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Abstract: The hippocampal formation is linked to spatial navigation but direct evidence 
in primates during active, unconstrained navigation is lacking. Combined with accurate 10 
behavioral tracking of eye and head, we record neurons across hippocampal regions in 
rhesus macaques during free foraging in an open arena. We find that neurons encode a 
broad spectrum of spatial variables beyond place fields. Most neurons show mixed 
selectivity, with diverse representations covering the entire space. The allocentric 
representations are dominated by facing location and tilt orientation, and a rather low 15 
fraction of neurons shows place or grid fields. Spatial facing selectivity mainly reflects 
head-, rather than gaze-related, properties. These findings reveal that the macaque 
hippocampal formation represents space using a multiplexed code, with heading 
properties dominating over simple place coding during free behavior. 

Main Text: 20 

The rodent hippocampal formation (HF) has been linked to spatial navigation, and 
multiple cell types have been identified to encode position, head direction, and speed 
(1–5). Population activity tiles the entire environment (6, 7), supporting the notion of a 
map-like representation in the rodent HF. Three-dimensional position and direction 
encoding has been found in the bat HF (8, 9); but primate HF has been scarcely 25 
explored under the same experimental paradigms. On the one hand, human studies 
have been limited to virtual navigation and focused exclusively on a limited number of 
spatial variables, including position and direction (10–13). On the other hand, non-
human primate studies have used almost exclusively head-fixed macaques, either 
during cart navigation (14, 15) or in a virtual environment setting (16, 17), and tethered 30 
animals on a linear track (18). Two limited investigations in freely moving new world 
monkeys reported location-specific hippocampal activity reminiscent of rodent place 
cells (19, 20). A rather provocative observation is the existence, in the HF of head-fixed 
macaques, of putative gaze-centered spatial representations (16, 21–23). This property, 
however, which may imply differences between primates and rodents, has yet to be 35 
interrogated in freely-moving primates where head movement is a critical component of 
natural behavior. Further, recent studies have employed multimodal models to reveal 
multiplexed representations in rodent HF (24–26), emphasizing the presence of mixed 
selectivity in the rodent navigation circuit. 
 To investigate how the primate HF represents space during natural, ambulatory 40 
navigation, we trained three macaques to freely forage in an open circular arena 
endowed with salient sensory cues (Figs. 1A and S1). Using chronically implanted 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.03.324848doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.03.324848
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 
 

tetrodes or single electrodes (Figs. 1B,C and S2), we recorded from 599 neurons 
across three HF regions in both hemispheres: hippocampus (HPC, 273 neurons), 
entorhinal cortex (EC, 216 neurons), and subicular complex (SUB, 110 neurons) (Table 
S1). To accurately track the monkeys’ head position and orientation, we used a marker-
based approach, combined with wireless eye tracking in one of the animals (Figs. 5 
1D,E). A broad range of spatial variables were extracted from the markers’ trajectories 
in 3D space (Figs. 1F and S1; Methods). Overall, the monkeys’ behavior covered a 
broad range while salient landmarks appeared to exert a strong influence (Fig. S3). 
Wireless eye tracking in one monkey (Fig. 1D) revealed eye-in-head movements were 
predominantly within the range of ±30° horizontal and ±20° vertical (Fig. S3B, bottom 10 
right panel). 

Consistent with rodent studies (27), the activity of HF neurons was in general 
very sparse and the firing rates showed log-normal distribution with SUB neurons 
showing the least sparsity (highest average firing rates) (p < 0.001, Kruskal-Wallis test) 
(Fig. 1G). Traditional analysis methods revealed that individual HF neurons exhibited 15 
tuning to diverse spatial variables, including head height, translational speed, azimuth 
head direction, LFP phase, position, facing location (where the head points at), 
egocentric boundary, head tilt, and angular velocity (Figs. 1H,I and S4). 

However, in sharp contrast to rodents (28), hippocampal local field potentials 
(LFPs) lacked a sustained oscillatory pattern in the theta band during locomotion (Fig. 20 
S5A). Rather, the power spectrum showed a local maximum around 5 Hz, whose power 
exhibited a small increase as a function of movement speed (p < 0.001, One-way 
ANOVA) (Figs. S5B,C). In addition, there was a prominent broad band peak around 20 
Hz, which had the largest power in EC and SUB. However, the power of this beta 
frequency oscillation had an opposite dependence on movement speed, being the 25 
largest when the animal was near stationary (p < 0.001, One-way ANOVA) (Figs. 
S5B,C). 

To quantify the simultaneous encoding of multiple variables by HF neurons, we 
used a cross-validated, multivariate linear-nonlinear Poisson model framework (24, 25) 
(Fig. 2A; Methods), which is agnostic about turning curve shape and is robust to the 30 
interdependence of encoded variables (24). Using a forward search method, a variable 
was considered to be encoded by a neuron if including it significantly improved model 
performance (p < 0.05, one-sided Wilcoxon signed rank test; Methods) (Fig. S6). Thus, 
each cell could encode a single variable or combination of variables – or not tuned to 
any spatial variable at all. 35 

The main model included 9 variables: position (Pos), facing location (FL), 
egocentric boundary (EB), head tilt (HT), angular velocity (AV), head height (HH), 
translational speed (Spd), azimuth head direction (HD), and LFP phase (Ph) (Fig. 2A). 
Overall, HF population exhibited rich coding schemes (Figs. 2B,C and S6), with SUB 
exhibiting the strongest encoding (fraction of neurons that encoded at least one of these 40 
variables: HPC: 49%, EC: 57%, SUB: 72%). We first classified neurons based on their 
best-encoded single variable. Across HF regions, the most frequently coded variable 
was not Pos but instead FL (Fig. 2D). FL was the dominant variable encoded by 22% of 
the neurons, as compared to Pos, which was the dominant variable in only a small 
fraction (5%) of HF neurons. 45 
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Most (37%) HF neurons showed conjunctive coding of multiple variables (Fig. 
2B,C and S6). Mixed selectivity was ubiquitous across all HF regions (single vs. mixed 
selectivity, HPC: 15% vs 34%, EC: 21% vs 36%, SUB: 25% vs 47%) (Figs. 2F and S8). 
Taking into consideration this mixed selectivity (a single neuron encoding more than 
one variable), facing location was again the most prominently coded variable across all 5 
HF regions (HPC: 19%, EC: 33%, SUB: 35%) as well as across most HPC subregions 
(Figs. 2E and S7). By contrast to rodents and bats, a relatively small fraction encoded 
position across all HF regions (HPC: 7%, EC: 15%, SUB: 12%) (Fig. 2E). Notably, 
different HF regions carried different combinations of mixed selectivity (Figs. 2G and 
S8). In the HPC, facing location and egocentric boundary, as well as LFP phase and 10 
speed, were most often co-coded in the same neurons. In the EC, facing location and 
egocentric boundary or position were the most frequent coding pairs. Azimuth head 
direction (HD) was most prominently coded in the SUB (37%) with FL and Spd. 
Therefore, HF neurons are tuned to mixtures of navigational variables. 
 Spatial representations in the HF are heterogeneous. Facing location cells and 15 
head tilt cells showed diverse tuning curves with distributed preferred firing fields (Figs. 
3A,B). The preferred firing fields of the FL and HT variables covered a broad space, 
although dominant arena cues influenced the clustering of the firing fields at certain 
locations (Figs. 3C,D and S9). Similarly, Place (Pos) and EB variables were also 
attracted to salient arena cues (Figs. 3E,F, S10 and S11). Traditional analysis showed 20 
that a small fraction of neurons exhibited the properties of place cells and grid cells in 
the HPC and EC, respectively (Figs. S12 and S13A,B). In fact, the proportion of 
identified grid cells was near chance level (n = 11/216). Regarding speed tuning, two 
major clusters were encountered: monotonically increasing or decreasing speed tuning 
curves (Figs. 3G and S14A). Although head direction was strongly biased toward the 25 
direction of the entrance/exit door, the encoded HD variable uniformly tiled the azimuth 
directional space (p = 0.9, Rayleigh test) (Figs. 3H and S14B). These results suggest 
that the spatial coding is overall heterogeneous, with facing location cells and head tilt 
cells mapping an entire allocentric 3D positional and directional space. 
 Spatial coding in rodent HF is topographically organized along the dorsal-ventral 30 
axis (6, 29). In one monkey, we recorded from nearly the entire hippocampus in the 
right hemisphere (Figs. S2 and S15A). The monkey hippocampal rostral-caudal axis is 
analogous to the ventral-dorsal axis in rodents. Consistent with human fMRI studies 
(30), we observed a gradual increase in the fraction of spatially-tuned neurons and 
mixed selectivity along the rostral-caudal axis (Fig. S15). The caudal entorhinal cortex in 35 
macaques is homologous to the rodent medial entorhinal cortex based on its 
connectivity (31); it showed slightly weaker spatial tuning and stronger mixed selectivity 
than other EC subregions (Fig. S15). These results highlight the similarities as well as 
differences between rodents and macaques in the topography of spatial coding across 
HF regions. 40 

Finally, to disambiguate the neuronal coding between head and gaze properties, 
we analyzed eye movement tuning by HF neurons (monkey K only). We first assessed 
allocentric gaze tuning. Of particular note is what was previously described as ‘spatial 
view’ (SV) – where the monkey looks at in the environment (22, 32), a property similar 
to our FL variable, but referred to gaze rather than head. Combining eye-in-head 45 
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movement and 3D head orientation allowed us to disambiguate between SV and FL 
(Fig. 4A). Similar to head-fixed studies (21), a low fraction of EC neurons (9%) showed 
grid-like tuning for SV as revealed using traditional grid cell analysis (Fig. S13C).When 
fitted as a single-variable model, 11% (28/244) of HF cells were significantly tuned to 
SV. This percentage was higher (24%, 58/244) when using FL rather than SV (refer to 5 
where the head and gaze points at, respectively). Critically, including all head and gaze 
properties in the model fitting revealed that neuronal activity was predominantly driven 
by FL rather than SV (46 vs. 8 tuned neurons), more so in the HPC than the EC and 
SUB (Figs. 4B and S16). This is in contrast with previous studies in which head and 
gaze were not disambiguated due to head restraint (22, 32). Moreover, studies in freely 10 
moving rodents failed to exclude the possibility that azimuth HD tuning may arise from 
gaze direction (GD). We found that azimuth directional tuning mostly reflected head but 
not gaze direction (15 vs. 5 tuned neurons), especially in the HPC (Figs. 4B and S16). 
We also examined egocentric eye (eye-in-head) tuning. Consistent with studies in head-
fixed monkeys (23), we found neurons tuned to eye position (EP), eye velocity (EV), 15 
and saccade (Figs. 4C-E), with the entorhinal cortex showing the strongest tuning to 
eye position and velocity (Fig. 4F). Overall, 16% of HF neurons were sensitive to 
saccade (Fig. 4G). Therefore, we conclude that allocentric FL and HD tuning in the HF 
predominantly reflects head, but not gaze, properties; neuronal encoding of allocentric 
FL and egocentric EP in HF (Fig. 4H) may link the head and eye properties in spatial 20 
exploration. 
 In summary, the present analyses revealed novel spatial coding schemes by the 
hippocampal formation in freely moving macaques, dominated by head facing location 
and 3D head orientation, as well as egocentric boundary. Although a comparable 
model-based analysis with the same spatial variables has yet to be performed in rodent 25 
HF, it is possible that HF spatial tuning differs in macaques compared to rodents. We 
found that many macaque HF neurons form a map-like representation for where in the 
environment the head points at, but not where the eye looks at, and how it is orientated 
in 3D. Head pointing may act as the anchor for the firing fields in the HF, whereas eye 
movement may be used to establish a more fine-grained picture for things seen 30 
centered at that facing location; this could link the implications of the HF in spatial 
exploration and visual memory (33). Mixed, heterogeneous selectivity may be a 
ubiquitous property in the HF and other higher order brain regions in primates (16, 17), 
that can also encode task-related and non-spatial information (17). It is likely that 
increasing task complexity would further increase the mixed selectivity and 35 
heterogeneity and recruit more neurons. Overall, these results have important 
implications for future modeling work that investigates the neural basis of spatial 
navigation under naturalistic settings in primates. 
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Fig. 1. Freely moving monkey setup to study spatial coding in macaque hippocampal formation 
during natural behaviors. (A) Monkeys were trained to freely forage for randomly scattered food pellets 
or fruits in an open circular arena (pictured, 330 cm diameter, 212 cm height) equipped with a motion 
tracking system. (B) A large-scale semi-chronic microdrive holding 124 independently movable electrodes 5 
(42 mm travel distance) was implanted in the right hemisphere of monkey K. The drive and skull models 
are shown. (C) Top: segmented models of the brain, where hippocampus (blue), and entorhinal cortex 
(green) are shown (front and top views). Bottom: recording electrodes (white lines; reconstructed from 
coregistered pre-op MRI and post-op CT images) for monkey K. The sagittal image is taken at 15.9 mm 
from midline. An axial plane superimposed with projected regions of the hippocampus, entorhinal cortex, 10 
and blood vessels is shown at bottom right. Electrodes are visible as white dots. (D) A marker-based 
approach was used to track head motion in 3D. Four markers were placed on the head cap. An eye 
tracker was attached to the head ring for tracking the pupil position of the left eye of monkey K. (E) Neural 
data were recorded and stored in a neural logger that was regularly synchronized with the computer. Eye 
tracking images were wireless transmitted online at ~30 Hz. (F) A short segment of the markers’ 15 
trajectories in 3D, from which head position, translation, and orientation were extracted. (G) Cumulative 
distribution of the mean firing rates (over the entire sessions) for neurons recorded across three regions: 
hippocampus (HPC), entorhinal cortex (EC), and subicular complex (SUB). (H) Example raw tuning 
curves plotted as the average firing rate vs. head height, translational speed, azimuth head direction, and 
LFP phase (1-10 Hz). (I) Example raw data (top) and raw tuning curves (bottom) for horizontal position, 20 
facing location (where the head points at on the arena surface), egocentric boundary, head tilt, and head 
angular velocity. Red dots: spikes; gray: behavioral variables, down-sampled for visualization. Tuning 
curves (bottom) show color maps of raw firing rate (no smoothing) as a function of each behavioral 
variable. In each panel, the peak firing rate (yellow) is indicated with a number at the bottom of the color 
maps. The lowest firing rate (dark blue) is 0 for all panels. The variable abbreviations are indicated in the 25 
title for each panel in (H) and (I). Tuning curves are all from different neurons.  
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Fig. 2. Macaque hippocampal formation neurons show mixed selectivity of diverse navigational 
variables. (A) A model-based statistical framework was used to quantify the spatial coding. Any single 
variable or combination of multiple variables was fitted to the data. A forward search approach was used 
to select the best model. A 5-fold cross-validation was used to test the significance of the model fitting 5 
(Methods). (B) An example cell showing tuning to facing location and position. (C) Log-likelihood (LLH; 
goodness of fit) increase as a function of model variables for the example cell shown in (B). (D) All 
neurons were classified according to the single variable that best explained their responses. Pie chart 
shows the name and the fraction of select variables in each region. ‘None’ cluster corresponds to neurons 
that did not encode any of these variables (no spatial tuning model was better than the null model; 10 
Methods). (E) Breakdown of the fraction of encoding neurons for each variable in each region. A single 
neuron can encode none, one, or more than one variable. The most commonly-coded variable across 
regions was Facing Location (FL), with the exception of SUB, which was dominated by Head Direction 
(HD); Egocentric Boundary (EB) was also prominent in EC. (F) Fraction of neurons tuned to single 
variable (single) or to more than one variable (mixed) in each region. (G) Circular graph representation of 15 
the degree of conjunction between variables. Line thickness and color correspond to how often two 
variables are co-coded in a single neuron. The thicker and the darker the line, the stronger the 
conjunction between the two variables. 
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Fig. 3. Spatial representations in the hippocampal formation are heterogeneous. (A) Example 
model-based tuning curves for 10 neurons coding facing location (FL). Peak firing rates are indicated. 
Darkest blue corresponds to bins that were not occupied. (B) Example model-based tuning curves for 9 
neurons that encoded head tilt (Tt). (C) Preferred firing locations (red dots) for all FL cells superimposed 5 
on the average occupancy color map (log scale) across all monkeys. Dot size corresponds to the number 
of neurons. (D) Preferred firing fields (red dots) for all Tt cells superimposed on the average occupancy 
color map (log scale) across all monkeys. Dot size corresponds to the number of neurons. (E) and (F) 
The same as (C) and (D) for position (Pos) encoding cells and egocentric boundary (EB) cells. Feed 
boxes are indicated as black rectangles. Exit/entrance door is indicated as gray rectangle in (E). (G) 10 
Average occupancy as a function of translational speed (Spd) across monkeys (left). Shaded area 
indicates 1x standard deviation across sessions. Distribution of preferred speed (middle). The right panel 
shows results of clustering analysis for the normalized speed tuning curves using principal component 
analysis (the first 2 components are shown). Each dot represents a single neuron. Colors correspond to 
their preferred speed. (H) The same as (G) for head direction (HD). Gray bar indicates the direction of the 15 
exit/entrance door. 
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Fig. 4. Allocentric facing location and head direction tuning predominantly reflects head but not 
gaze properties. (A) Example raw traces showing eye-in-head position (EP, horizontal and vertical), 
facing location (FL), and spatial view (SV). (B) Fraction of neurons in each region encoding FL, SV, 
azimuth head direction (HD) and gaze direction (GD) when fitting all head- and gaze-related variables 5 
simultaneously. (C) Colormap representation of the firing as a function EP for an example tuned neuron. 
(D) Colormap representation of the firing as a function of eye-in-head velocity (EV) for an example tuned 
neuron. (E) Mean firing rate as a function of time from saccade onset for an example tuned neuron. Error 
bars: SEM over saccade events. (F) Fraction of neurons in each region (color-coded bars, same as (B)) 
encoding EP and EV when fitted as single-variable models. (G) Fraction of neurons in each region (x 10 
axis) encoding saccade event. Neurons were identified by comparing pre-saccade (-0.4-0 s) and post-
saccade (0-0.4 s) activity (p<0.01, paired-t test). Overlapping neurons encoding EP or EV are shown as 
stacked bars. (H) Confusion matrix showing the number of neurons encoding (or not) FL and EP. Data 
from monkey K. 

 15 
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Materials and Methods 
Animals 

Three male rhesus macaques (Macaca mulatta, 8-10 years old) weighing 9-14 kg were used in 
this study. Monkeys B and K were both pair-housed with another male cagemate; monkey L 
was single-housed. Animal room was illuminated on a normal 6am-6pm 12-hr cycle. All animals 5 
were chronically implanted with a lightweight polyacetal head ring for head restraint (34). A head 
cap printed with carbon-fiber reinforced nylon (Utah Trikes, USA) was attached on the head ring 
to accommodate and protect the microdrives, recording devices, transmitters, and batteries. We 
used the standard pole-and-collar method to train the monkeys to move from their home cage to 
the primate chair using positive reinforcement. All animal experimental procedures and 10 
surgeries were approved by the Institutional Animal Care and Use Committee at Baylor College 
of Medicine and were in accordance with the National Institutes of Health guidelines. 

General surgical procedures 

Dexamethasone (0.5 mg/kg IM) was administered for craniotomies on the day prior to surgery 
and just prior to surgery in order to reduce inflammation and intracranial pressure. Monkeys 15 
were sedated using Ketamine (5-15 mg/kg, IM) with or without Dexmedetomidine (0.005-0.015 
mg/kg, IM). Animals also received sustained release buprenorphine (0.2 mg/kg SC) for 
analgesia. Atropine (0.5 mg/kg, IM) may have been given to avoid congestion or maintain 
cardiac output. Sterile ophthalmic ointment was applied to the eyes to protect the corneas from 
drying. An intravenous catheter was placed in the saphenous vein (maintained by saline flush 20 
solution). Hair was removed at the surgical site with electric clippers. Monkeys were intubated to 
maintain a clear airway and placed in a stereotaxic apparatus on a surgery table. Anesthesia 
was maintained throughout the procedure using inhaled isoflurane (1-5%) and continuous 
intravenous infusion of propofol (2.5-5.0 mg/kg bolus followed by 0.3-0.4 mg/kg/hr). The level of 
anesthesia was monitored using withdrawal reflex, corneal reflex, jaw tone, respiration, heart 25 
rate and rhythm, blood pressure, expired CO2, O2 saturation, and mucous membrane color. 
Respiration was maintained using a mechanical ventilator beginning at onset of propofol 
infusion. Saline solution (0.9% NaCl) was infused at a rate of ~10 ml/kg/hr for the first hour 
followed by ~5 ml/kg/hr for the remainder of the procedure. Body temperature was maintained 
at ~37°C using a warm water blanket and a circulating warm air blanket. The surgical site was 30 
prepared with three alternating scrubs of povidone-iodine and sterile saline. In a separate room, 
two surgeons performed sterile hand scrubs and donned sterile surgical gowns and gloves. 
Monkeys were then covered with a sterile surgical drape. Sterility was maintained throughout 
the procedure. Following the procedure, monkeys were extubated after regaining the swallowing 
reflex and returned to the home cage once fully conscious. Monkeys were monitored until fully 35 
mobile. Antibiotics and analgesics were given as needed. 

Planning for microdrive implantation 

Pre-op computed tomography (CT) and magnetic resonance imaging (MRI) (3T, Siemens) 
images were collected to segment the regions of interest, and for accurate design of the form-
fitting (to the skull) chambers (titanium) and the microdrives (form fitting to the brain surface) 40 
(Visijet-Clear or Ultem). CT and MRI images were registered in 3D slicer software (35) 
(https://www.slicer.org). The hippocampus, entorhinal cortex, subicular complex, and the entire 
brain were segmented semi-manually from the T1-weighted MRI images in ITK-SNAP software 
(36) (www.itksnap.org), with reference to standard atlas (37, 38). Major blood vessels were 
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segmented from the T2-weighted MRI images. The skull model was segmented from the CT 
images. All rendered 3D models were exported from ITK-SNAP and then imported into 3D 
slicer. The MRI and CT volumes were aligned with stereotaxic coordinates in 3D slicer. Four 
fiducial markers were placed at the left and right infraorbital ridges and ear canals, respectively 
(they should be within the same plane). The stereotaxic origin is defined as the center point of 5 
left-right ear canal axis. The axial plane is parallel to the plane defined by the 4 fiducial markers. 
The coronal plane is perpendicular to the axial plane and parallel to the left-right ear canal axis. 
The sagittal plane is perpendicular to both the axial and coronal planes. Models of the chambers 
and microdrives were imported in 3D slicer and the best positioning was chosen such that the 
electrodes covered the largest extent of the hippocampus and the posterior entorhinal cortex 10 
(homolog to the medial entorhinal cortex in rodents). Major blood vessels were avoided. For 
monkey K, some electrodes targeted the thalamus and parietal cortex. 

Preparation and implantation of chronic microdrives 

Monkey K was implanted with a 32-channel Microdrive (SC32) in the left hemisphere and a 124-
channel Microdrive (LS124; Gray Matter Research, LLC, USA) in the right hemisphere (39). 15 
Each channel was loaded with a glass-coated tungsten electrode (250 µm total diameter, 60° 
taper angle, ~1MΩ impedance; Alpha Omega Co., USA). Each electrode has a travel distance 
of 42 mm from the brain surface. The implantation procedure breaks into 3 separate surgeries 
(Gray Matter Research) (https://www.graymatter-research.com/documentation-manuals/): 
Chamber implantation, craniotomy, and microdrive implantation. In stage 1, the chamber was 20 
implanted at the desired location using C&B Metabond (Parkell, Inc., USA) and dental cement; 
bone anchor screws were not required since everything was protected within the head cap. The 
chamber was hermetically sealed with a plug and O-rings. At 10 days after stage 1, we collected 
fluid sample from the inside of the chamber and cultured the sample. We did not notice any sign 
of infection and we moved on to stage 2. In stage 2, a craniotomy was made inside the chamber 25 
and the edge of the craniotomy was polished with 90 degree rongeurs. A form-fitting plug (with 
the same shape as the microdrive) was installed and the plug & chamber unit was hermetically 
sealed. At 10 days after surgery, we controlled for infection again by collecting and culturing a 
fluid sample from the inside of the chamber. We did not notice sign of infection and moved on to 
the final stage. In stage 3, the microdrive, loaded with electrodes, was inserted into the chamber 30 
and secured to the chamber walls using multiple screws. The entire assembly was then 
hermetically sealed with O-rings. All components were autoclaved or gas-sterilized prior to the 
procedures. 

Monkeys B and L were implanted with the NLX-18 and NLX-9 tetrode drives (retired 
product; Neuralynx, Inc., USA). We used a tetrode-in-guide tube technique. First, guide tubes 35 
(2” 27G needles) were loaded and fixed inside a grid, which rested inside a chamber. The 
depths of the guide tubes were planned such that they were implanted ~3-5 mm above the 
target regions. Second, a polymicro capillary tubing (100 µm ID, 170 µm OD; Molex, LLC, USA) 
was loaded into the guide tubes and glued to the drive shuttles. Third, each tetrode (Platinum 
10% Iridium, 0.0007”; California Fine Wire Co., USA) was loaded into the polymicro capillary 40 
tubing. The tetrode was glued to the capillary tubing and its tip extended outside from the 
bottom of the tubing for ~2-3 mm. The NLX-18 drive was loaded with 16 tetrodes and the NLX-9 
with 8 tetrodes. The tetrodes were plated with platinum to an impedance of 100-200 kΩ. The 
entire drives were gas-sterilized before surgery. Monkey B received an NLX-18 drive in the right 
hemisphere. Monkey L received an NLX-18 drive in the right hemisphere and an NLX-9 drive in 45 
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the left hemisphere. The assembled drive was implanted as a single unit and a single surgery 
was required. 

Electrode advancement and reconstruction of electrode locations 

For monkey K, all electrodes targeting deep structures were moved to 8 mm below brain 
surface on the day of microdrive implantation; electrodes targeting superficial structures were 5 
moved to 0.5-1 mm below brain surface. All deep electrodes were advanced to 2-3 mm above 
target areas within 5 days following recovery from the surgery. For monkeys B and L, all 
tetrodes were advanced to 1 mm outside of the guide tubes on the day of implantation. 
Electrodes were advanced by turning fine threaded screws, at a resolution of 125 µm per 
revolution for single electrodes and 250 µm per revolution for tetrodes. Electrodes were 10 
advanced by 50-250 µm per day and recording was performed the next day. A CT scan was 
performed every 2-3 months to reconstruct current electrode locations. Electrodes were visible 
as white tracks in the CT images (Fig. S2). CT volumes were registered with pre-op MRI 
volumes to visualize electrode locations in the brain. When combined with electrode advance 
history, electrode locations were reconstructed with good precision. Anatomical landmarks such 15 
as ventricles, white matter and electrophysiological signatures were used to further verify 
electrode locations. 

Freely moving monkey (FMM) arena 
The FMM arena consisted of an open circular enclosure with a 3.30 m diameter and a 2.12 m height, with 
a single entrance/exit door and a drain on the floor (Fig. S1). The enclosure was made of white composite 20 
material. Three feed/touch-screen boxes were evenly located at the perimeter of the arena. A motion 
capture system (Vicon Ltd, UK) consisting of 9 infrared cameras (Bonita) was mounted in the ceiling and 
the wall (Fig. S1), to capture the 3D position of the reflective markers placed on the monkey’s head cap at 
a rate of ~1 kHz. Nine video cameras (CM3-U3-13Y3M 1/2" Chameleon3 Monochrome Camera, FLIR 
Systems, Inc., USA) were mounted in the wall to capture videos at ~30 Hz from different angles through a 25 
transparent plastic window. A wide angle camera was mounted in the center of the ceiling for 
surveillance. The arena was lit by an LED lamp mounted in the ceiling. 

Behavioral training and tracking 

Monkeys were placed on a food delayed schedule. They were fed fewer than normal biscuits 
(~15%) in the morning so they were encouraged to forage for treats in the arena. The remaining 30 
daily allotment of food less the amount received in the arena was fed after the monkeys were 
returned to the home cage after training, and supplemented with vegetables and fruits. Their 
weight was recorded at least 3 times a week. The monkeys were habituated to the FMM arena 
in a gradual manner. They were brought from their home cage to the arena in a transfer cage. 
They entered/exited the arena through a single door. They were trained to freely forage for 35 
randomly scattered food pellets or fruits on the floor throughout the session. Monkeys B and L 
also received rewards from the reward boxes with equal probability. Monkey K did not forage at 
the reward boxes. The monkeys were initially allowed in the arena for a duration of ~5-10 
minutes per training session. The duration gradually increased to ~1 hour towards the end of 
the habituation phase over a period of 1-2 months. At the end of each session, the monkey was 40 
allowed to return to the transfer cage and then back to the home cage, where they received 
food and additional treats. Monkeys B and K were habituated to wear a wireless eye tracking 
device (ISCAN, Inc., USA). Monkeys were initially trained to wear a dummy eye tracking device, 
which could be replaced inexpensively when destroyed, in their home cage. Once they were 
comfortable with the device, they usually stopped interacting with it, and at that stage, they were 45 
trained to wear the eye tracking device in the FMM arena. The eye tracking device was housed 
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in a rigid, 3D-printed case which was fixed to the head ring implant. The device consists of a 
miniature infrared camera, an infrared emitter, a hot mirror, and a transmitter. The hot mirror 
was held rigidly in front of the left eye and the camera faced downward at about 45° relative to 
the mirror. 

To accurately track monkey’s head motion in 3D, we used a marker-based motion 5 
tracking system. Four markers were placed within a single plane on the head cap (Fig. 1D). One 
marker was placed in the front and one at the back. Other two markers were symmetrically 
placed on the left and right (closer to the back marker). The 3D position (x,y,z) of each marker 
was recorded (~1 kHz) in Spike2 with a data acquisition system (Power1401, CED Ltd., UK). 
The eye tracking device was powered by a lightweight 3.7 V Li-Po battery. Eye images were 10 
wirelessly transmitted to a receiver placed outside of the arena. Pupil position was detected 
online and the horizontal and vertical position was recorded (~30 Hz) in Spike2. 

The marker-based motion tracking system was calibrated before use by moving the 
provided calibration wand throughout the entire arena space. The eye tracking camera was 
calibrated by training the monkey to fixate visual target arranged on a 7x5 grid (3 cm horizontal 15 
and 2 cm vertical spacing) on a hardboard placed 10-15 cm in front of the left eye, while the 
monkey was head fixed in a primate chair. The actual eye position in head (in degree, horizontal 
and vertical) was regressed against raw eye data (recorded as voltage in Spike2, using both 
horizontal and vertical positions in the camera scene) using two-variable polynomial regression, 
thus correcting potential nonlinearities along either dimension. We obtained the regression 20 
coefficients that convert any raw eye data into eye position in head in degrees (horizontal and 
vertical). Assume the raw eye data in horizontal and vertical positions are x1 and x2, actual 
horizontal and vertical eye positions (in degree) are h and v, respectively; regression 
coefficients are βk and αk for h and v, respectively. We solved βk and αk in the following 
equations using least squares: 25 

ℎ𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 +  𝛽𝛽3𝑥𝑥1𝑖𝑖2 + 𝛽𝛽4𝑥𝑥2𝑖𝑖2 + 𝛽𝛽5𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑛𝑛 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 
𝑣𝑣𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥1𝑖𝑖 + 𝛼𝛼2𝑥𝑥2𝑖𝑖 +  𝛼𝛼3𝑥𝑥1𝑖𝑖2 + 𝛼𝛼4𝑥𝑥2𝑖𝑖2 + 𝛼𝛼5𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖  (𝑖𝑖 = 1,2,3, … ,𝑛𝑛 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

Electrophysiological recordings 

We used a 64-channel neural logger to record broadband (0.1-7000 Hz) electrophysiological 
signals at 32 kHz (Deuteron Technologies Ltd., Israel). The neural logger was powered by a 30 
lightweight 3.7 V Li-Po battery. The head-stage was connected to the drive connectors directly 
or via a 5 cm jumper cable. The head-stage utilized a preamplifier and a 16 bit analog-to-digital 
converter from Intan Technologies. The signal precision was 0.2 µV. Raw signals were digitized 
on board and stored on a 64 GB micro-SD card (SanDisk) plugged into the logger. To avoid 
clock drift over time, the logger was wirelessly synchronized with the computer clock every 5-10 35 
minutes via a USB transceiver placed outside of the arena; the transceiver was connected to 
the Spike2 system for synchronization between behavioral data and electrophysiological 
recordings. Each recording session usually lasted ~20-60 minutes. For monkey K, the chamber 
was used as the ground. For monkeys B and L, one guide tube or a separate screw held in the 
skull was used as the ground. 40 

Data analysis 
All data analysis was performed using MATLAB 2019b (The MathWorks, Inc., USA). 

Extraction and binning of behavioral variables 
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Three dimensional behavior variables were extracted from the raw marker position data. The 
raw marker position data were pre-processed to fill small gaps (< 1 s) which could happen 
occasionally. All raw data were re-sampled to 50 Hz. At any time point, assume the positons of 
the front, back, left and right markers in the arena are: (xf, yf, zf), (xb, yb, zb), (xl, yl, zl), and (xr, yr, 
zr), respectively. Assume three orthogonal unit vectors e1, e2, and e3 that define the head 5 
coordinate system: e1 points from back to front, e2 points from right to left, and e3 points upward. 
They were calculated as following: 

𝑒𝑒2 = (𝑥𝑥𝑙𝑙 , 𝑦𝑦𝑙𝑙 , 𝑧𝑧𝑙𝑙) − (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟);  𝑒𝑒2 =  𝑒𝑒2 ‖𝑒𝑒2‖⁄  
𝑢𝑢 = �𝑥𝑥𝑓𝑓 ,𝑦𝑦𝑓𝑓 , 𝑧𝑧𝑓𝑓� − (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙 , 𝑧𝑧𝑙𝑙);  𝑣𝑣 =  �𝑥𝑥𝑓𝑓 ,𝑦𝑦𝑓𝑓 , 𝑧𝑧𝑓𝑓� − (𝑥𝑥𝑟𝑟 , 𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟) 
𝑒𝑒3 = 𝑢𝑢 ×  𝑣𝑣;   𝑒𝑒3 =  𝑒𝑒3/‖𝑒𝑒3‖;  𝑒𝑒1 = 𝑒𝑒2  ×  𝑒𝑒3;  𝑒𝑒1 =  𝑒𝑒1/‖𝑒𝑒1‖ 10 

Three orthogonal unit vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) define the world coordinate 
system. The rotation matrix R from the world coordinate to the head coordinate is exactly 
defined as R = [e1; e2; e3] (Fig. S1). Assume the coordinates (in world) of the unit vectors are: e1 

= (e1x, e1y, e1z), e2 = (e2x, e2y, e2z), e3 = (e3x, e3y, e3z). Proved as following (translation vector is 
neglected at this stage): 15 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

�
1 0 0
0 1 0
0 0 1

� × 𝑅𝑅 = �
𝑒𝑒1𝑥𝑥 𝑒𝑒1𝑦𝑦 𝑒𝑒1𝑧𝑧
𝑒𝑒2𝑥𝑥 𝑒𝑒2𝑦𝑦 𝑒𝑒2𝑧𝑧
𝑒𝑒3𝑥𝑥 𝑒𝑒3𝑦𝑦 𝑒𝑒3𝑧𝑧

�  ⇒  𝑅𝑅 = �
𝑒𝑒1𝑥𝑥 𝑒𝑒1𝑦𝑦 𝑒𝑒1𝑧𝑧
𝑒𝑒2𝑥𝑥 𝑒𝑒2𝑦𝑦 𝑒𝑒2𝑧𝑧
𝑒𝑒3𝑥𝑥 𝑒𝑒3𝑦𝑦 𝑒𝑒3𝑧𝑧

�  

The head coordinate system was translated such that the origin aligned with the head 
center (defined as the projection of the head cap center onto the same axial plane as the eye 
center). The translation vector was measured from the MRI and CT volumes. Thus, we obtained 20 
the markers’ coordinates with the origin at the head center. Head position in the world horizontal 
plane was calculated as the x and y components of the average coordinates across the 4 
markers. Head height was defined as the z component (arena floor at z=0). Translational speed 
was calculated as the absolute displacement of the head position divided by the interval 
between time points (i.e. 0.02 s). Head tilt was calculated by projecting the earth gravity vector g 25 
= [0, 0, -1] onto the head coordinate system by multiplying g with the rotation matrix R. The first 
2 components of the resulting vector were used as a 2D variable (corresponding to pitch and roll 
angles, for small head tilts) (Fig. S1). The azimuth head direction (α, corrected for head tilt) was 
calculated as following (40): We aim to rotate the vector e1 = (e1x, e1y, e1z) by a rotation matrix 
Rf(v; θ) converted from an axis-angle representation (using MATLAB function vrrotvec2mat); the 30 
axis of rotation is denoted as v, and the angle is denoted as θ; assume vector u = [0; 0; 1]; n is a 
unit vector perpendicular to the plane defined by vectors e3 and u in the direction following the 
right-hand rule. 

𝑣𝑣 =  𝑒𝑒3 × 𝑢𝑢 = ‖𝑒𝑒3‖ ∙ ‖𝑢𝑢‖ sin(𝜃𝜃)𝑛𝑛;  𝜃𝜃 =  sin−1‖𝑣𝑣‖ 

𝑎𝑎 =  𝑅𝑅𝑅𝑅(𝑣𝑣;  𝜃𝜃) × 𝑒𝑒1;  𝛼𝛼 =  tan−1
𝑎𝑎𝑦𝑦
𝑎𝑎𝑥𝑥

 35 

Egocentric boundary was first defined in a polar coordinate system, in which the angle is 
between the arena center-to-head center vector and the azimuth head direction (-180°, 180°] 
(negative if the boundary is on the right side of the animal); the distance is calculated as 
distance from the head center to nearest arena boundary (i.e. arena radius minus arena center-
to-head center distance). The polar system was rotated for 90° such that +x axis points upward 40 
(when the arena boundary is in front of the animal) and +y axis points left (when the arena 
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boundary is on the left of the animal). The polar coordinates were converted to Cartesian 
coordinates, resulting in x, y ∈ [-165, 165] cm. To calculate the yaw, pitch, and roll angular 
velocity, assume the rotation matrix (i.e. the coordinates of the 3 orthogonal unit vectors that 
define the head coordinate system) from the world to the head is Rt and Rt-1 at time points t and 
t-1, respectively; assume in the head coordinate system the rotation matrix from t-1 to t is Ro; 5 
denote the rotation angles in yaw, pitch, and roll are ψ, θ, and Փ, respectively. 

𝑅𝑅𝑡𝑡−1𝑇𝑇 × 𝑅𝑅𝑜𝑜 = 𝑅𝑅𝑡𝑡𝑇𝑇 ;  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝑜𝑜 

𝑅𝑅𝑜𝑜 = �
𝑅𝑅11 𝑅𝑅12 𝑅𝑅13
𝑅𝑅21 𝑅𝑅22 𝑅𝑅23
𝑅𝑅31 𝑅𝑅32 𝑅𝑅33

� 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔:𝑅𝑅𝑜𝑜 = 𝑅𝑅𝑧𝑧(ψ)𝑅𝑅𝑦𝑦(θ)𝑅𝑅𝑥𝑥(Փ) = �
cosψ − sinψ 0
sinψ cosψ 0

0 0 1
� �

cos θ 0 sin θ
0 1 0

− sinθ 0 cos θ
� �

1 0 0
0 cosՓ − sinՓ
0 sinՓ cosՓ

� 

𝑅𝑅𝑜𝑜 = �
cosψ cos θ cosψ sin θ sinՓ− sinψ cosՓ cosψ sinθ cosՓ + sinψ sinՓ
sinψ cos θ sinψ sin θ sinՓ + cosψ cosՓ sinψ sin θ cosՓ− cosψ sinՓ
− sin θ cos θ sinՓ cos θ cosՓ

� 10 

 
𝑅𝑅21
𝑅𝑅11

=
sinψ cos θ
cosψ cos θ

= tanψ  ⇒  ψ =  tan−1
𝑅𝑅21
𝑅𝑅11

 

𝑅𝑅31 =  − sin θ ⇒  θ =  sin−1(−𝑅𝑅31) 
𝑅𝑅32
𝑅𝑅33

=
cos θ sinՓ
cos θ cosՓ

= tanՓ ⇒  Փ = tan−1
𝑅𝑅32
𝑅𝑅33

 

 
  Computing Euler angles from the rotation matrix 15 
(https://www.gregslabaugh.net/publications/euler.pdf), we solved ψ, θ, and Փ, whose derivatives 
over time (0.02 s step) yielded the angular velocity. We focused on the yaw and pitch angular 
speed (as a 2D variable) only since the head rotated mostly along these 2 dimensions. 

To calculate where the monkey looked at, first the eye-in-head vector was converted to 20 
the world coordinate system by multiplying it by the transpose of the rotation matrix R, obtaining 
the view vector in world. The inner surface of the arena was treated as an enclosed cylinder, 
composed of three surfaces: the ceiling, the floor, and the cylinder wall. We solved the 
intersection between the viewing vector and the three surfaces to obtain the viewing location in 
3D, i.e. spatial view variable. Similarly, we calculated the intersection between the heading 25 
vector and the three planes to obtain where the head pointed at in the arena at each time point, 
i.e. facing location variable. 

So far, we extracted 10 behavioral variables. We binned them in the following way: 
position (2D variable; x, y ∈ [-165, 165] cm; 20 x 20 bins); facing location and spatial view (3D 
variable; x, y ∈ [-165, 165] cm, z ∈ [0, 212] cm; 17 x 17 bins for the ceiling and floor, 53 x 11 30 
bins for the wall); egocentric boundary (2D variable; x, y ∈ [-165, 165] cm; 20 x 20 bins); head 
tilt (2D variable; p ∈ [-0.8, 1], r ∈ [-0.3, 0.3]; 18 x 6 bins); angular velocity (2D variable; ψ’, θ’ ∈ [-
120, 120] °/s; 16 x 16 bins); head height (1D variable, h ∈ [10, 70] cm; 12 bins); translational 
speed (1D variable, v ∈ [0, 120] cm/s; 15 bins); azimuth head direction (1D circular variable, hd 
∈ [-180, 180] °; 18 bins); LFP phase (1D circular variable, 1-10 Hz, ph ∈ [-180, 180] °; 18 bins). 35 
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The sampling rate was 50 Hz, i.e. 0.02 s interval. Note the position bins were empty at the 4 
corners (no occupancy at those bins): This does not affect the model fitting or the evaluation of 
the model’s performance. Sessions in which the monkeys occupied fewer than 80% of the valid 
position bins were excluded from further analysis. 

Preprocessing of electrophysiological data 5 

We used a semi-automatic procedure for the preprocessing of the electrophysiological data. We 
used the established pipelines, using the software Klusta for spike detection and automatic 
spike sorting and phy Kwik-Gui for manual curation (41). Raw data were high-pass filtered at 
300 Hz for spike detection. Detection threshold was set at 5 x standard deviation. Extracted 
spike waveforms were aligned at trough and 0.5 ms and 1 ms of samples before and after the 10 
trough were kept for spike sorting. Automatic spike sorting results were imported in phy Kwik-
Gui for manual correction using a graphical user interface. Manual corrections were based on 
spike waveforms, waveform features, auto-correlograms, and cross-correlograms. Only well 
isolated units were kept for further analysis. To obtain the LFPs, the raw data were low-pass 
filtered at 300 Hz and down-sampled to 1000 Hz. 15 

LNP model fitting 

To quantify the encoding of the behavioral variables by neuronal activity, we adapted a multi-
predictor Linear-Nonlinear Poisson (LNP) model framework, which has been successfully used 
in investigating the neuronal encoding of navigational variables in the rodent hippocampal 
formation (24–26). The MATLAB code is available on GitHub (https://github.com/kaushik-20 
l/neuroGAM). One of the major differences of the present LNP model from the conventional 
Poisson Generalized Linear Model (GLM) is that it takes into consideration the combinational 
effect/interdependence of multiple predictors on a response instead of a single predictor. 

Spike trains were binned into 0.02 s time bins, the same as the behavioral variables. We 
obtained the measured spike train r (spike count in each time bin). Each behavioral variable xi 25 
was represented in a one-hot matrix format Xi, in which the row corresponds to the time points 
(N) and the column corresponds to the binned variable (total number of bins; linearized vertically 
for 2D variables). The bin the monkey occupies at each time point was set to 1 while the others 
were all set to 0. The sum of each row is 1. The combination of one-hot matrix from different 
variables was achieved by concatenating each variable’s one-hot matrix along the row 30 
dimension, denoted as X. To test for the significance of the model fitting and to control for 
overfitting, we used a 5-fold cross-validation. To obtain the training and test set with minimized 
bias, the data were divided into 3 chunks; in each chunk, the data were further divided into 5 
sub-chunks; for each fold during the cross-validation process, the ith (i ∈ (1,2,3,4,5), 5 folds) sub-
chunk in each chunk was concatenated and used as the test set (20% of data) and the 35 
remaining used as the training set (80% of data). The measured spike train r was smoothed with 
a Gaussian kernel with 0.06 s (3 time bins) standard deviation. For each fold, we aim to 
estimate the spike train re in the training set as a generic nonlinear (here, exponential) function 
of the parameterized variables: 

𝑟𝑟𝑒𝑒 =  𝑒𝑒∑ 𝑋𝑋𝑖𝑖𝜔𝜔𝑖𝑖𝑖𝑖                                                 (1) 40 

X is the one-hot representation of one variable or any combination of the variables (e.g. position 
& tilt, egocentric boundary & translational speed & LFP phase, etc; each variable denoted as 
Xi). ωi is the parameter (a column vector containing one value for each bin) for the 
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corresponding variable. The goal is to solve ω to maximize the likelihood of observing the true 
spike train r given the estimated spike train re under the prior knowledge of certain model 
parameters (smoothness). 

𝜔𝜔� = �𝑃𝑃�𝑟𝑟𝑡𝑡|𝑟𝑟𝑒𝑒,𝑡𝑡�𝑃𝑃(𝜔𝜔)
𝑡𝑡

                            (2) 

𝑃𝑃(𝜔𝜔) = ��𝑒𝑒−0.5𝜆𝜆𝑖𝑖(𝜔𝜔𝑖𝑖,𝑗𝑗−𝜔𝜔𝑖𝑖,𝑗𝑗+1)2       (3)
𝑗𝑗𝑖𝑖

 5 

Where j indexes over bins and λi is the regularizing hyperparameter (we used 8, 4, 8, 15, 10, 50, 
50, 50, 50 for position, facing location/spatial view, egocentric boundary, head tilt, angular 
velocity, head height, translational speed, azimuth head direction, and LFP phase, respectively) 
(24). To ease the computation, we used the log-link function, combining (1)(2)(3), the problem 
became: 10 

𝜔𝜔� = argmax
𝜔𝜔

��𝑙𝑙𝑜𝑜𝑜𝑜
𝑡𝑡

𝑃𝑃�𝑟𝑟𝑡𝑡|𝑒𝑒∑ 𝑋𝑋𝑖𝑖,𝑡𝑡𝜔𝜔𝑖𝑖𝑖𝑖 � −� 0.5𝜆𝜆𝑖𝑖�(𝜔𝜔𝑖𝑖,𝑗𝑗 − 𝜔𝜔𝑖𝑖,𝑗𝑗+1)2
𝑗𝑗𝑖𝑖

� 

The best-fit parameter was solved using the MATLAB fminunc function (using the ‘trust-
region’ algorithm). The obtained parameter was then used to predict the spike train in the test 
set using equation (1). We used log-likelihood as the quantification for model performance (i.e. 
goodness of fit). The model performance was compared to a null model (mean firing rate model) 15 
to test if the model performance was above chance (one-sided Wilcoxon signed rank test, alpha 
= 0.05). The model-derived, marginalized tuning curve for each variable was calculated as 
following (converted to firing rate): 

𝑦𝑦 =  𝑒𝑒�𝜔𝜔�+∑ ∑ 𝜔𝜔�𝑘𝑘≠𝑖𝑖 (𝑘𝑘,𝑗𝑗)𝑃𝑃�𝑥𝑥𝑘𝑘,𝑗𝑗=1�𝑖𝑖 �/0.02 

Where j indexes over bins and P(xkj=1) is the occupancy probability in each bin. 20 

We used an optimized forward search approach to select the best simplest model. First, 
we fitted the 1st order models that contained only one variable. Second, if any of the 1st order 
models performed better than the null model, we fitted the 2nd order models (2 variables) which 
included the best 1st model variable (with the highest, significant log-likelihood value). Higher 
order models containing the best, significant lower model variables were fitted further until the 25 
model performance did not improve. The best simplest model was selected as the final best 
model. 

The neuron categorization (Fig. 3A) was based on the best 1st order model; for example, 
if the 1st order model containing the position variable has the best significant performance, this 
neuron is categorized as a ‘position’ cell. The fraction of neurons encoding each variable (Fig. 30 
2H) was based on the final best model, in which a single neuron could encode more than 1 
variable; for example, if the best model is based on egocentric boundary + translational speed + 
LFP phase, then this neuron is counted as encoding all these 3 variables. This approach 
avoided assigning variables that were significant in the 1st order models but were not picked up 
by the final best model since the behavioral variables could be interdependent, which is usually 35 
not taken into consideration in traditional analysis. 

LFP analysis 
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We used the continuous wavelet transform (CWT) to compute the spectrogram. We then used a 
model-based approach to compute the aperiodic as well as the oscillatory components in the 
power spectrum (42) (https://github.com/fooof-tools/fooof). 

To extract LFP phase, we first band-pass filtered the raw LFP to 1-10 Hz using 4th-order 
Chebyshev Type II filter. We then used Hilbert transform to extract instantaneous LFP phase. 5 

Circular graph for conjunctive coding 

The circular graph in Fig. 3D was plotted using code here (https://github.com/paul-kassebaum-
mathworks/circularGraph). Given two logical vectors (A and B for variables x and y, 
respectively) in which TRUE indicates the variable is encoded by the corresponding neuron, we 
calculated the Jaccard index: 10 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =  
|𝐴𝐴⋂𝐵𝐵|

|𝐴𝐴| + |𝐵𝐵| − |𝐴𝐴⋂𝐵𝐵| 

Where |𝐴𝐴⋂𝐵𝐵| indicates the neuron count that encodes both variables, |𝐴𝐴| and |𝐵𝐵| indicate 
neuron count encoding variable x and y, respectively. Variable pair which had a Jaccard index 
below 0.1 was not plotted in Fig. 3D. 

Tuning curve classification 15 

Tuning curve classification was based on the mode-derived tuning curves. We first normalized the tuning 
curves so that they ranged from 0 to 1. We performed principal components analysis on the correlation 
matrix of all tuning curves. The first two principal components were plotted in Fig. 4. See 
(https://github.com/PeyracheLab/Class-Decoding) for a tutorial script. 

Uniformity test for data in Fig. 4H used Rayleigh test in the CircStat toolbox (43) 20 
(http://bethgelab.org/software/circstat/). 

Traditional tuning curve-based analysis 

We used the traditional methods to identify place cells based on spatial information. We compared the 
actual spatial information with the shuffled distributions to obtain significance. First, we constructed the 
position activity map (firing rate as a function of position) using 3x3 cm binning (110x110 bins for x and y). 25 
The position activity map was smoothed using a 2D Gaussian kernel with 6 cm standard deviation along 
each dimension. Spatial information (SI) was calculated using the following formula (44): 

𝑺𝑺𝑺𝑺 =  �𝒑𝒑𝒊𝒊
𝒇𝒇𝒊𝒊
𝒇𝒇
𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐

𝒇𝒇𝒊𝒊
𝒇𝒇

𝑵𝑵

𝒊𝒊=𝟏𝟏

 

where N is the total number of bins (110x110); pi is the occupancy probability in the ith bin; fi is the firing 
rate in the ith bin; f is the overall summed firing rate across all bins. To obtain the shuffled SI distributions, 30 
we circularly shifted the spike trains relative to the behavioral data for a random interval from 10 to 
session duration less 10 seconds, and re-calculated the SI. We repeated this process for 1000 times and 
obtained the SI distributions. If the raw SI is larger than 0.5 and it is larger than 95th percentile of the 
shuffled SI, the neuron was considered carrying significant spatial information. We performed this 
analysis for all HPC neurons.  35 

Traditional methods to identify grid cells are based on comparing grid scores between actual data 
and shuffled distributions. We performed this grid score-based analysis for position, spatial view (floor 
and wall), and facing location (floor and wall), for all EC neurons. First, we computed the position activity 
map (floor) using 3x3 cm binning (110x110 bins), smoothed with a 2D Gaussian kernel with 6 cm 
standard deviation along each dimension. We computed the firing rate map on the wall using 500x100 40 
bins (perimeter x height), smoothed with a 2D Gaussian kernel of 5x1 bins (~10.4x2.1 cm) standard 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.03.324848doi: bioRxiv preprint 

https://github.com/fooof-tools/fooof
https://github.com/paul-kassebaum-mathworks/circularGraph
https://github.com/paul-kassebaum-mathworks/circularGraph
https://github.com/PeyracheLab/Class-Decoding
http://bethgelab.org/software/circstat/
https://doi.org/10.1101/2020.10.03.324848
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 
 

deviation along each dimension. We calculated the auto-correlogram of the position activity map λ(x,y) as 
following (45): 

𝒓𝒓�𝝉𝝉𝒙𝒙, 𝝉𝝉𝒚𝒚� =
𝒏𝒏∑𝝀𝝀(𝒙𝒙,𝒚𝒚)𝝀𝝀�𝒙𝒙 − 𝝉𝝉𝒙𝒙,𝒚𝒚 − 𝝉𝝉𝒚𝒚� − ∑𝝀𝝀(𝒙𝒙,𝒚𝒚)∑𝝀𝝀�𝒙𝒙 − 𝝉𝝉𝒙𝒙,𝒚𝒚 − 𝝉𝝉𝒚𝒚�

�𝒏𝒏∑𝝀𝝀(𝒙𝒙,𝒚𝒚)𝟐𝟐 − (∑𝝀𝝀(𝒙𝒙,𝒚𝒚))𝟐𝟐 �𝒏𝒏∑𝝀𝝀(𝒙𝒙 − 𝝉𝝉𝒙𝒙,𝒚𝒚 − 𝝉𝝉𝒚𝒚)𝟐𝟐 − (∑𝝀𝝀(𝒙𝒙 − 𝝉𝝉𝒙𝒙,𝒚𝒚 − 𝝉𝝉𝒚𝒚))𝟐𝟐
 

This can be implemented using the Matlab imfilter function. τx and τy are the spatial shifts (in number of 
bins) along each dimension. The correlations for 2 position activity maps with overlapping less than 20 5 
bins were not calculated. The correlation of the central peak of the obtained 2D auto-correlogram equals 
1. We then took a circular sample of the auto-correlogram, centered at the central peak (excluded), and 
correlated (Pearson correlation) it with its rotated version (30°, 60°, 90°, 120°, 150°). Grid score was 
defined as the minimum correlation difference between any of the (60°, 120°) rotations and any of the 
(30°, 90°, 150°) rotations. An example script can be found here 10 
(https://github.com/robmok/code_gridCell). We obtained the shuffled distributions by circularly shifting the 
spike trains relative to the behavioral data for a random interval from 10 to session duration less 10 
seconds, and re-calculated grid score. We repeated this process for 1000 times. Actual grid score was 
compared against the shuffled distributions. A neuron was considered showing significant gridness if the 
actual grid score is larger than 95th percentile of the shuffled distributions (either on the floor or on the 15 
wall; we also performed this grid tuning analysis on the wall for spatial view and facing location variables). 

Eye movement tuning analysis 

We used a speed threshold of 150 °/s to detect saccade event in either horizontal or vertical eye 
movement. We fitted eye position (2D variable; x ∈ [-40, 40]°, y ∈ [-30, 30]°; 20 x 20 bins) and eye velocity 
(2D variable; x, y ∈ (-150, 150)°/s; 20 x 20 bins) in head to the LNP model (single variable model) to 20 
identify neuron tuned to either of these two variables. To identify neurons that were tuned to saccade 
events, we identified neurons that showed significant differences between pre-saccade and post saccade 
activity across saccade events (0.4 s before and 0.4 s after saccade onset; paired t-test, alpha = 0.01). 

All p values smaller than 0.001 were indicated as p < 0.001; otherwise exact p values were indicated. 
 25 
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Fig. S1. Experimental setup and behavioral variables. (A) Diagram of circular arena (diameter: 330 cm; 
height: 212 cm), lit by a ceiling LED light, with touchscreen/feed boxes and drain as landmarks. Nine marker-
based and 9 video-based tracking cameras were placed on wall and ceiling. Monkeys entered/exited the arena 
through a sliding door. The Facing location (FL) variable was defined as the intersection between the heading 
vector (where the head points at) and the arena (blue blob on the floor). The Spatial view (SV) variable was 
defined as the intersection between the viewing (gaze) vector (where the left eye looks at) and the arena (red 
blob). (B) Unfolded arena diagram used to define FL and SV tuning curves. (C) Top view of monkey head cap 
with 4 reflective markers for motion tracking. (D) Position (Pos) and Azimuth head direction (HD) were 
defined as the position/direction of the head in world coordinates (red dot/blue arrow). (E) Egocentric 
boundary (EB) was defined as the monkey’s distance (d) and angle (θ) relative to the closest point of the arena 
boundary, shown from allocentric (left) and egocentric (right) perspectives. Magenta/gray/blue dot: boundary in 
front (θ = 0°)/left (θ = 90°)/back (θ = 180°) of the animal. (F) Head height (HH), defined as the height of the 
head center (red dot) from the arena floor. (G) Head tilt (HT), defined as the projection of the gravity vector 
(gearth) onto the head axial plane, with components (gp, gr) corresponding to pitch and roll (thus, a 2D variable). 
Head angular velocity (yaw, pitch, and roll) was extracted from instantaneous head orientation. (H) Local-field 
potential phase, extracted from band-pass filtered LFP (1-10 Hz), with troughs correspond to ±180°. 
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Fig. S2. Microdrive implants and reconstruction of electrode locations. Left: microdrive (gray) and skull 
(bone white) models for all three monkeys. Right: MRI and CT co-registered images show electrode locations 
as white tracks. Hippocampus: light blue; Entorhinal cortex: green; Subicular complex: magenta. Tetrodes were 
used for monkeys L and B; single electrodes were used for monkey K. 
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Fig. S3. Average occupancy maps for all behavioral variables. For 2D variables (from left to right: Position, 
Head facing location, Egocentric boundary, Head tilt, Head angular velocity, and eye-in-head position in (B) 
lower right), color indicates average time spent in each bin in natural logarithmic scale of seconds . Open 
rectangles: touchscreen/feed box locations. Gray rectangles: entrance/exit door location. For 1D variables (from 
left to right: Head height, Speed, Azimuth Head Direction), shaded area corresponds to 1x standard deviation 
across sessions. 
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Fig. S4. Example behavioral variable traces and example raw tuning curves. (A) A short segment of the 
raw traces of all behavioral variables and the corresponding spike raster at the bottom. (B) Example neurons 
(from different sessions) with their raw tuning curves for the corresponding variable. Left: Average spike 
waveform is shown (shaded area: 1x standard deviation). Middle left: Auto-correlogram. Middle right/right: For 
2D variables, down-sampled (for visualization purposes) behavioral data are shown as gray traces with 
superimposed spikes (red dots). Raw firing color map is also shown (no smoothing). For 1D variables, 1D 
tuning curves are shown instead. 
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Fig. S5. LFP signature in the HF of freely moving macaques. (A) Top: example trace of raw LFP (1-40 Hz) 
in the hippocampus. Bottom: corresponding LFP spectrogram (scalogram) computed using continuous wavelet 
transform. Speed trace is also shown (white). (B) Average power spectrum across HF regions for different 
speed ranges. Actual data is shown in black. Model-fitted aperiodic component is shown in blue. (C) Average 
power spectrum for the oscillatory component (data - aperiodic component) for individual HF regions, color-
coded for different speed ranges. X axis is shown in logarithmic scales for (B) and (C). Average power between 
4-6 Hz across regions as a function of speed range (0-5, 5-20, 20-60, and 60-120 cm/s): 0.07, 0.11, 0.14, and 
0.16; between 18.5-21.5 Hz: 0.29, 0.24, 0.16, and 0.14. 
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Fig. S6. Example model-based tuning curves and model selection. A forward search approach was used to 
identify the best model. Black dots: increase of the mean log-likelihood (LLH) (from the null, mean firing rate 
model). LLH increase not significantly larger than 0 indicates that the current model does not perform better 
than a (mean firing rate) null model. Red dot: best model selected. (A) An example neuron not tuned to any 
variable. All the LLH values of the single-variable (1st order) models are not significantly larger than 0. (B-F) 
Example neurons tuned to a single variable, with model-based tuning curves shown on the left. Examples tuned 
to position (Pos), facing location (FL), head tilt (HT), azimuth head direction (HD), and LFP phase. (G-I) 
Example neurons tuned to combination of 2 variables, with model-based tuning curves shown at the top. 
Examples tuned to FL+EB, Spd + LFP phase, and FL+HD. (J) An example neuron whose activity was best 
fitted by a 3rd-order model: the combination of speed, egocentric boundary, and head tilt. (i) Top row, raw 
tuning curves. Bottom row, model-based tuning curves. Peak firing rates of the color maps are indicated (lowest 
was 0). (ii) Actual (blue) and fitted (orange) firing rate shown for a short segment for models with different 
combinations of the three variables. (iii) LLH increase as a function of coded variables. Each line corresponds 
to one fold in the cross-validation process. Error bars: standard error over the 5 folds in cross-validation.  
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Fig. S7. Breakdown of the fraction of neurons encoding each variable into individual regions, hemispheres, 
monkeys, and hippocampal subregions. 
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Fig. S8. Bar plots showing the number of neurons captured by the top 30 best models in each region. The best 
model variables are indicated as the X tick labels. 
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Fig. S9. Top, preferred firing fields (red dots) for all Facing Location (FL) cells superimposed on the average 
occupancy color map (unfolded 2D map) across monkeys. Bottom, unfolded 2D arena map (same as Fig. S1B). 
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Fig. S10. Example position tuning curves (model-based) for 64 neurons that significantly encode position. 
Peak firing rate is indicated at bottom right for each neuron. Neurons were sorted by how well position predicts 
firing, from left to right, top to bottom. 
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Fig. S11. Example egocentric boundary tuning curves (model-based) for 64 neurons that significantly 
encode egocentric boundary. Peak firing rate is indicated at bottom right for each neuron. Neurons were sorted 
by how well egocentric boundary predicts firing, from left to right, top to bottom. 
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Fig. S12. Position tuning analysis using traditional methods. (A) Left, position activity color map for 2 
example neurons. Right, spatial information for the actual data (black line) and shuffled distribution (histogram, 
1000 times). Red line indicates the 95th percentile of the shuffled distribution. (B) Histogram of the distribution 
of the actual spatial information for all HPC neurons. A neuron was considered spatially-tuned if the actual 
spatial information is larger than 0.5 and is larger than the 95th percentile of the shuffled distribution. (C) 
Confusion chart for the number of neurons showing position tuning using model-based analysis and traditional 
analysis. 
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Fig. S13. Grid tuning analysis for position and spatial view using traditional grid score-based analysis. 
(A) Position activity color map (left), auto-correlogram (middle), and grid score histogram (right, 1000 times 
shuffling) for one example EC neuron. Right: A neuron was considered significantly grid-tuned if the actual 
grid score (black line) is larger than the 95th percentile (red dashed line) of the shuffled distribution. (B) 
Confusion chart for the number of neurons showing position tuning and grid tuning using model-based analysis 
and traditional grid tuning analysis. (C) Similar to (A) but for spatial view (SV) activity (on the floor and wall) 
for 2 example EC neurons from monkey K. Example neuron 1 shows significant grid tuning for SV activity on 
the floor but not on the wall; example neuron 2 shows significant grid tuning for SV activity on the wall but not 
on the floor. Overall, 9% (4/46) neurons showed significant grid tuning either on the floor or on the wall.  
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Fig. S14. Normalized speed tuning curves (A) and head direction tuning curves (B) for all significantly 
tuned neurons. Tuning curves are color coded by their preferred speed or head direction. 
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Fig. S15. Anatomical distribution of spatial coding in macaque hippocampal formation. (A-E) Data for 
monkey K. (A) Top view of hippocampus (blue) and entorhinal cortex (green), as seen in MRI images. White 
marks (as seen in MRI-aligned CT images) correspond to electrodes. Dashed magenta line encompasses the 
approximate area homologous to rodent medial entorhinal cortex (MEC). Dashed gray line indicates the rhinal 
sulcus. Horizontal dashed lines indicate the boundaries used to separate the hippocampus into head, body, and 
tail subregions. (B) Fraction of spatial-coding neurons in different hippocampus (head: 49%, body: 52%, tail: 
65%) and entorhinal cortex subregions. (C) Fraction of neurons that encode a single or multiple (‘mixed’) 
variables for different subregions (single vs. mixed selectivity, head: 19% vs. 30%, body: 12% vs. 40%, tail: 
14% vs. 51%). (D) and (E) Fraction of neurons that encode each variable in the hippocampus and the entorhinal 
cortex subregions. (F-H) Data for monkey L (left and right hemispheres). Pink dots indicate electrodes 
locations. (I-K) Data for monkey B (right hemisphere only). 
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Fig. S16. Comparison of eye and head tuning (animal K only). (A) Bar plot showing the overall fraction of 
neurons encoding each variable when fitting all head and gaze properties simultaneously. (B) Breakdown of (A) 
into individual regions. 
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Table S1. Breakdown of recorded neurons across regions, hemispheres, and monkeys. 
 
 

Hemisphere Region 
Monkey 

B K L 

Left 
HPC  10 40 
EC  3 137 

SUB  1 83 

Right 
HPC  176 47 
EC 30 46  

SUB  26  
Sessions 13 37 86 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.03.324848doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.03.324848
http://creativecommons.org/licenses/by-nc-nd/4.0/

	main_fmm
	Spatial representations in macaque hippocampal formation
	References:
	Fig. 1. Freely moving monkey setup to study spatial coding in macaque hippocampal formation during natural behaviors. (A) Monkeys were trained to freely forage for randomly scattered food pellets or fruits in an open circular arena (pictured, 330 cm d...
	Fig. 2. Macaque hippocampal formation neurons show mixed selectivity of diverse navigational variables. (A) A model-based statistical framework was used to quantify the spatial coding. Any single variable or combination of multiple variables was fitte...
	Fig. 3. Spatial representations in the hippocampal formation are heterogeneous. (A) Example model-based tuning curves for 10 neurons coding facing location (FL). Peak firing rates are indicated. Darkest blue corresponds to bins that were not occupied....
	Materials and Methods
	The FMM arena consisted of an open circular enclosure with a 3.30 m diameter and a 2.12 m height, with a single entrance/exit door and a drain on the floor (Fig. S1). The enclosure was made of white composite material. Three feed/touch-screen boxes we...
	Traditional tuning curve-based analysis
	We used the traditional methods to identify place cells based on spatial information. We compared the actual spatial information with the shuffled distributions to obtain significance. First, we constructed the position activity map (firing rate as a ...
	𝑺𝑰= ,𝒊=𝟏-𝑵-,𝒑-𝒊.,,𝒇-𝒊.-𝒇.,𝒍𝒐𝒈-𝟐.,,𝒇-𝒊.-𝒇..
	where N is the total number of bins (110x110); pi is the occupancy probability in the ith bin; fi is the firing rate in the ith bin; f is the overall summed firing rate across all bins. To obtain the shuffled SI distributions, we circularly shifted th...
	Traditional methods to identify grid cells are based on comparing grid scores between actual data and shuffled distributions. We performed this grid score-based analysis for position, spatial view (floor and wall), and facing location (floor and wall)...
	𝒓,,𝝉-𝒙.,,𝝉-𝒚..=,𝒏,𝝀,𝒙,𝒚.𝝀,𝒙−,𝝉-𝒙.,𝒚−,𝝉-𝒚..−,𝝀,𝒙,𝒚.,𝝀,𝒙−,𝝉-𝒙.,𝒚−,𝝉-𝒚.....-,𝒏,,𝝀(𝒙,𝒚)-𝟐.−,(,𝝀(𝒙,𝒚).)-𝟐...,𝒏,,𝝀(𝒙−,𝝉-𝒙.,𝒚−,𝝉-𝒚.)-𝟐.−,(,𝝀(𝒙−,𝝉-𝒙.,𝒚−,𝝉-𝒚.).)-𝟐....
	This can be implemented using the Matlab imfilter function. τx and τy are the spatial shifts (in number of bins) along each dimension. The correlations for 2 position activity maps with overlapping less than 20 bins were not calculated. The correlatio...
	Eye movement tuning analysis
	We used a speed threshold of 150  /s to detect saccade event in either horizontal or vertical eye movement. We fitted eye position (2D variable; x ∈ [-40, 40] , y ∈ [-30, 30] ; 20 x 20 bins) and eye velocity (2D variable; x, y ∈ (-150, 150) /s; 20 x 2...
	All p values smaller than 0.001 were indicated as p < 0.001; otherwise exact p values were indicated.

	supp_fmm
	Fig. S1. Experimental setup and behavioral variables. (A) Diagram of circular arena (diameter: 330 cm; height: 212 cm), lit by a ceiling LED light, with touchscreen/feed boxes and drain as landmarks. Nine marker-based and 9 video-based tracking camera...
	Fig. S2. Microdrive implants and reconstruction of electrode locations. Left: microdrive (gray) and skull (bone white) models for all three monkeys. Right: MRI and CT co-registered images show electrode locations as white tracks. Hippocampus: light bl...


