not been clinically developed.  

 

The frequency of nucleotide substitutions that are “actionable” in HGSOC is ~1% and the 

vast majority of genomic changes are structural variants, with high frequency of somatic 

chromosomal number alterations (SCNAs). Recurrent patterns of SCNAs can be identified 

across multiple tumours(5, 6) as a result of distinct ordering throughout tumour evolution 

or parallel selection (6-8). Multiregional analysis across 22 tumour types revealed frequent 

subclonal focal amplifications in chromosomes 1q (encompassing BCL9 and MCL1), 5p 

(TERT), 11q (CCND1), 19q (CCNE1) and 8q (MYC).  MYC, CCNE1, TERT, KRAS and genes from 

the PI3K/AKT/mTOR pathway (eg. PIK3CA) are amongst the commonest amplified cancer 

genes in HGSOC (2, 9-13). 

 

SCNAs frequently drive gene expression and protein levels (14, 15) and detection of ERBB2 

amplification in breast carcinoma is a critically important biomarker for trastuzumab 

therapy (16, 17). Bulk gene expression profiling has not provided strong evidence of driver 

gene expression owing to common confounding effects from other cells in the tumour 

microenvironment (18-20). By contrast, use of bulk sequencing to detect SCNA, even in low 

to moderate cellularity cancer specimens, retains high specificity. In HGSOC, SCNA can be 

efficiently detected using shallow whole genome sequencing from clinical biopsies (21-24). 

 

We hypothesised that SCNA characterisation in HGSOC might provide specific and clinically 

relevant biomarkers for molecularly targeted therapy. Amongst the different cell culture 

and animal models developed to interrogate HGSOC biology (25-29), studies using a limited 

number of HGSOC organoids and spheroids (cultured and uncultured clusters of primary 

ovarian cancer cells from HGSOC patient ascites, respectively) suggested that they could be 

used to predict platinum resistance (29, 30). We here show how spheroids represent the 

global HGSOC genomic diversity and use them to assess how in-vitro drug response 

correlates with clinical response and SCNAs affecting putative HGSOC driver genes (Figure 1, 

Supplementary Figure 1 and Table 1). 

 

Recent clinical trials using combinations of chemotherapeutic agents, PARP inhibitors 

and/or other targeted therapies in HGSOC and other CIN-driven tumours showed effective 

response in a subset of patients(31-33). Mutational characterisation of the tumours did not 

distinguish responders from non-responders. Our work demonstrate that SCNAs in putative 

driver genes inform how each HGSOC responds to individual targeted therapies and that 

sWGS is a crucial tool to predict response in the context of clinical trials for CIN-driven 

tumours. 
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Figure 1. A. Summary of study graphically representing question, aims and methods used. B. Timeline with 

characterisation of the OVO4 clinical cohort used in this study and time of follow-up for each patient with information 

related to patient status at last follow-up, chemotherapy treatment period(s) and cancer type. 

 

Spheroids Tumours 

Number of Patients 27 64 

Age Median 66.3 65.5 

Range 38-90 44-83 

Histotype HGSOC 22 (81.5%) 64 (100.0%) 

LGSOC 4 (14.8%) 

CCOC 1 (3.7%) 

FIGO Stage I 2 (3.1%) 

II 1 (3.7%) 1 (1.6%) 

III 13 (48.1%) 37 (57.8%) 

IV 13 (48.1%) 19 (29.7%) 

Unknown 5 (7.8%) 

Surgery Type Primary debulking surgery 6 (23.1%) 16 (25.0%) 

Interval debulking surgery 13 (50.0%) 44 (68.8%) 

Unknown 7 (26.9%) 4 (6.3%) 

Surgery Outcome No residual 7 (25.9%) 25 (39.1%) 

Residual disease 11 (40.7%) 24 (37.5%) 

Unknown 9 (33.3%) 15 (23.4%) 

Treatment Alkylating agents (Carboplatin/Cisplatin) 25 (96.2%) 63 (98.4%) 

Taxanes (Paclitaxel) 22 (84.6%) 56 (87.5%) 

Anthracyclines (Doxorubicin/Epirubicin) 20 (76.9%) 38 (59.4%) 

Antimetabolites (Gemcitabine/Capecitabine) 10 (38.5%) 24 (37.5%) 

Anti-angiogenetic agent (Bevacizumab) 4 (15.4%) 4 (6.3%) 

Other 11 (40.7%) 17 (26.6%) 

 
Table 1. Demographic characterisation of the OVO4 clinical cohort  

 

 

Results  

HGSOC putative driver genes showed strong associations between chromosomal copy 

number and gene expression 

In order to select a small number of copy number driver genes to test as predictors of drug 

response, we first examined the genomic data from the TCGA HGSOC cohort (Figure 2A; 

grey shadowing). The GISTIC (“Genomic Identification of Significant Targets in Cancer)” 

algorithm was previously used to define recurrent somatic copy number alterations (SCNAs) 

across cancers (34, 35). Although strong associations between chromosomal copy number 

and gene expression have been shown previously (14, 15), it is unclear if these associations 

are stronger in genes defined as cancer drivers. In the TCGA cohort, 2415 genes were 
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affected by amplifications or homozygous deletions in more than 5% of the cases. 156/2415 

(6.5%) were putative drivers based on external curation in the OncoKB Cancer Gene List 

(13). These putative SCNA drivers showed the highest correlation between chromosomal 

copy number and gene expression, when compared to non-cancer genes and cancer genes 

from OncoKB with <5% SCNAs (Figure 2B). They were also more frequently hypomethylated 

when compared with the remaining genes in TCGA HGSOC cohort (Figure 2C) and 

methylation was a major determinant of the correlation between chromosomal copy 

number and gene expression (Figure 2D).  

We further analysed 127 anatomically distinct HGSOC samples from a cohort of 30 cases 

with multi-regional sampling(36). We characterized SCNA as clonal if they were present in 

all regions from the same individual (median of 4 samples), and subclonal if present in at 

least one but not all regions. Subclonal SCNAs were extremely common and distributed 

across the genome (Figure 2E and Supplementary Figure 2). Focal clonal changes were 

located in areas of the genome with frequent SCNAs (Figures 2A and E) and involved the 

HGSOC drivers PIK3CA, TERT, MYC, KRAS and CCNE1(9).  

 
Figure 2. HGSOC driver genes from the TCGA cohort showed strong associations between chromosomal copy number 

and gene expression and were frequently affected by SCNAs in the spheroid cohort. A. Plot showing the prevalence of 

chromosomal alterations across the genome in both the TCGA cohort (n=579) and in the cohort of patients with spheroid 

samples (n=21). For the spheroid cohort, gain was defined as 3 or 4 chromosomal adjusted copies and amplifications as 5 

or more adjusted copies. For the TCGA cohort, categories as available in the TCGA database were used  B. Boxplots 

showing the Pearson’s correlation scores between gene expression and respective chromosomal copy number for each 

gene, split between cancer vs non-cancer genes and prevalent (>5% SCNAs in HGSOC) vs non-prevalent genes. Driver genes 

(in the far right; defined as 'cancer genes' that have SCNA alteration frequency in at least 5% of the samples) had the 

highest positive correlation scores. Numbers on top of the boxplots correspond to the p-values obtained with Mann–

Whitney-Wilcoxon tests. C. Boxplots showing methylation levels (beta-values) for all genes, split in the same groups as in 

panel A. Prevalent non-cancer genes were significantly more methylated than prevalent cancer genes (Mann–Whitney-

Wilcoxon’s p-value: 0.005).  D. Plot showing, on the normalised scale, that methylation levels and correlation of 

chromosomal copy number and gene expression were associated. E. Frequency of somatic clonal and subclonal copy 

number alterations across the genome of 72 regions from 28 HGSOC primary tumours. Gains and losses were classified 

relative to ploidy. The plot showing the genomic distribution of the frequency of somatic copy number alterations across 

127 regions of both primary tumours and metastases from 30 HGSOC patients is presented in Supplementary figure 2. 

 

Ex-vivo drug response using human spheroids predicted clinical response to the first and 

second line chemotherapeutic regimens. 

We performed shallow WGS (sWGS) on 26 primary spheroids from women with ovarian 

cancer and adequate numbers of vials for functional analysis (Methods; Supplementary 

Figures 3A-Z). Twenty-one out of the 26 were HGSOC. In order to assess whether these 

spheroid samples were representative of the genomic landscape of HGSOC, we compared 

their frequency of SCNAs with the TCGA cohort. The distribution of spheroid SCNA was 

similar to the distribution of amplifications and losses from TCGA (Figure 2A). 

To test the performance of in vitro drug response from spheroids, we compared it with the 

clinical response in patients from whom spheroids were derived. Clinical response measures 

have been previously categorized semi-quantitatively (30, 37). In order to define a 

continuous variable that integrated all parameters of the degree of response, we compared 

variation in serum Cancer Antigen 125 (CA125) levels with radiological response on CT scans 

during treatment, as surrogates of histological response to chemotherapy (Supplementary 

Figures 3A-Z) (38). The difference between levels of CA125 levels measured in log2 scale at 

the time of CT imaging had the best performance as a numerical predictor of CT-inferred 

variation in the disease burden (P ≪0.001; Figures 3A and 3B and Supplementary Figure 4).  
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We quantified cell viability in 26 primary human-derived spheroid samples after 5 days of ex 

vivo exposure to eight concentrations of each individual drug. The responses to four 

standard of care drugs (oxaliplatin, paclitaxel, doxorubicin and gemcitabine; Figure 3C) were 

compared to drug-free control spheroid samples: these were reproducible across technical 

and biological replicates and were not influenced by the length of the drug viability assay. 

Oxaliplatin was substituted for cisplatin and carboplatin as these are inactivated by DMSO 

and produces highly similar cellular effects (39). Area under the curve values (AUC; Fig.3C) 

were well correlated with IC50 estimates in drug response plots (Figure 3D). When we 

compared those estimates to the observed clinical response in the same patient to the same 

drug or class of drugs, we found that the correlation between in vitro and clinical response 

was strongest for the combination of platinum-based and paclitaxel therapy compared to 

other combinations or isolated platinum or paclitaxel (Figure 3E). Considering that this 

combination is the standard first-line treatment for HGSOC, we assessed if the response 

correlation was associated with the lines of treatment and found that it is strongest in the 

first and second line (Figure 3F).   

 

Figure 3.  Ex-vivo drug response in primary spheroid samples is associated with clinical response to chemotherapy. A. 

Example of a patient timeline summarising the available clinical data (CA125 levels, chemotherapy cycles, CT scan results); 

S: surgery, C: collection, D: death; CT is represented as blue (complete response), green (partial response), yellow (stable 

disease) and red (progressive disease). B. Boxplots showing the association between variation in CA125 (measured by the 

difference of CA125 values in log 2 scale after and before each chemotherapy cycle) split by categories of CT radiological 

response and p-value of the Jonckheere-Terpstra test of association. C. Example of in vitro response to oxaliplatin and 

doxorubicin in a spheroid sample. Each dot measures cell viability against the average cell viability of the controls for each 

drug concentration after 5 days incubation. The pink line corresponds to the M-spline fit. AUC was obtained by integrating 

the drug response M-spline fit over the range of interest on the log scale. Intersection of dotted blue lines indicates IC50. 

Dot plot in grey shading indicates control data. D. Scatterplots showing the association between area under the curve 

values and IC50 for selected drugs. Each dot represents one sample. Pink dots represent cases where IC50 was not reached 

owing to viability ≤50% at maximum dose Spearman’s Rho correlation estimates are indicated in turquoise. E & F. 

Scatterplots showing the clinical responses measured by variation in logarithmic scale of CA125 during each chemotherapy 

regimen/line in each patient (y axis) as a function of the in-vitro response to the same drugs, measured by area under the 

curve on samples from the same patient (x axis). When combinations of drugs were used in the clinical setting, the 

combined AUC was obtained by multiplying AUC for individual drugs; Points are colour-coded by drugs (panel E) or 

chemotherapy line numbers (panel F). In panel E, the p-values of the Wald t-tests defining if the slope parameter of linear 

mixed models corresponding to each drug are different from 0 are indicated in the legend. In panel F, the mixed model 

fitted lines per chemotherapy lines and corresponding 95% confidence intervals (shaded areas) are indicated. The p-values 

of the Wald t-tests performing pairwise comparison of the chemotherapy line slopes or comparing the chemotherapy line 

slopes to 0 are indicated P: paclitaxel; C: carboplatin; D: doxorubicin; G: gemcitabine; T: targeted inhibitor.  

 

 

MYC copy number is a predictor of response to paclitaxel both in the ex-vivo spheroid models and 

in the clinical setting 

Previous genome-wide siRNA screens identified Myc as a paclitaxel sensitizer (40). 

Therefore, we tested the hypothesis that the number of MYC copies correlated with 

response to paclitaxel and found that higher number of MYC copies was associated with 

better response to paclitaxel using the spheroid models (p-value<0.05; Figures 4B and C). 

Previous work has shown that topoisomerase inhibition is synthetically lethal in the context 

of KRAS mutant colorectal cell lines (41). Gain of KRAS in our HGSOC samples was associated 

with better response to doxorubicin in spheroid models (Figure 4D and E). We then 

investigated whether these findings could be translated to the clinical setting and showed a 

similar correlation between relative copy-number of MYC and magnitude of CA125 change 

in response to carboplatin/paclitaxel, respectively, suggesting that MYC amplification could 

be a predictive clinical biomarker of response to those drugs (p-value: 0.005; Figure 4F). 
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Considering that the number of patients receiving doxorubicin in the first or second line of 

chemotherapy is small and the prevalence of KRAS gain and amplification is low 

(Supplementary Figures 3A-Z), we were unable to validate the potential KRAS-doxorubicin 

association in the clinical setting. 

 
Figure 4.  MYC amplification is a clinical biomarker of response to paclitaxel. A. Plot showing an example of genomic 

profile (adjusted copy number for each gene) for one HGSOC sample (patient 466). B. Scatterplot showing paclitaxel 

response measured by AUC (purple; left y-axis) and IC50 (pink; right y-axis) for all samples ordered by AUC levels. In the 

lower bars, we show, for each sample, the histological diagnosis (HGSOC – high-grade serous; LGSOC – low-grade serous; 

CCOC – clear cell), the normalised copy number for MYC, PIK3CA, KRAS, CCNE1 and TERT and the ex-vivo variability in the 

control and experimental conditions (sigma-c and sigma-e, respectively). Cases with sigma-c or sigma-e above 0.5 were 

considered too “noisy” and removed from the analysis in the plots 4C and E. C. Scatterplot and boxplots showing the 

associations between response to paclitaxel in vitro (measured by AUC)  and MYC relative copy-number (RCN; left plot) and 

normalised absolute copy-number (3-level ACN; defined by the absolute numbers normalised for a diploid genome, to 

allow comparisons; right plot) P-values corresponding to the presence of a trend (linear model Wald t-test on the left and 

Jonkhere-test on the right) are indicated. D. Scatterplot showing doxorubicin response measured in all samples following 

the same format as in panel B. E. Association between KRAS RCN and ACN and doxorubicin in vitro response (as in panel C). 

F. Scatterplot showing the clinical response to paclitaxel (alone and in combination with carboplatin) as a function of MYC 

RCN. The linear mixed model p-value for the trend obtained with or without correcting for are indicated (refer to the 

method section for detail).  

 

Copy number of putative driver genes informs response to targeted therapies 

In order to further test the hypothesis that SCNAs affecting specific driver genes influence 

both tumour behaviour and response to molecularly targeted agents, we correlated the 

response to drugs targeting important regulatory genes in PI3K pathway, cell cycle and DNA 

repair mechanisms with the SCNAs in frequent HGSOC drivers (MYC, PIK3CA, KRAS, TERT 

and CCNE1; Figure 2). First, we found that, despite the significant heterogeneity of response 

to the different drugs used, there was a group of spheroid samples that responded similarly 

to all the inhibitors targeting the PI3K pathway (Figure 5A). We therefore did a pairwise 

comparison between responses to individual drugs. We found that response to inhibitors of 

the PI3K pathway correlated better between them than when compared to response to 

other drugs, suggesting that targeting the nodal points from the same pathway tend to have 

a similar effect on viability of HGSOC spheroids (p-value: 0.0001; Figure 5B). We then 

assessed how driver gene SCNAs correlated with response to specific targeted therapies and 

showed that previous established knowledge on these driver genes supported the 

correlations with drug response observed (Figure 5C). For example, CCNE1 amplification is 

frequently present in tumours with competent HR pathways and has been associated with 

chemotherapy resistance (42). In the context of HR deficiency, where co-existing CCNE1 

amplification is uncommon (43), the ATM pathway is frequently activated. Our spheroid 

model not only showed that CCNE1 amplification was associated with platinum-resistance 

but also that lower CCNE1 copy number spheroids respond better to ATM inhibition 

(AZD0156; Figures 5C-E). In line with previous evidence suggesting cross-talk between 

mitogenic Ras/MAPK and survival PI3K/AKT pathways(44), our data also suggested that 

KRAS copy number positively correlates with response to AKT inhibition (AZD5363; Figure 

5C). Additionally, signalling via the mTOR pathway has also been shown to regulate 

translational and post-translational telomerase activity(45) and our data demonstrated that 

TERT-amplified HGSOC samples were susceptible to inhibition of PIK3CA, AKT or mTOR 

(Figures 5C). Finally, inhibition of mTOR has been shown to be lethal in MYC-driven 

haematological tumours. In a previous phase 1 clinical trial combining paclitaxel and the 

dual mTORC1/2 inhibitor vistusertib (AZD2014) as a therapeutic strategy for HGSOC, there 

was a patient who experienced a complete response in their measurable lesions. The 
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tumour lesions in this patient harboured a MYC mutation (33) in the Myc homology-box 2 

(MBII), which is a highly preserved region across species and myc isoforms (46, 47). We 

therefore assessed the effect of dual m-TORC1/2 inhibition in HGSOC spheroids with MYC-

amplification and showed that they were more sensitive to this targeted inhibition than 

tumour samples with neutral copy number (Figures 5F and G, Welch p-value:0.02; Jonkhere 

p-value:0.08). 

 

 

 
Figure 5. The copy number of important drivers informs response to new targeted therapies. A. Heatmap showing how 

each sample responds to each individual drug. Heatmap colours are obtained from a scale based on Z-score for response. 

The lower table shows the adjusted copy number for 5 selected genes for each sample. The tricoloured bar on the left 

shows the pathways affected by each specific drug. B. Heatmap showing the Spearman’s Rho correlation between in vitro 

response to different drugs. Response to drugs affecting the PI3K pathway (pink) tend to be similar (high correlation 

values; green triangle), whilst the correlation between response to PI3K drugs and other drugs is much lower (green 

square). The p-value corresponding to the non-parametric bootstrap test comparing these two sets of correlations is 

indicated.  C. Heatmap showing the correlation between copy number in selected genes and drug response measured by 

AUC. The tricoloured bar on the left shows the pathways affected by each specific drug. D. Scatterplot showing AZD0156 

(p-ATM inhibitor) response measured in each sample following the same format as in Figure 4B. Cases with sigma-c or 

sigma-e above 0.5 were considered too “noisy” and removed from the analysis in the plots 5E and G. E. Association 

between CCNE1 RCN and ACN and AZD0156 in-vitro response (as in Figure 4C). F. Scatterplot showing AZD2014 (dual 

mTOR inhibitor) response measured in all samples following the format in Figure 4B. G. Association between MYC RCN and 

ACN and AZD2014 in-vitro response (as in panel 4C) when including (solid line) or excluding (dashed line) samples with high 

CCNE1 ACN. 

 

MYC-amplified HGSOCs are associated with somatic copy number aberrations  in genes 

from the NF1/KRAS and PI3K/AKT/mTOR pathways and activation of the mTOR pathway 

We performed a genome-wide pathway analysis using the TCGA cohort and confirmed that 

expression of mTOR-related genes was highly correlated with MYC expression (Figures 6A 

and B). Previous work demonstrated that pathologically elevated expression of MYC 

expression would have a pro-apoptotic effect (48). We therefore hypothesised that 

activation of the mTOR pathway mediated the anti-apoptotic survival mechanisms in the 

context of high MYC and that inhibition of mTOR was lethal through activation of apoptosis. 

When we compared the genomic chromosomal copy number landscape of HGSOC with 

increased MYC copy numbers against tumours with diploid MYC, we found that there was 

an increase in the prevalence of SCNAs, predominantly affecting genes from the mTOR, RAS 

and anti-apoptotic pathways (Figure 6C). More specifically, the increase in SCNAs affecting 

PI3K and RAS genes was significantly higher, when compared to other cancer genes (p-value 

<0.0001). Additionally, amplification of PIK3CA, IGFR1, GAB2, PTK6, KRAS and AKT1/2/3, as 

well as deletion of NF1 and PTEN (which lead to activation of the RAS and PI3K pathways, 

respectively) were associated with MYC copy number (Figure 6D). This suggests that co-

occurrence of SCNAs affecting these genes and MYC amplification is an evolutionary 

requirement. 

 
Figure 6. MYC-amplified HGSOCs are associated with SCNAs in genes from the NF1/KRAS and PI3K/AKT/mTOR pathways 

and activation of the mTOR pathway A. Boxplots showing the Pearson’s correlation coefficient between the gene 

expression of all genes and the one of MYC, for genes belonging or not belonging to the mTOR signalling pathway.  The 

latter group showed, on average, higher correlation estimates compared to the other group. B. GSEA enrichment scores 

showing enrichment of mTOR signalling pathway genes in Myc-high tumours. The vertical pink lines represent the 

projection of individual genes from the mTOR pathway onto the gene list ranked by MYC expression level. The curve in 

blue corresponds to the calculation of the enrichment score (ES) following a standard gene set enrichment analysis (GSEA). 

The more the blue ES curve is shifted to the upper left of the graph, the more the gene set is enriched in MYC-high genes. 

The ES score, the normalised ES score (NES) and p-value are also shown in the plot. C. Frequency plot showing the 
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distribution of chromosomal amplifications/homozygous losses (solid lines) or gains/heterozygous losses (shaded areas) 

across the genome in both MYC-amplified/gain (pink for amplifications/gains and blue for losses) and MYC diploid HGSOC 

(gray) in the HGSOC TCGA cohort. The location of a list of functional cancer genes selected in (49) is indicated on top. 

Cancer genes are colour-coded in green if they belong to the PI3K or RAS pathways based on the Reactome definition. The 

boxplots (right panel) show, for both PI3K/RAS and other cancer genes, the difference between the frequency of cancer 

genes SCNAs in tumours with and without MYC amplification or gain. The p-value of the one-sided permutation test of 

equality of means is indicated. D. Diagram showing HGSOC drivers that impact the PI3K pathway and the prevalence of 

SCNAs across MYC allelic copy numbers (table). For each gene, the p-values corresponding two tests of association 

between both sets of absolute copy number are indicated (Chi-square test on the left and generalized Cochran-Mantel-

Haenszel test for ordered factors on the right) are indicated in turquoise. 

 

Tumours driven by chromosomal instability share driver SCNAs which are regulated by 

similar survival pathways  

We further explored if HGSOC drivers and survival mechanisms were relevant in the context 

of other tumours mostly driven by chromosomal instability(50). We compared the genomic 

landscape of HGSOC (Figure 6C) to the profile of SCNAs in p53-mutant triple-negative breast 

tumours (TCGA cohort, n=261, Figure 7A; Metabric cohort, n=219, Figure 7B) and squamous 

lung cancer (TCGA cohort, 501, Figure 7C). We detected an overlap between the genes that 

are frequently amplified or deleted across these tumours, in the context of MYC 

amplification or gain. More importantly, we compared the frequency of SCNAs 

encompassing cancer genes between p53-mutant triple-negative breast tumours or 

squamous lung tumours, harbouring MYC gain or amplification, with equivalent tumours 

with diploid MYC. We found a significant increase in the SCNAs encompassing genes from 

the PI3K and RAS pathways, compared  to other cancer genes, in the context of MYC 

amplification or gain in the TCGA cohorts (TCGA breast cohort: p-value: 0.0001; TCGA lung 

cohort: p-value < 0.0001). In p53-mutant triple-negative breast tumours from the Metabric 

cohort, the overall rate of SCNAs was lower, which may have contributed to the absence of 

similar associations between SCNAs affecting MYC and PI3K/RAS genes (p-value 0.5870). 

Despite the significant overlap between SCNAs affecting tumours in these three distinct 

organs, there was a small number of genes that were specifically amplified or deleted in 

certain tumours (eg. ERBB2 amplification in p53-mutant breast cancers and CRKL 

amplification or deletion of LRP1B or CDKN2B in squamous lung cancer). Interestingly, 

SCNAs in the majority of these “private” genes also lead to the activation of the same 

survival mechanisms, suggesting that they are preserved across different tumours. 

 
Figure 7. Frequency plots showing the distribution of chromosomal amplifications/homozygous losses (continuous line) or 

gains/heterozygous losses (shade) across the genome in both MYC-amplified/gain (pink for amplifications/gains and blue 

for losses) and MYC diploid tumours (gray) in the Breast TCGA cohort (A.; triple-negative invasive ductal p53-mutant 

tumours only), Breast Metabric cohort (B., triple-negative invasive ductal p53-mutant tumours only) and Lung Squamous 

TCGA cohort (C.). The location of a list of functional cancer genes selected in (49) is indicated on top. Cancer genes are 

colour-coded in green if they belong to the PI3K or RAS pathways based on the Reactome definition. The boxplots (right 

panel) show, for both PI3K/RAS and other cancer genes, the difference between the frequency of cancer genes SCNAs in 

tumours with and without MYC amplification or gain. The p-value of the one-sided permutation test of equality of means is 

indicated. 

 

Discussion 

The extreme genomic complexity of HGSOC has prevented the development of new 

molecularly targeted therapies. The GISTIC analysis had suggested a number of putative 

HGSOC drivers but there has been limited functional validation of those(35). We here 

assumed that CIN-induced SCNAs affecting expression of HGSOC driver genes are positively 

selected during tumour progression and showed that the correlation between CN and gene 

expression is higher in frequently amplified HGSOC cancer genes than in non-cancer genes 
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from the same amplicons. Equally, promoters of cancer genes are less methylated than the 

promoters of non-cancer genes. Overall, this suggests that aberrantly high expression in 

amplified HGSOC driver genes are crucial for initiation, survival and/or progression of the 

disease.  

 

Our work showed that the initial clinical drug response in HGSOC can be predicted by high-

throughput in vitro assays using spheroids, independently of whether samples were 

collected at diagnosis or after several lines of chemotherapy. This suggests that even after 

several courses of chemotherapy and development of clinical drug resistance, HGSOC cells 

can resume their original drug response state when placed in vitro, and explains why 

the predictive value of those assays to assess response in subsequent cycles of 

chemotherapy was less significant. Previous work suggests that epigenetic silencing of 

tumour suppressor genes is one of the mechanisms of resistance to platinum and that 

demethylating agents may revert that resistance (51-53).  It is possible that spheroid 

samples are exposed to a rapid epigenetic reprogramming whist in culture and resume their 

unmethylated original state (54). 

 

Analysis of the tumorigenic potential of several amplified genes in HGSOC using in vivo 

models, previously identified GAB2 amplification as a driver of the PI3K pathway activation 

in HGSOC, that is associated with sensitivity to PI3K inhibition in cell lines (25). Here, we 

provide evidence that the chromosomal copy number of HGSOC driver genes correlates 

with the response to specific chemotherapeutic and targeted agents both in vitro and in 

patients. Targeting of early and clonal drivers or of subclonal drivers present in a large 

proportion of tumour cells should be prioritised (55). We here showed that MYC and PIK3CA 

gain and amplification were frequent early alterations in HGSOC progression. Deregulated 

MYC promotes further chromosomal instability by affecting multiple aspects of mitotic 

chromosome segregation(56, 57). Our in vitro results showing an association between MYC 

copy number and response to paclitaxel were also validated using clinical data where MYC 

gain or amplification were predictive biomarkers of clinical response to carboplatin and 

paclitaxel in HGSOC. As increased c-MYC levels have been associated with platinum 

resistance(58), it is plausible that clinical responses to combined carboplatin and paclitaxel 

in MYC-amplified tumours are due to paclitaxel effect. Myc-regulated protein synthesis is 

modulated by the mTOR-dependent phosphorylation of eukaryotic translation initiation 

factor 4E binding protein-1 (4EBP1), which is required for cancer cell survival in Myc-

dependent tumours(59). Therefore, inhibition of mTOR has been shown to be synthetically 

lethal in MYC-driven haematological tumours (59). Overexpression of c-myc  had been 

shown to induce apoptosis, which could be reverted by overexpression of IGF-1, most likely 

through activation of the PIK3CA/AKT/mTOR survival pathway(48). Our data showed that 

MYC amplification or gain co-occur with SCNAs in PI3K genes which induce activation of the 

mTOR survival mechanisms and that mTOR inhibition was most effective in the context of 

MYC-amplified HGSOC samples. 

 

By demonstrating that other CIN-driven malignancies (eg. triple negative breast cancer and 

squamous non-small-cell lung carcinoma) have similar genomic landscapes to HGSOC, our 

data suggest that survival mechanisms active in HGSOC are present across other CIN-driven 

tumours. This is corroborated by a recent study analysing the functional evolutionary 

dependencies in cancer. In this study, co-alteration of PIK3CA and the nuclear factor NFE2L2 
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(whose transcription is partly regulated by MYC) was a synergistic evolutionary trajectory in 

squamous cell carcinomas(49). Low-depth whole-genome sequencing is becoming 

increasingly affordable and available and hence this work supports the rational use of this 

genomic tools to inform personalised treatments and the design of clinical trials in HGSOC 

and other CIN-driven malignancies.  

 

 

 

 

 

METHODS 

 

Clinical samples and data 

Cohort 1 

We obtained spheroids with primary tumour cells from ascites of patients with ovarian 

cancer that were recruited as part of the OVO4 study in Cambridge University Hospitals. 

Twenty-eight samples from twenty-seven patients were obtained included two matched 

samples obtained before and after administration of a chemotherapeutic regimen in the 

same patient.  

Cohort 2 

Solid tumour samples were collected from 64 patients in Cambridge University Hospitals as 

part of the OV04 study (six of the tumour samples were taken from the same patients that 

also provided spheroid samples). Samples were handled on ice and processed as soon as 

possible after surgery. Tumour tissues were fixed for 24 hours in 10% neutral buffered 

formalin (NBF) before being transferred to 70% ethanol and embedded in paraffin.  

Clinical data 

Clinical data collected included dates of sample collection, surgery, treatment and therapy 

dates (where applicable), date of death and serial serum CA125-levels from diagnosis. CT 

reports were obtained and classified into categories which included progressive disease, 

stable disease, partial response or complete response, according to the RECIST criteria. A 

summary of the clinical cohort is presented in Table 1 and all the plots summarising clinical 

data are presented as supplementary material. 

 

Spheroid isolation 

Ascitic fluid was collected from patients with the volume ranging between 100-2000 mL 

volume. The fluid was centrifuged at 800g for 5 minutes and the majority of the supernatant 

was removed. Blood clots were removed using a butter muslin cloth and the remaining 

sample was passed through a 40 µm filter. Spheroids were then recovered after a 10 ml 

wash with PBS and centrifugation at 1500 rpm for 5 minutes. Next the spheroid fraction was 

divided in two. One portion of the cell pellet was utilised for DNA extraction. The other 

portion of the cells were resuspended in filtrated acellular ascitic supernatant and 8% 

DMSO, transferred to freezing vials and kept in liquid nitrogen. Cells were thawed and kept 

in media at 37C for 12h before drug screening was performed. 

 

Ex-vivo drug response/Spheroid assays 

An 8-point half-log dilution series of each compound was dispensed into 384 well plates 

using an Echo® 550 acoustic liquid handler instrument (Labcyte) and kept at -20°C until 
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used. Prior to use plates were span down. 50 µl of organoid suspension were added per well 

using a Multidrop™ Combi Reagent Dispenser (Thermo-Fisher). Following 5 days of drug 

incubation, a cell viability assay using 30 µl of CellTiter-Glo® (Promega) was performed. We 

performed technical triplicates. Due to limited sample availability, biological replicates were 

only performed in selected samples. 

 

DNA extraction from FFPE samples 

Multiple sections at 10 µm thickness were cut for each FFPE sample depending on tissue 

size and tumour cellularity. Tumour areas were marked by a pathologist on separate 

Haematoxylin and Eosin (H&E) stained sections to guide microdissection for DNA extraction. 

Tumour areas from unstained tissue sections were scraped off and dewaxed in 1 ml of 

xylene, followed by washing in 100% ethanol. After residual ethanol was evaporated (10 

min at 37°C), DNA extraction was performed using the AllPrep DNA/RNA FFPE Kit (Qiagen). 

DNA was eluted in 40 µl kit ATE elution buffer and quantified using Qubit quantification 

(Thermofisher, Q32851). 

 

Genomic profiling 

DNA extraction was performed using the DNeasy Blood & Tissue Kit (QIAGEN) according to 

manufacturer’s instructions. DNA samples were diluted to 75 ng in 15 µl of PCR certified 

water for subsequent shearing by sonication using the LE220-plus Focused-Ultrasonicator 

(Covaris) for 120 s at RT (duty factor 30%; Peak incident power 180 W; 50 cycles per burst) 

with a target of 200-250 bp. Library preparation was subsequently carried out using the 

SMARTer Thruplex DNA-Seq kit (Takara) with each sample undergoing 7 PCR cycles for 

library amplification and sample indexing. sWGS libraries were cleaned using AMPure beads, 

according to the manufacturer’s recommendations, and eluted in 20 µl TE buffer. Quality 

and quantity of sWGS libraries were assessed using a D5000 genomic DNA ScreenTape 

(Agilent, 5067-5588) on the 4200 TapeStation System (Agilent, G2991AA). 

Libraries were pooled and sequenced using the Paired-End 50 mode and S1 flowcell on the 

NovaSeq. Genomes were aligned to the GRCh37 reference genome and relative copy 

number data was obtained using the qDNAseq package(24). 

 

Statistical analysis 

All statistical tests were two sided, unless stated otherwise. 

 

a/ Test of equality of the location parameter between two populations:  In the Figures 2B, 

2C and 6A, we used Wilcoxon rank sum non-parametric tests (also known as Mann–

Whitney-Wilcoxon tests) with continuity correction (wilcox.test function of the stats R 

package) to assess if the location shift between two populations is different from 0.  

Similar conclusions were obtained when considering Welch t-tests (t.test function of the 

stats R package) and median test (median_test function of the coin R package). In the 

Figures 6C, 7A, 7B and 7C, we used one-sided permutation tests (considering R=10’000 

resampling of the TCGA or METABRIC patients) to assess if the mean of the differences (in 

%) of ‘amplification or gain’ or ‘loss’ (reverse scale) levels of tumours with or without MYC 

gain or amplification are different for cancer genes (49) belonging or not to the Reactome 

PI3K or RAS pathways. Triple-negative breast tumours from TCGA cohort (Figure 7A) were 

selected based on the Code 8500/3 from the International Classification of Diseases for 
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Oncology, Third Edition ICD-O-3 Histology Code. Triple-negative breast tumours from 

Metabric cohort (Figure 7B) were selected based on negativity for ER, PR and HER2 status. 

 

b/ Estimates, test and representation of the association between paired samples:  

In the Figure 2B, we estimated the Pearson's product moment correlation coefficient (cor 

function of the stats R package) between normalised gene expression (obtained with the 

function cpm of the edgeR R Bioconductor package) and respective chromosomal copy 

number for each gene in the HGSOC TCGA database. Similar conclusions were obtained 

when considering Spearman rank-based correlations.  

In the Figure 2D, we used the Pearson's product moment correlation coefficient test 

(function cor.test of the stats R package), to assess if the level of association between 2 

variables is different from 0. In the Figure 2D, the covariance/correlation matrix and the 

vector of means were normalised (by considering the quantiles of a standard normal 

distribution corresponding to the observed probability point of each gene) since they are 

the sufficient statistics of the bivariate normal distribution. Representation of the level of 

association between the normalised variables of interest was then obtained by displaying 

ellipses corresponding to the quantile 0.95 of the bivariate normal distributions of interest. 

In the Figure 3D, we used Spearman's rank-based statistics (cor function of the stats R 

package) to describe the level of association between paired AUC and IC50 since those 

measures are not bivariate normal. 

In the Figure 5B, the association between the ex-vivo response to paired drugs was defined 

by means of Spearman rank-based correlation (cor function of the stats R package). We 

estimated (i) the level of association between ex-vivo response to each pair of drugs 

affecting the PI3K/Akt/mTOR pathway, (ii) the level of association considering all paired 

drugs, including one drug from this PI3K/Akt/mTOR group and one from another group, and 

compared their mean by means of a non-parametric bootstrap test considering 25000 

samples (the corresponding p-value is indicated).  

In the Figure 6A, we estimated the Pearson's product moment correlation coefficient 

(function cor of the stats R package) between expression of MYC and expression of all the 

other genes from the HGSOC TCGA cohort. 

 

c/ Response to treatment estimates: in Figures 3C and Supplementary Figures 3A-Z, 

response to treatment was estimated using area under the curve (AUC) and IC50. 

Drug response measures were standardised by dividing the original values by the median 

drug response observed in the control group of each drug and sample. This standardised 

drug response measures were then modelled as a function of the dose (on the log scale) by 

means of a 4th degree polynomial robust regression, fitted by means of the function lmrob 

of the R package robustbase. Drug response measures that obtained a robust weights 

smaller than 0.4 (out of a range which spreads from 0 for outliers to 1 for non-outliers) were 

considered as outliers. After excluding outliers, we modelled the standardised drug 

response measures as a function of the dose (on the log scale) by means of M-splines. AUC 

and IC50 were estimated using the I-splines (which correspond to the integrals of M-

splines). The alternative use of a five-parameter log-logistic fit (drm function of the drc R 

package with function LL2.5) led to similar AUC and IC50 estimates.  

In the Figures 4B, 4D, 5D and 5F, the control and epsilon sigma estimates represented in 

levels of red respectively correspond to (i) the observed standard deviation of the 

(standardised) drug responses of the control group per sample and to (ii) the standard 
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deviation of the difference between the (standardised) observed drug respond and 

corresponding M-spline fits per drug.   

 

d/ Linear relationship between continuous variables with independent samples: In the left 

plots from the Figures 4C, 4E, 5E and 5G, we used linear regressions, fitted by means of the 

function lm of the stats R package, to model the relationship between drug response (AUC) 

and MYC relative copy number (on the log scale). The p-values of the one-sided Wald t-test 

corresponding to the slope parameter of each fit are indicated.  

In the left plot of the Figure 5G, the trend between drug response and MYC relative copy 

number was also fitted when excluding the two observations corresponding to samples with 

high CCNE1 amplification (ACN > 6; patients 466 and 788). The direction of the relationship 

was pre-specified(40).  

We only considered the first sample for patient 409, since the linear model requires 

independent observations. Equally, the samples from patients 720 and 875 were excluded 

from these analyses due to extreme variability in the results demonstrated by the high 

standard deviations in the (standardised) drug responses of the control group 

(Supplementary Figures 3A-Z). 

 

e/ Trend test between an ordinal and a continuous variable:  

In the Figure 3B, we used an ordinal regression (clm function of the ordinal R package) as 

well as Jonckheere-Terpstra test (jonckheere.test function of the clinfun R package) to assess 

the level of association between the ordinal CT responses and the difference in CA125 on 

the log2 scale before and after treatment. Both methods lead to a p-value < 2.2e-16.  

In the right plots of Figures 4C, 4E, 5E and 5G, we used one-sided Jonckheere-Terpstra tests 

(jonckheere.test function of the R package clinfun), to test for ordered differences in drug 

response between the 3-level of MYC absolute copy number variable (2, 3 and 4+), 

assuming the same trend direction as in the plots on the left.  

In the Figures 4E and 5G, we used Student’s t-tests, (t.test function of the stats R package), 

to investigate a difference in means between two levels of KRAS and MYC ACN. The second 

sample of patient 409 and the samples of patients 720 and 875 were excluded from these 

analyses for the same reasons described above. 

 

f/ Linear relationship between continuous variables with dependent samples: As patients 

typically have several lines of treatment and as their responses to treatment are likely not 

independent, linear mixed models with patients as random effects (to take the within-

patient dependence into account) were used in analyses related to the clinical drug 

response. Models were fitted by means of restricted maximum likelihood (REML; lme 

function of the nlme R package).  

In the Figure 3E, a random intercept model was fitted for each drug and the p-values of the 

two-sided Wald t-test corresponding to the slope parameter was indicated in the legend. A 

linear regression was preferred when the subset of data corresponding to a drug were 

independent (only one observation per patient).  

In the Figure 3F, an heteroscedastic mixed linear model with [i] patients as random effects, 

[ii] AUC, line number (as a three-level factor: 1, 2 and 3+) and the interaction between AUC 

and line number as fixed effects and [iii] residuals as a power function of the duration of the 

chemotherapy cycle (to account for the fact that the variability increases with duration) was 

fitted. The table on the bottom right of Figure F3F shows the p-values obtained when 
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comparing the slope of each line number (rows) to 0 (no relationship between ex-vivo and 

clinical  response) and other line numbers (pairwise comparisons) using a multiplicity 

correction taking the dependence between these tests into account, as implemented in the 

function ghlt of the multcomp R package. Note that the same conclusions were obtained 

when fitting alternative models (e.g. when not considering heteroscedasticity residuals). 

In the Figure 4F, random intercept models, considering patients as random effects and MYC 

relative copy number (on the log scale) as the fixed effect were fitted with or without 

controlling for tumour purity (obtained from TP53 mutant allele frequency). The p-values 

indicated correspond to the Wald t-test of the slope parameter obtained with or without 

tumour purity in the model. 

 

g/ Copy number frequency plots: The copy number frequency plots in the Figures 2A, 6C, 

7A, 7B and 7C were obtained by computing the percentage of [i] homozygous loss, [ii] 

heterozygous loss, [iii] gain and [iv] amplification for the subset of samples of interest (all 

TCGA or spheroids samples in 2A; for samples showing MYC gain or amplification or neither 

of both in 6C, 7A, 7B and 7C). Amplification (homozygous loss) and combined gain and 

amplification (homozygous and heterozygous losses) were displayed for each gene and 

subset of interest. Considering a log2 relationship between relative and adjusted copy 

number, we used adjusted copy numbers of 0.5, 1.5, 2.5 and 4.5 (Figure 4A) to define the 

limits of the subgroups in the spheroid cohort from Figure 2A. in the Figures 2A, 6C, 7A, 7B 

and 7C, we considered the absolute copy number available for the TCGA and METABRIC. 

 

h/ Differential gene expression analysis: In the Gene Set Enrichment Analysis (Figure 6B, 

we obtained a list of ranked genes according to the t-statistic corresponding to the change 

in mean gene expression intensities between HGSOC TCGA samples with MYC-low and MYC-

high (lower and upper quartile of MYC expression respectively). We discarded 6522 out of 

24165 genes with low counts across all samples (counts-per-million below 0.5 in more than 

90% of the samples; from the cpm function of the edgeR R Bioconductor package). 

Differential expression analysis was performed using the voom function of the edgeR R 

Bioconductor package (with default options). 

 

i/ Gene score enrichment analysis: To assessed whether the up-regulated genes in MYC-

high compared to MYC-low tumours were enriched for mTOR pathway genes, we obtained a 

list of genes belonging to the mTOR signalling pathway from the  Bioplanet database 

(https://tripod.nih.gov/bioplanet/, the pathway “Mammalian target of rapamycin complex 1 

(mTORC1)-mediated signalling”) and ran a gene set enrichment analysis (fgsea function of 

the R Bioconductor package fgsea; Figure 6B), using the mTOR gene list and the list of 

ranked genes of the differential gene expression analysis described above, to obtain the 

enrichment score estimate and corresponding p-value. 

 

j/ Clustering analyses: In the Figures 5A, 5B and 5C, we used hierarchical clustering to group 

samples, drugs or genes. In the Figure F5A and F5C, samples, drugs and genes were grouped 

according to a ‘complete’ hierarchical clustering based on euclidian distances (pheatmap 

function of the pheatmap R package and hclust function of the stats R package). 

In the Figure 5B, the drugs were grouped according to a ‘complete’ hierarchical clustering 

based on euclidian distances defined on the drug Pearson’s correlation matrix (hclust 

function of the stats R package). 
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k/ Tests of association of categorical or ordered factors: In the Figure 6D, we present the 

association between the absolute copy number (ACN) of selected genes and the ACN of 

MYC in two different way. Firstly, we considered the ACN vectors as non-ordered factors 

and used the Chi-square tests (chisq.test function of the stats R package). Secondly, we 

considered them as ordered factors and used the generalized Cochran-Mantel-Haenszel 

tests of association of ordered factors (CMHtest function of the vcdExtra R package). 
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ŝe
ŝc
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ŝc

Precise Noisy
2 2 2 2 3 1 2 2 3 2 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3
4 4 2 3 5 3 4 3 4 3 4 7 4 2 4 16 3 3 2 20 4 3 4 2 2 3
4 4 2 3 3 3 3 3 3 2 3 2 3 3 4 3 3 3 3 3 4 3 3 2 4 3
2 4 2 2 3 3 2 2 2 2 3 2 3 7 4 3 4 2 3 3 2 2 1 2 3 2
2 4 2 4 2 3 2 5 2 2 3 2 3 1 4 6 2 2 2 6 3 5 2 2 6 2 CCNE1

TERT
PIK3CA
MYC
KRAS

CCNE1
TERT

PIK3CA
MYC

KRAS

1 ACN 2 ACN 3 ACN > 3 ACN

3 1 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 1 2 2 3 2 2
2 3 2 7 3 3 16 3 4 20 2 4 4 3 4 3 4 2 4 4 3 5 4 2
3 3 3 2 3 3 3 3 3 3 4 4 3 3 3 3 4 2 3 3 2 3 4 2
7 3 3 2 2 4 3 2 2 3 3 2 1 2 2 2 4 2 3 3 2 3 4 2
1 3 2 2 5 2 6 5 2 6 6 3 2 2 2 2 4 2 3 3 2 2 4 2 CCNE1

TERT
PIK3CA
MYC
KRAS

CCNE1
TERT

PIK3CA
MYC

KRAS

1 ACN 2 ACN 3 ACN > 3 ACN

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.04.325365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325365


Figure 6

PTEN

6.17%

3.27% 1
8

2
15

8

21
79
94

8
55

82
92

8
9

53
37

1
1
5

M
YC

 AC
N

PTEN ACN
p−val. = 0.0011 / 0.0250

GAB2

17.7%

9.52% 6
16
28
23

7
53
94
97

9
13
78
80

3

12
17
43

M
YC

 AC
N

GAB2 ACN
p−val. = 0.0002 / 0.0009

PTK6

19.75%

11.61% 1

14
13

1
42
39
69

22
36

142
113

1
16

22
48

M
YC

 AC
N

PTK6 ACN
p−val. = 0.0004 / 0.2929

IGF1R

11.52%

4.76%
2
1

15
32
95
76

5

45
62
83

3

11
50
55

2
6
8

28

M
YC

 AC
N

IGF1R ACN
p−val. = 0.0013 / 0.0012

PIK3CA

38.68%

21.73% 1

9
6

3
35
32
34

14
30

139
109

7
29
37
94

M
YC

 AC
N

PIK3CA ACN
p−val. = <0.0001 / 0.0003

NF1

7.82%

6.25% 9

12
19

18
66

155
199

3

17
40
15

4
2

10
9 1

M
YC

 AC
N

NF1 ACN
p−val. = 0.0025 / 0.0049

KRAS

13.58%

13.1%
2

4
6

14
25

3
53
57

103

16
26

111
82

2
9

33
33

M
YC

 AC
N

KRAS ACN
p−val. = 0.0001 / 0.9569

AKT1/2/3

6.17%

4.46%
1

12
34
87
82

8
45
76
83

5

11
42
63

4
11
15

AKT1 ACN
p−val. = 0.0367 / 0.0035

5.35%

9.82%
3
3

12
27
66
85

3
40
55

85

6
19

72
57

4
8

21
13

AKT2 ACN
p−val. = 0.0107 / 0.1085

12.76%

7.14%
1
1

2
7

23
38

4
40
67
86

17
35

116
87

2
12
10
31

M
YC

 AC
N

AKT3 ACN
p−val. = 0.0007 / 0.4418

mTOR − Cell survival

Legend

Gene type
Tumour suppressor
Oncogene

Interaction
Activation
Inhibition

ACN levels
Homozygous Loss
Heterozygous Loss
Diploid
Gain
Amplification

Sample size
0
1 to 5
6 to 19
20 to 39
40 to 75
> 75

A B

D

C

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.04.325365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325365


Figure 7

A

B

C

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.10.04.325365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.04.325365


Supplementary Figure 1
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Supplementary Figure 4
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