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Abstract

Background: The degradation of cellulose and hemicellulose molecules into
simpler sugars such as glucose is part of the second generation biofuel production
process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes
produced and secreted by the fungus Trichoderma reesei . Studies identifying
transcription factors involved in the regulation of cellulase production have been
conducted but no overview of the whole regulation network is available. A
transcriptomic approach with mixtures of glucose and lactose, used as a substrate
for cellulase induction, was used to help us decipher missing parts in the network.

Results: Experimental results confirmed the impact of sugar mixture on the
enzymatic cocktail composition. The transcriptomic study shows a temporal
regulation of the main transcription factors and a lactose concentration impact
on the transcriptional profile. A gene regulatory network (GRN) built using the
BRANE Cut software reveals three sub-networks related to iq a positive
correlation between lactose concentration and cellulase production, iiq a
particular dependence of the lactose onto the β-glucosidase regulation and iiiq a
negative regulation of the development process and growth.

Conclusions: This work is the first investigating a transcriptomic study regarding
the effects of pure and mixed carbon sources in a fed-batch mode. Our study
expose a co-orchestration of xyr1 , clr2 and ace3 for cellulase and hemicellulase
induction and production, a fine regulation of the β-glucosidase and a decrease of
growth in favor of cellulase production. These conclusions provide us with
potential targets for further genetic engineering leading to better
cellulase-producing strains.

Keywords: Trichoderma reesei , carbon sources, cellulases, transcriptome,
fed-batch fermentation, data science, Gene Regulatory Network

Background

Given current pressing environmental issues, research around green chemistry and

sustainable alternatives to petroleum is receiving increased attention. A promis-

ing substitute to fossil fuels resides in second generation bio-ethanol, an energy

source produced through fermentation of lignocellulosic biomass. One of the key

challenges for industrial bio-ethanol production is to improve the competitiveness
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of plant biomass hydrolysis into fermentable sugars, using cellulosic enzymes.

The filamentous fungus Trichoderma reesei , because of its high secretion capacity

and cellulase production capability, is the most used microorganism for the indus-

trial production of cellulolytic enzymes. The T. reesei QM6a strain, isolated from

the Solomon Islands during the Second World War [1], was improved through a

series of targeted mutagenesis experiments [2, 3, 4, 5]. Among the variety of mutant

strains, Rut-C30 is actually known as the reference hyper-producer [6, 7], and its

cellulase production is 15-20 times that of QM6a [8]. Comparison of genomes of the

Rut-C30 strain and its ancestor QM6a brings to light the occurrence of numerous

mutations including 269 SNPs, eight InDels, three chromosomal translocations, five

large deletions and one inversion [9, 10, 11, 12, 13, 14]. Alas among them, only few

mutations have been proved to be directly linked to the hyper-producer phenotype

[15, 10], the most striking one being the truncation of the gene cre1 [9]. CRE1 is the

main regulator of catabolite repression which mediates the preferred assimilation

of carbon sources of high nutritional value such as glucose over others [16]. The

truncated form retaining the 96 first amino acids and results in a partial release

of catabolite repression [9] and more surprisingly turns CRE1 into an activator [17].

In T. reesei , the expression of cellulases is regulated by a set of various transcrip-

tion. Beside the carbon catabolite repressor CRE1, the most extensively studied is

the positive regulator XYR1 which is needed to express most cellulase and hemi-

cellulase genes [18, 19]. Other transcription factors involved in biomass utilization

have been characterized: ACE1 [20], ACE2 [21], ACE3 [22], BGLR [15], HAP 2/3/5

complex [23], PAC1 [24], PMH20, PMH25, PMH29 [22], XPP1 [25], RCE1 [26], VE1

[27], MAT1-2-1 [28], VIB1 [29, 30], RXE1/BRLA [31] and ARA1 [32]. Moreover,

transcription factors involved in the regulation of cellulolytic enzymes have also been

characterized in other filamentous fungi: CLR-1 and CLR-2 in Neurospora crassa

[33] or AZF1 [34], PoxHMBB [35], PRO1, PoFLBC [36] and NSDD in Penicillium

oxalium [37, 38]. Yet, their respective function has not yet been established in T.

reesei . Among the mentioned regulators, some are specific to cellulases or xylanases

genes, or to carbon sources while others are global regulators, e.g. PAC1, which

is reported to be a pH response regulator. This profusion of transcription factors

reveals the complexity of the regulatory network controlling cellulase production.

Better understanding links between regulators could be a major key in improving

the industrial production of enzymes.

Gene Regulatory Network (GRN) inference methods are computational ap-

proaches mainly based on gene expression data and data science to build rep-

resentative graphs containing meaningful regulatory links between transcription

factors and their targets. GRN may be useful to visualize sketches of regulatory

relationships and to unveil meaningful information from high-throughput data [39].

We employed BRANE Cut [40], a Biologically-Related Apriori Network Enhance-

ment method based on graph cuts, previously developed by our team. It has been

proven to provide robust meaningful inference on real and synthetic datasets from

[41, 42]. In complement to classical analysis, such as differential expression or gene
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clustering, the graph optimization of BRANE Cut on T. reesei RNA-seq is likely

to cast a different light on relationships between transcription factors and targets.

While cellulose is the natural inducer of cellulase production, authors in [43]

showed that, in Trichoderma reesei , the lactose is capable to play the role of cel-

lulase inducer. For this reason, this carbon source is generally used in the industry

to induce the cellulase production in T. reesei . Efficient enzymatic hydrolysis of

cellulose requires the synergy of three main catalytic activities: cellobiohydrolase,

endoglucanase and β-glucosidase. The cellobiohydrolases cleave D-glucose dimers

from the ends of the cellulose chain. Endoglucanases randomly cut the cellulose

chain providing new free cellulose ends which are the starting points for cellobiohy-

drolases to act upon, hydrolyze cellobiose to glucose, thereby preventing inhibition

of the rest of enzymes by cellobiose [44]. It is well known that in T. reesei , β-

glucosidase activity [45, 46] has generally been found to be quite low in cellulase

preparations [47]. It causes cellobiose accumulation which in turn leads to cellobio-

hydrolase and endoglucanase inhibition. To overcome this low activity, different

strategies have been experimented: supplementation of the enzymatic cocktail with

exogenous β-glucosidase [48, 49], construction of recombinant strains overexpress-

ing the native enzyme [50, 47, 51], expressing more active enzymes or modifying the

inducing process to promote the production of β-glucosidase. This latest approach

was performed by using various sugar mixtures to modify the composition of the

enzymatic cocktail [52]. Thus, an increase of β-glucosidase activity in the cocktail

can be achieved by using a glucose-lactose mixture, also favorable in terms of cost.

In the present study, fed-batch cultivation experiments of the T. reesei Rut-C30

strain, using lactose, glucose and mixtures of both were performed. As observed

previously, productivity was increased with the proportion of lactose in the mix-

ture and an higher β-glucosidase activity was measured in the mixture conditions

compare to pure lactose. To explore the molecular mechanisms underlying these

results, a transcriptomic study was performed at 24 h and 48 h after the onset of

cellulase production triggered by the addition of the inducing carbon source lac-

tose. An overall analysis reveals significant impact of lactose/glucose ratios on the

number of differentially expressed genes and, to a lesser extent, of sampling times.

According to the following clustering analysis, three main gene expression profiles

were identified: genes up or down regulated according to lactose concentration and

genes over-expressed in the presence of lactose but independently of its propor-

tion in the sugar mix. Interestingly, expression profile of these genes sets overlaps

productivity and β-glucosidase curve confirming a transcripomic basis of the pheno-

types observed. As transcription factors were identified in all transcriptomic profiles,

we decided to deepen our understanding on the regulation network operating dur-

ing cellulase production in T. reesei . A system biology analysis with BRANE Cut

network selection was carried out to inferred links between differentially regulated

transcription factors and their targets. Results highlight three sets of subnetworks,

one directly linked to cellulases genes, one matching with β-glucosidase expression

and the last one connected to developmental genes.
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Results
Cellulase production is increased with lactose proportion but β-glucosidase activity is

higher in glucose-lactose mixture

In order to study its transcriptomic behavior on various carbon sources, T. reesei

Rut-C30 was cultivated in fed-batch mode in a miniaturized experimental device

called “fed-flask” [53], allowing us to obtain up to 6 biological replicates with min-

imal equipment. Cultures were first operated for 48 h in batch mode on glucose for

initial biomass growth (resulting in around 7 g L´1 biomass dry weight), then fed

with different lactose/glucose mixtures e.g. pure glucose (G100), pure lactose (L100),

75 % glucose + 25 % lactose mixture (G75-L25), and 90 % glucose + 10 % lactose

mixture (G90-L10).

As expected, pure lactose feed resulted in highest protein production, with

2.6 g L´1 protein produced during fed-batch, at a specific protein production rate

(qP) of 7.7 ˘ 1.1 mg g´1 h´1 (Figure 1A and 1B). Glucose feed resulted in al-

most no protein production (qP 15 times lower than on lactose) but in biomass

growth (4.2 g L´1 biomass produced during fed-batch, see Additional file 1) while

glucose/lactose mixtures resulted in intermediate profiles, with 0.6 g L´1 protein

produced on 10 % lactose (G90-L10), and 1.4 g L´1 protein produced on 25 % lac-

tose (G75-L25). We then determined the filter paper and β-glucosidase activities

at 48 h after the beginning of fed-batch (Figure 1C and 1D): filter paper activity

is correlated to lactose amounts whereas β-glucosidase activity is higher in carbon

mixture. The obtained results are in accordance with the ones obtained in [53],

allowing us to assume the absence of residual sugar accumulation in the medium

during the fed-batch.

Differentially expressed gene identification

This study aims at better understanding the effect of the lactose on the transcrip-

tom of T. reesei , but not during the early lactose induction as in [54]. For this

reason, we chose to extract RNA at 24 h and 48 h after the fed-batch start for fur-

ther transcriptomic analysis.

Analysis of glucose, lactose and mixture effects was performed to identify differ-

entially expressed (DE) genes between conditions. Specifically, to refine the under-

standing of the lactose effect on the cellulase production, the gene expressions on

various lactose proportions (G90-L10, G75-L25, L100) at 24 h and 48 h have been

differentially evaluated regarding gene expression obtained on pure sugar e.g. glu-

cose (G100) or lactose (L100) at 24 h and 48 h. The comparison to both pure glucose

and pure lactose feeds leads to ten comparisons (summarized on the circuit design

displayed in Additional file 2. The use of two distinct references conditions increases

the chances to identify relevant gene expression clusters by exploring a wider gene

expression pattern. The number of DE genes obtained for each of the comparisons

is displayed in Figure 2. For a better intelligibility of the results, we focus on DE

genes compared to the pure glucose (G100) reference.

From a global overview, at 24 h, 427 genes are differentially expressed and the

number of DE genes increases with the level of lactose. In addition, these DE genes
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are up-regulated. Results obtained at 48 h lead to 552 DE genes and its number

increases with the level of lactose. These results, displaying an increasing number

of differentially expressed genes according to the lactose level between 24 h and

48 h, are in accordance with the specific protein production rate results previously

presented (cf Figure 1). Note that this increase is essentially inherent to the thresh-

old of 2 on the log fold-change. Indeed, at 24 h, some genes are considered as non

differentially expressed although they are on the verge of becoming one, and then

appear at 48 h.

We then focused on the intertwined effects i.e. the impact of time regarding each

carbon source mixture. On pure lactose (L100), the number of DE genes increases

between 24 h and 48 h. On the contrary, for both the minimal and the intermedi-

ate level of lactose (e.g. G90-L10 and G75-L25), the number of DE genes decreases

between 24 h and 48 h. We observe that this diminution between the early and the

late time samplings on low lactose quantity is mainly due to the diminution of

over-expressed genes. This result suggests that a belated process only appears on

pure lactose.

Eventually, we checked whether the genes mutated in Rut-C30, by comparison to

QM6a, are differentially expressed in our conditions (see Additional file 3). While

the total number of mutated genes at the genome scale is 166 (1.8 %), we only

found 12 of them in Rut-C30 which are also differentially expressed (1.8 %). Hence,

we cannot conclude to an enrichment of mutated genes responsible for cellulase

production on lactose. This result is consistent with [54], which demonstrates the

weak impact of random mutagenesis on transcription profiles related to cellulase

induction and the protein production system.

Subsequent analyses are based on the 650 genes identified as DE in at least one

of the ten studied comparisons.

Gene clustering and functional analysis

To detect functional changes on lactose, we performed a clustering on the pre-

viously selected 650 genes. For this purpose, each gene is related to a ten-point

expression profile corresponding to the ten log2 expression ratios (base-2 logarithm

of expression ratios between two conditions according to the circuit design detailed

in Additional file 2. Gene clustering was performed using an aggregated K-means

classifier (detailed in the Materials and Methods section). Among the five distinct

profiles identified (Figure 3 and Additional file 3 for the exhaustive list of genes),

three main trends appear, when we compare the gene expression on lactose rela-

tively to on glucose. The first trend encompasses genes under-expressed on lactose,

in a monotonic manner at 24 h and 48 h and is found in two clusters, denoted by D`
and D´ (D for down-regulation). Conversely, observed in two others clusters named

U` and U´ (U for up-regulation), the second trend refers to genes over-expressed

on lactose in a monotonic manner at 24 h and 48 h. The last trend concerns genes
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over-expressed on lactose, but where the amount of lactose affects the gene expres-

sion in an uneven manner. This trend is recovered in a unique cluster denoted by U».

Genes monotonically down-regulated across lactose amount

As mentioned above, genes having a monotonic under-expression regarding the

amount of lactose are grouped in clusters D` (64 genes: 10 %) and D´ (254 genes:

39 %). These genes are repressed in lactose: the more the lactose, the more the

repression. The main difference between these two clusters is in the levels of under-

expression: genes in cluster D` are in average more strongly under-expressed than

genes in cluster D´. In addition, we note that cluster D´, for which the under-

expression is the weaker, contains a larger number of genes than cluster D`. This

result suggests that lactose moderately affects the behavior of a large number of

genes while only few genes are strongly impacted by lactose concentration. In addi-

tion, it is interesting to note that the differential expressions of transcription factors

are lower than genes not identified as such. This observation confirms that a weak

modification only of transcription factors expression can lead to a strong modifica-

tion in the expression of their targets.

More specifically, cluster D` is enriched in genes related to proteolysis and pep-

tidolysis processes (IDs 22210, 22459, 23171, 106661, 124051) and contains three

genes encoding cell wall proteins (IDs 74282, 103458, 122127). Interestingly, no

transcription factors are detected in this cluster.

Cluster D´, whose median profile exhibits a slight repression across lactose

concentrations encompasses transcription factors whose ortholog are involved in

the development: Tr–WET-1 (ID 4430, [55]), Tr–PRO1 (ID 76590, [56, 57]) and

Tr–ACON-3 (ID 123713, [58]). We recall that the Tr–XXX notation refers to the

gene in T. reesei for which the ortholog in an other specie is XXX (see the Func-

tional analysis section in Materials and Methods). We also found 11 genes in-

volved in proteolysis and peptidolysis processes, five genes encoding for cell wall

protein (IDs 80340, 120823, 121251, 121818 and 123659), two genes encoding for

hydrophobin proteins (hbf2 and hbf3 ) and two genes involved in the cell adhesion

process (IDs 65522 and 70021). Nine genes encoding for G-protein coupled receptor

(GPCR) signaling pathway are also recovered in this cluster. It is important to note

that, in addition to the three already mentioned, 11 other transcription factors are

also present (including PMH29, RES1 [59], Tr–AZF-1 (ID 103275) and IDs 55272,

59740, 60565, 63563, 104061, 105520, 106654, 112085). We also found the xylanase

XYN2 with a strong repression observed on pure lactose in comparison to pure

glucose, while its expression seems insensitive to low lactose concentration.

Genes monotonically up-regulated across lactose amount

We recall that clusters U` (78 genes: 12 %) and U´ (201 genes: 31 %) contain genes

whose over-expression is monotonic with respect to lactose: the more the lactose,

the more the induction. The main difference between expression profiles of these
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two clusters is the level of over-expression: genes in cluster U` are more activated

than genes belonging to cluster U´. A similar remark may be drawn as previously:

preliminary observations suggest that a large number of genes is moderately im-

pacted by lactose (cluster U´) while only few genes are strongly affected by lactose

concentrations (cluster U`). As similarly observed on down-regulated genes, the

expression level of the transcription factors is weaker than their targets.

In cluster U`, whose median profile expresses a potent induction regarding lactose

concentrations, 26 CAZymes are found, of which 23 belong to the large glycoside

hydrolase (GH) family. We recover the principal CAZymes known to be induced

in lactose condition: the two cellobiohydrolases CBH1 and CBH2, two endoglu-

canases CEL5A and CEL7B, one lytic polysaccharide monooxygenase (LPMO)

CEL61A, two xylanases XYN1 and XYN3, as well as the mannanase MAN1, the β-

galactosidase BGA1. In addition, we found three specific carbohydrate transporters

CRT1, XLT1 and ID 69957 and three putative ones (IDs 56684, 67541, and 106556).

Interestingly, we found the transcription factor YPR1, which is the main regula-

tor for yellow pigment synthesis [60]. These results, showing a lactose-dependent

increase in the expression of genes related to the endoglucanase and cellobiohydro-

lase, corroborate the phenotype observed in the study of [52]. Indeed, its authors

show a rise of the specific endoglucanase and cellobiohydrolase activity positively

correlated to lactose concentration and cellulolytic enzymes productivity.

Cluster U´, distinguishable by its median profile showing a slight induction across

lactose concentrations, contains 17 genes involved in the carbohydrate metabolism,

of which 16 belong to the large GH family. Among these genes, we identified three

β-glucosidases whose two extracellulars CEL3D and CEL3C and one intracellular

CEL1A, the xylanase XYN4, and the acetyl xylanase esterase AXE1 are recovered.

We also found 14 Major Facilitator Superfamily (MFS) transporters. In addition,

seven transcription factors are found in this cluster, including XYR1 the main

regulator of cellulase and hemicellulase genes [19], CLR2 (ID 23163) identified as a

regulators of cellulases but not hemicellulases in Neurospora crassa [33], Tr–FSD-1

(ID 28781), ID 121121 and three others, with no associated mechanism (IDs 72780,

73792, 106706).

Uneven up-regulation across lactose amount

In cluster U» (53 genes: 8 %), we found globally over-expressed genes but with a

non-monotonic behavior regarding lactose concentration. A more detailed study of

this cluster reveals three main typical characteristics in the gene expression profiles.

A tenth of the genes shows an uneven behavior with a high-over expression in all

G90-L10, G75-L25 and L100 conditions without significant difference according to

the amount of lactose. This kind of profile suggests that the up-regulation is un-

correlated with lactose concentration itself but triggered by lactose detection only.

Then we found one third of the genes that demonstrates a high over-expression on

the two carbon source mixtures G90-L10 and G75-L25 while no differential expres-

sion is observed on pure lactose compared to pure glucose. The transcription factor

ID 105805 follows this profile. Finally, a little more than half of the genes has a sig-

nificant stronger over-expression on G75-L25 compared to the one on G90-L10 and
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L100. Interestingly, we found one endoglucanase CEL12A, one LPMO CEL61B,

three β-glucosidases whose two extracellulars with a peptide signal CEL3E and

BGL1 and one intracellular β-glucosidase CEL1B, potentially involved in cellulase

induction. We also found the β-xylosidase BXL1 and the transcription factor ACE3

that share this profile. We observe a strong correlation between the transcriptomic

behavior we found in our study and the phenotype highlighted in [52]. Actually,

the specific β-glucosidase activity is the highest for intermediate amounts of lactose

while this activity decreases on glucose or lactose alone. Corroboratively, our tran-

scriptomic study shows a highest over-expression of genes encoding β-glucosidases

(cel3e, bgl1 and cel1b) on the intermediate mix of lactose and glucose, while their

expression decreases when lactose is present in too low or too high concentration.

Note that a large proportion of genes belonging to the up-regulated clusters are

recovered on the co-expressed genomic regions observed in [22]. The biological coher-

ence of clustering results encourage us to pursue the transcriptomic study through

a gene regulatory network. The use of network inference approach is driven by the

motivation to better understand links between DE transcription factors but also to

highlight strong links with the help of alternative proximity definition, and thus to

concrete the relationships foreseen though the clustering.

Network inference

From the set of DE genes, we built a gene regulatory network with the combi-

nation of CLR [61] and BRANE Cut [40, 62] inference methods. When the use

was judicious, we evaluated our discovered TF-targets interactions by performing

a promoter analysis of the plausible targets given by the inferred network, with

the Regulatory Sequence Analysis Tool (RSAT) [63]. More details on the complete

methodology for both the inference and the promoter analysis are provided in sec-

tion Materials and Methods.

Network enhancement thresholding performed by BRANE Cut post-processing

[40] selected 161 genes (including 15 transcription factors) and inferred 205 links

(Figure 4). In order to help network interpretation, we applied the same color code

as for the clustering (Fig. 3). We observe a coherence between the function and

the expression behavior of genes linked into modules, thus corroborating clustering

results. As we will see in details in the following network analysis, we reveal po-

tential links between three mechanisms grouped in modules (SubN1, SubN2, and

SubN3) and related to cellulase activation, β-glucosidase expression and repression

of developmental process.

First of all, the global study of the network shows interactions between genes

sharing the same gene expression profile. The 161 genes selected by BRANE Cut

cover a relatively small number of biological processes, especially regarding half

of the 15 retained transcription factors for which only two main biological pro-

cesses are identified: development (Tr–WET-1, Tr–PRO1, Tr–ACON-3 (IDs 4430,

76590, 123713)) and carbohydrate mechanisms (XYR1, PHM29, ACE3 and CLR2).
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In addition, we observe a large proportion of genes related to the enzymatic cock-

tail for cellulase production. In terms of interaction, we predominantly observed

links between up-regulated genes in a monotonic manner (U´/U´ and U´/U` in-

teractions), and related to cellulase production. A second observation refers to en-

riched U»/U» interactions i.e. between up-regulated genes in an uneven way. Note

that we also found an interesting proximity with U´/U» interactions, with inverse

expression profiles. Involved genes mainly refer to the cellulase and β-glucosidase

production. Finally, a significant number of interactions are found between genes be-

longing to cluster D´ and related to development mechanism. Here again, links are

also observed between genes having antagonist expression profiles, mainly related

to cellulase production and development (D´/U´ interactions). Figure 4 displays

the inferred network with highlights on the three sub-networks SubN1, SubN2 and

SubN3, extracted from the combination of the above observations and the cluster-

ing results. We now focus on each identified sub-network for a more detailed analysis.

Sub-network SubN1 encompasses eight genes associated to the carbohydrate

metabolism process. Among them, cel5a, cel6a, cel7a and cel7b are specifically

related to cellobiohydrolase and endoglucanase activities. It also includes four car-

bohydrate transporters including CRT1, responsible for lactose uptake, and three

carriers [22, 64]. These genes are linked to transcription factor XYR1, known to be

the main actor during the cellulase production process. It also appears specifically

linked to a galacturonic acid reductase GAR1, a helicase (ID 35202), a glycoside

hydrolase XYN6 [65], a secreted hydrolase CIP1 and Tr–FSD-1 (ID 28781), known

to pertain to sexual development. The network highlights the action of another

transcription factor CLR2, which is known in other species to participate to cel-

lulase production [33]. These two transcription factors XYR1 and CLR2 seem to

be highly correlated and share a large number of cellulose-oriented targets. This

sub-network is related to the genes involved in cellulase production and having

an increased up-regulation across to the lactose concentration. Based on this sub-

network subN1, we performed a promoter analysis. Using independently plausible

targets of XYR1 and CLR2, we significantly recovered the degenerated binding-

site 5’-GGC(A/T)3-3’, previously identified in [66] as the binding site specific to

XYR1. We also found an enriched non-degenerated motif 5’-GTTACA-3’ which dif-

fers from the XYR1 motif. A straightforward hypothesis is to credit this new motif

for CLR2 and a simple statistical test suggests that this motif might be specific

to the CLR2. Details regarding this analysis are provided in Additional file 4. To do.

Sub-network SubN2 contains nine genes involved in the carbohydrate metabolism,

and some of them are specifically related to β-glucosidase and cellulases activities:

bgl1 , cel3e, cel12a and cel61b. Interestingly, these genes are linked to the transcrip-

tion factor ACE3 and have the particularity to be maximally over-expressed on

G75-L25. We observe that seven genes belonging to cluster D´ are also present in

this sub-network and are predominantly linked to the transcription factor PHM29

which has been recently identified to play a role in the cellulase activity [22]. We

notice that these genes have a maximal under-expression on G75-L25, which is the

inverse profile of ace3 and its linked genes, suggesting a dependence between ACE3
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and the transcription factor pmh29 .

The sub-network SubN3 reveals seven transcriptions factors including two which

have been identified to participate to the development process in other species:

Tr–WET-1 (ID 4430) and Tr–PRO1 (ID 76570). Interestingly, three other genes

EsdC , pro41 and hpr1 , also pertaining to the development process, are linked to

pro1 . In addition, genes in this sub-network are mainly down-regulated on lactose

and related to metabolism, secretion, transport and cell surface. This sub-network

seems to reveal some interesting links between the repression of the development

and the cellulase production that will be investigated in more details in the Discus-

sion.

Results provided by this inferred network and the promoter analysis are in agree-

ment with present knowledge on Trichoderma reesei , particularly for the cellulase

production. The additional results given by BRANE Cut are coherent with the

literature based on other close species, especially regarding results that suggest a

potential link between development and cellulase production and a particular behav-

ior of the β-glucosidase. Table 1 provides some relevant references that coroborate

the network generated by BRANE Cut. The coherence of the DE analysis as well

as clustering and inference results with the actual knowledge allows us to use these

results for prediction. In the following Discussion section, we thus formulates some

postulates regarding cellulase production mechanism in T. reesei , with respect to

these three main results.

Discussion
A cellulase production directly linked to the lactose concentration

The gene xyr1 is widely reported to play the role of the major activator of the

cellulase production in T. reesei [19]. As notably expected, we recovered in our

network links between XYR1 and the main cellulolytic enzymes (especially the two

main cellulases CBH1 and CBH2). In Neurospora crassa, cellulases are regulated

by CLR-2 specifically, while Tr–XLNR, the ortholog of xyr1 , is responsible of the

hemicellulase expression [33, 67]. Thus, the regulation of cellulases and hemicellu-

lases is performed through two independents pathways. While the genes responsible

for this regulation are present in T. reesei , their behavior appears to be different as

they show a coupling action of the regulation of both cellulases and hemicelullases,

suggesting a different regulatory network in T. reesei compared to N. crassa.

Although observed in different T. reesei strains and culture conditions, authors

in [68] and [69] have identified links between xyr1 and clr2 genes. Interestingly, we

also found in our data such a strong correlation between xyr1 and clr2 , suggesting

a common regulation on lactose. We found a significant number of regulatory links

between clr2 and cellulolytic enzymes. Unlike in N. crassa, clr2 seems to be com-

plemental to xyr1 for cellulases and hemicellulases activation in T. reesei . Thus,

even though gene ID 26163 is the ortholog of clr-2 in N. crassa, this observation

argues for a different behavior in T. reesei .
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Another difference between T. reesei and N. crassa regarding clr2 is its location

on the genome. Contrary to N. crassa, clr2 in T. reesei pertains to a physical clus-

ter, located on chromosome III [70], and containing the lactose permease CRT1,

established as essential for cellulase induction on a lactose substrate as it allows

lactose uptake [22, 64]. Due to this proximity between clr2 and crt1 , we may as-

sume a regulation of crt1 by CLR2. In N. crassa, the ortholog of crt1 is sud26 ,

and encodes a sugar transporter which is located next to a transcription factor of

unknown function TF-48.

In N. crassa, clr2 is repressed by the carbon catabolite repression [33]. We do not

know if such an extrapolation to T. reesei is valid, but interestingly, the Rut-C30

strain has a partial release of catabolite repression due to the truncation of cre1 ,

allowing us to suggest a possible release of the repression of clr2 , leading to a basal

expression of CLR2 and CRT1, so a basal lactose uptake. This low level of lactose

would be sufficient to initiate the induction of cellulases through the expression of

XYR1 and CLR2.

As established in [22], the gene ace3 is known in T. reesei to be involved in the

cellulase induction on lactose. Furthermore, as presented in [71], ace3 seems to

interact with xyr1 to initiate cellulase production. Based on your data and their

interpretations, especially regarding the strong correlation between clr2 and xyr1 ,

we may suppose an additional interaction between ace3 and clr2 . This result can

also be corroborated by the fact that the invalidation of ace3 in [71] leads to a

decrease of XYR1 and CLR2 expressions. However, we note that the expression

of ACE3 is not directly correlated with the lactose concentration as the maximal

expression of ACE3 is obtained on a mixture of glucose and lactose (G75-L25). Thus,

the regulation of XYR1 by ace3 could be complemented by another mechanism

necessary for cellulase induction on pure lactose, and without glucose.

Gene expression profiles of bgl1 , cel3e and cel1b follow β-glucosidase activity

A previous study had shown an effect of sugar mixtures to influence the compo-

sition of the enzymatic cocktail of T. reesei [52]. A higher β-glucosidase activity

was observed in the presence of a glucose-lactose mixture compared to pure lactose.

This result obtained in the CL847 strain is here confirmed in the reference hyper-

producing Rut-C30 strain.

In the transcriptome performed on the various glucose-lactose mixtures, a group

of DE genes (U») has an expression profile correlated to β-glucosidase activity, i.e.

genes overexpressed by lactose but without correlation with the amount of lactose.

Among these genes, three β-glucosidase are identified, whose two are extracellular

(bgl1 and cel3e) while the other is an intracellular β-glucosidase (cel1b). It has

been shown previously that in presence of lactose the extracellular enzyme activity

is mainly produced by bgl1 [72]. Our results seem to demonstrate that for a full

expression of bgl1 , presence of lactose is required independently of glucose. Nothing

is known about the regulation of cel3e but its expression profile is similar to bgl1 .

This two genes have been previously identified as co-regulated by the same sub-

strate [73]. There is therefore a correlation between the expression of these genes
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and enzymatic activity of BGL1. It would thus be interesting to delete cel3e to

study the impact of its absence on the global extracellular β-glucosidase activity in

glucose-lactose mixture.

In the regulatory network, bgl1 and cel3e are connected to both ace3 and pmh29 .

However, ace3 has a similar profile as the previously mentioned β-glucosidase (cel3a

and cel3e) while pmh29 is anti-correlated. It would therefore be interesting to ex-

plore the role of its two transcription factors in the control of CEL3A/BGL1 and

CEL3E under glucose-lactose induction conditions. The roles of ace3 and pmh29

in cellulase regulation have recently been explored [22]. However, the difference in

genetic background (QM6a and QM9414) and experimental conditions (100 % lac-

tose batch) does not allow the results of these experiments to be extrapolated to

the regulation observed here.

Another β-glucosidase, CEL1B, is present in cluster U». This intracellular enzyme

appears to play an essential role in lactose induction since the joint invalidation of

cel1b and cel1a, another intracellular β-glucosidase, abolishes the production of

cellulases on lactose. However, invalidation of cel1b alone does not appear to have

any effect while invalidation of cel1a produces a delay in induction on lactose which

is restored by galactose. Surprisingly, the transcriptomic profile of cel1a is different

from that of cel1b since it belongs to the cellulase cluster D´. The difference in its

profiles could indicate a different response between these two genes depending on

whether or not glucose is present. Thus the expression of CEL1A could be negatively

regulated by the presence of glucose and induced by lactose while CEL1B could

be induced by lactose but insensitive to the presence of glucose. As cel1b is also

connected to the regulators ACE3, it would be interesting to explore the role of

ACE3 and PMH29 regulators in the expression of CEL1B.

A dedication to cellulase production to the detriment of growth

Strinkingly, orthologs of transcription factor genes (IDs 4430, 76590 and 123713)

described as involved in developmental process have been identified in this tran-

scriptomic study. All of them being part of cluster D´ and so down-regulated in

lactose compared to glucose.

Firstly, ID 76590 is the ortholog of pro1 in Sordaria macrospora (67 % identity)

and Podospora anserina (49 % identity), and the ortholog of adv-1 in Neurospora

crassa (67 % identity). The gene Tr–pro1 is required for fruiting body develop-

ment and cell fusion [56, 57]. In P. anserina, pro1 activates the sexual recognition

pathway including the pheromone and receptor genes and is probably involved in

the control of the entry in stationary phase [74]. In Penicillium oxalicum, deletion

of pro1 (43 % identity) has been proved to increase cellulase production [37]. No

similar phenotype has been described in other fungi. At low lactose concentration

obtained in our experiments, Tr–pro1 is down regulated and linked in the GRN to

hpr1 , the mating type pheromone receptor.

Secondly, ID 123913 is the ortholog MedA in Aspegillus nidulans (42 % identity),

coding for a protein with unknown function, but required for normal asexual and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.324319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.324319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pirayre et al. Page 13 of 24

sexual development. We determined that the N. crassa ortholog of MedA is acon-

3 , a gene required for early conidiophore development and female fertility. In N.

crassa, acon-3 is positively regulated by the transcription factor ADA-6 involved in

conidiation, sexual developement, and oxidative stress response [58]. Interestingly,

ypr1 (ID 102499), the yellow pigment regulator, DE in our data, displayed 35 %

identity with ada-6 . In contrast to Tr–MedA, ypr1 is up-regulated on lactose and

its regulatory function seems restricted to the sorbicillin cluster [60].

The gene with ID 4430 is the ortholog of wet-1 of N. crassa (72 % identity), of

WetA in A. nidulans (60 % identity) and Fusarium graminearum (43 % identity). In

contrast to Aspergilli and F. graminearum, wet-1 mutant is phenotipically similar

to the wild type strain with no conidiation defect [55]. A regulatory cascade with

WetA regulated by AbaA itself regulated by BrlA was described in Aspergillus [75].

In P. decumbens, an industrial lignocellulolytic enzymes production strain, expres-

sion of cellulases genes is upregulated in BrlA deletion strain [76]. In T. reesei, while

no ortholog has been identified ofr BrlA, rxe1 (20 % identity with BrlA) is involved

in regulation of conidiation and modulated positively by the expression of xyr1 and

cellulase and hemicellulase genes. The regulatory cascade between aba1 and wet-1

is preserved in N. crassa and F. graminearum but we do not know if the rxe1 gene

could replace BrlA in species where there is no true ortholog and therefore if wet-1

may be controlled by rxe1 . In our transcriptomic data, neither rxe1 nor Aba1 is

differentially regulated, so down-regulation of wet-1 does not seem to be dependent

of these genes. Eventually, further experiments would allow us to decipher the role

of wet-1 on cellulase production and the regulatory link between wet-1 and rxe1 .

In Aspergillus nidulans, MEDA acts as a repressor of BrlA expression and is an

activator of AbaA expression [77]. Although, no direct regulation relation between

MedA and WetA in T. reesei has been described, it is worth to note that these

genes, both involved in the regulation of conidiation, are down-regulated on lac-

tose. Interestingly in A. niger, authors in [78] showed that the secretion of the

vegetative mycellium is repressed by sporulation, thus indicating a reverse link be-

tween conidiation and secretion. Thus, Tr–WetA and Tr–MedA down-regulation

could be a result of the lactose fed batch cultivation mode where the carbon flux

is maintaining a near-vegetative state without growth. Conversely, glucose feed re-

sulted in biomass growth leading to conidiation.

Altogether, the down regulation of Tr–pro1 , Tr–wet1 and Tr–acon3 on lactose

compared to glucose could reflect a balance between vegetative growth, sexual and

asexual development. In the fed-batch condition, the lactose is provided to maintain

the biomass without growth. In contrast, starvation could create a path to conidia-

tion or glucose could redirect to sexual development. The equilibrium is maintained

through the down regulation of essential developmental transcription factor.

Conclusions
This study is the first considering the effect of various carbon sources (glu-

cose/lactose mixtures) in a fed-batch mode on the Trichoderma reesei transcrip-
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tome. In such a condition, we highlighted an interdependence between crucial tran-

scription factors (XYR1, CLR2 and ACE3) known to participate to cellulase and

hemicellulase production. We also correlated the transcriptome to the β-glucosidase

activity observed in a previous study [52] and revealed a repression of the devel-

opment process during the cellulase production. These conclusions provide us with

plausible targets for further genetic engineering leading to better cellulase producing

strains.

Materials and Methods
Strain and media

T. reesei RUT-C30 (ATCC 56765) was received from ATTC on October 2013,

spread on PDA plates and incubated until sporulation. Spores were harvested

with 50 % glycerol solution then stored at ´80 ˝C. Spore solution concentration

was 6ˆ 109 mL´1. Culture media are prepared according to [53] (case with 25 mM

dipotassium phthalate) and supplemented with 12.5 g L´1 glucose. Feeding solu-

tions (stoichiometric mix of carbon and nitrogen sources) were prepared according

to [52].

Fed-flask cultivations

Fed-flask cultivation was performed according to [52] with few modifications. For

each replicate, a Fernbach flask was prepared with 250 mL culture medium and

inoculated with around 107 spores mL´1. Initial growth phase on glucose lasted

around 48 h and resulted in around 7 g L´1 biomass. Immediately after glucose

exhaustion, empty 250 mL Erlenmeyer flasks were filled with 50 mL broth per flask

then fed at 0.3 mL h´1 (using Dasgip MP8 peristaltic pumps) with different sugar

solutions (one flask fed with pure lactose, one flask fed with pure glucose, one

flask fed with a mixture of glucose and lactose). Pure glucose (G100) feed and pure

lactose (L100) feed were replicated 6 times, 75 % glucose + 25 % lactose mixture

(G75-L25) was replicated 4 times, and 90 % glucose + 10 % lactose (G90-L10) was

replicated 2 times. Incubation was performed in an Infors rotary shaker at 30 ˝C and

150 rpm. Analysis (biomass dry weight, protein concentration, sugars concentration,

enzymatic activities) were performed according to [52].

RNA-seq library preparation and analysis

Library preparation and RNA-seq data acquisition

Library preparation and Illumina sequencing were performed at the École normale

supérieure Genomic Platform (Paris, France). Messenger (polyA+) RNAs were pu-

rified from 1 µg of total RNA using oligo(dT). Libraries were prepared using the

strand specific RNA-seq library preparation TruSeq Stranded mRNA kit (Illumina).

Libraries were multiplexed by 6ˆ6 flowcell lanes. A 50 bp read sequencing was per-

formed on a HiSeq 1500 device (Illumina). An average of 35 ˘ 10 millions passing

Illumina quality filter reads was obtained for each of the 36 samples. The analy-

sis were performed using the Eoulsan pipeline [79], including read filtering, map-

ping, alignment filtering, read quantification, normalisation and differential analy-

sis. Before mapping, poly N read tails were trimmed, reads with less than 40 bases

were removed, and reads with quality mean lower than 30 were discarded. Reads
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were then aligned against the Trichoderma reesei genome version 2 (from the Joint

Genome Institute database) using Bowtie (version 0.12.9) [80]. Alignments from

reads matching more than once on the reference genome were removed using sam-

tools (Java version) [81]. To compute gene expression, Trichoderma reesei genome

annotation version 2 from Joint Genome Institute database was used. All over-

lapping regions between alignments and referenced exons (or genes) were counted

using HTSeq-count 0.5.3 [82]. The RNA-seq gene expression data and raw fastq files

are available on the GEO repository (www.ncbi.nlm.nih.gov/geo/) under accession

number: GSE82287.

Normalization and differentially expressed genes identification

RNA-seq data normalization and differential analysis was performed thanks to the

DESeq Bioconductor R package (version 1.8.3) [83]. The normalization method

implemented in DESeq assumes that only a few number of genes are differentially

expressed and corresponds to a median scale normalization.

The differential analysis relies on a statistical model, and more precisely on the

negative binomial distribution with variance and mean related by local regression.

This approach allows us to identify, for each gene, if the observed difference in

read counts is significant. An adjustment for multiple-testing with the procedure of

Benjamini and Hochberg [84] was also performed. Hence, we assumed that a gene

is said differentially expressed when the adjusted p-value was lower than 0.001 and

the absolute value of the log2pFCq was higher than 2. Here, FC refers to the fold

change of the read counts for the tested condition against the read counts for the

reference condition. In this way, we independently compared at 24 h and 48 h the

read counts obtained on G75-L25, G90-L10 to those obtained on G100, or L100. In

addition read counts obtained on L100 are also compared to those obtained on G100.

This approach, sketched in the circuit design displayed in the Additional file 2, leads

to ten possibilities for a gene to be identified as differentially expressed.

Gene expression matrix construction

For clustering and network inference, the establishment of a relevant gene expres-

sion matrix is needed.

For this purpose, we used results from the differential analysis. More precisely,

we selected the subset of genes which are identified as differentially expressed in

at least one on the ten studied comparisons. We decided to remove genes having

at least one missing value over the ten comparisons. Doing this, we selected 650

genes for which a complete expression profile was available, composed of ten log2

expression ratios values leading to the gene expression matrix used to carry out

the clustering. We note that, in this matrix, the fold change is computed on the

average of the read counts across the biological replicates for a given condition (test

or reference). For the network inference part, we choose to deal with a slightly

modified version of this expression matrix, while keeping the same initial set of the

650 DE genes. To enforce the relevance of the metric used in network inference

methods, we chose to deal with all biological replicates for the tested conditions
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while all reference conditions were pooled, with glucose or lactose pure are chosen

as reference conditions. In other words, the log fold change is computed between the

read count coming from a biological replicate of the test condition and the averaged

read counts of the reference condition. Hence, for a given comparison, we obtained

as many log fold changes as biological replicates. In order to harness the variability

caused by this approach, we removed genes for which a biological replicate has a

null read count. As a result, the final matrix contains 593 genes, where for each

gene the expression profile contains 32 components. This procedure allows us to

deal with expression profiles having a sufficient number of components to obtain a

more reliable inferred network.

Clustering and functional analysis of differentially expressed genes

Clustering

As previously mentioned, clustering is performed on the 650 genes. Each gene is

characterized by its ten-component expression profile. The following approach was

completely performed using the Multi Experiment Viewer (MeV) software [85].

Firstly, a hierarchical clustering allows us to estimate the optimal number K of

clusters hidden in the data. By choosing the Euclidean distance metric and the

average linkage method, results suggest K “ 5 clusters. Then, the K-means algo-

rithm (originating in [86]) is preferred in order to obtain a final gene classification.

As this method is sensitive to initialization, we performed ten independent runs of

K-means with random initialization; the Euclidean distance is used for each run.

Results are subsequently aggregated into five consensus clusters. The aggregation is

constrained by a co-occurrence threshold, fixed to 80 %. As a result, the 650 genes

are completely classified into five clusters and no unassigned cluster was found.

Functional analysis

A functional analysis was performed throughout a full expert annotation of the

classified genes. For this purpose, each gene present in the clustering was manually

curated using the Trichoderma reesei Gene Ontology (GO) annotation from the

Joint Genome Institute (JGI) [87, 88], in terms of biological process and molecular

function. Functions of genes, for which no process or nor function is found, are

predicted by similarity to orthologous genes, when available in other fungal taxa.

For this purpose, orthologs are determined via FungiPath and FungiDB. Note that

by convention in this manuscript, we shall denote by Tr–XXX the gene in T. reesei

for which the ortholog in an other specie is XXX. Otherwise, genes are labeled as

unknown. This functional annotation allows us to manually provide meaning to

clustering results.

Network inference and promotor analysis

Network inference

Network inference was performed using the gene expression matrix containing 593

genes (and 32 differential expression levels) as input. We firstly obtained a com-

plete weighted network GpV, E ;ωq, linking all genes V by links E with weight ω.

This step was performed thanks to the CLR (Context Likelihood of Relatedness)

algorithm [61]. The weights ωi,j , affected to each pair pi, jq of genes, are based on
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the mutual information metric which quantifies the mutual dependence or the in-

formation shared between expression profiles of genes i and j. From this complete

gene network, a threshold selects the most relevant gene links. For this purpose,

we used the network enhancement algorithm BRANE Cut [40]. Briefly, each edge

ei,j in the complete network is labeled by a variable xi,j set to 1 if the link has to

be in the final network, and 0 otherwise. By optimizing a cost function over the

variable x “ pxi,jqiPV,jPV , the minimizer x˚ gives us the optimal set of links on

the final graph. In order to select the relevant links, biological and structural con-

straints are encoded in the cost function. Indeed, in addition to favoring strongly

weighted edges, this post-processing method prefers links around labeled transcrip-

tion factors. Moreover, thanks to an additional constraint, links between a gene and

a couple of transcription factors, if this latter couple is identified as co-regulator,

are also preferentially selected. As a result, we obtain an inferred network composed

of 161 genes and 205 edges.

Promoter analysis

The promoter analysis was performed using the Regulatory Sequence Analysis Tools

(RSAT) software [63]. From each set of genes to study (linked to a specific TF),

promoter sequences from ´1 to ´1000 upstream bases are retrieved using the re-

trieve sequence tool. From these sequences, a detection of over-represented oligonu-

cleotides was performed thanks to the oligo-analysis tool. We used the reference

sequence set of Trichoderma reesei as background model. As mentioned in [89], this

choice is driven by the fact that the input sequences (the query) are a subset of

a larger collection (the reference). As a result, we obtain a list of over-expressed

oligonucleotides (from hexa- to octo-) and several larger motifs assembled from the

previous ones using the pattern assembly tool. Significance and count matrices are

also obtained at this stage and lead to the establishment of sequence logo binding

motifs. In order to detect the occurrences of the previously discovered patterns,

we used the string-based pattern matching (dna-pattern) tool. It provides a list of

features indicating the positions of the motifs in the input sequences. A suitable

way to deal with this data is to visualize them using the feature map tool. From the

feature map, the presence of overlapping close motifs is commonly a good indication

for the relevance of the discovered motif. This methodology hints at supposing that

the set of initial tested genes detains a binding site of the linked TF. From the given

occurrences, we also computed the average number of discovered sites on the tested

subset of genes. Then, in order to give a statistical significance, we performed two

statistical analyses: one based on the promoter sequence of the whole genome, the

other based on the a set of random promoter sequences. For both statistical anal-

ysis, the occurrences are also computed and averaged over the number of involved

sequences. Then a t-test was carried out in order to deem significance (or not) to

the average number of discovered sites. The significance is given for a p-value lower

than 0.05.
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64. Ivanova, C., Bå̊ath, J.A., Seiboth, B., Kubicek, C.P.: Systems analysis of lactose metabolism in Trichoderma

reesei identifies a lactose permease that is essential for cellulase induction. PLoS One 8(5), 62631 (2013).

doi:10.1371/journal.pone.0062631

65. Biely, P., Puchart, V., Stringer, M.A., Mørkeberg Krogh, K.B.R.: Trichoderma reesei XYN VI — a novel

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.324319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.324319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pirayre et al. Page 21 of 24

appendage-dependent eukaryotic glucuronoxylan hydrolase. FEBS J. 281 (2014)

66. Furukawa, T., Shida, Y., Kitagami, N., Mori, K., Kato, M., Kobayashi, T., Okada, H., Ogasawara, W.,

Morikawa, Y.: Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and

xylanolytic genes in Trichoderma reesei. Fungal Genet. Biol. 46(8), 564–574 (2009)

67. Benocci, T., Aguilar-Pontes, M.V., Zhou, M., Seiboth, B., de Vries, R.P.: Regulators of plant biomass

degradation in ascomycetous fungi. Biotechnol. Biofuels 10(152) (2017). doi:10.1186/s13068-017-0841-x

68. Pakula, T.M., Nygren, H., Barth, D., Heinonen, M., Castillo, S., Penttilä, M., Arvas, M.: Genome wide analysis
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Figures

Figure 1 Protein production on different sugar sources in fed-batch mode. A: monitoring of
protein concentration during fed-batch. For the different glucose-lactose content in feed (G100,
G90-L10, G75-L25, L100), (B) reports the specific protein production rate, (C) the final
β-glucosidase activity and (D) the final filter paper activity. Reported values are average and
standard deviation of the biological replicates.

Figure 2 Differentially expressed genes of Rut-C30 on various of carbon sources mixtures.
Number of over- (up, in red) and under-expressed (down, in green) genes on different mixed
carbon source media (G90-L10, G75-L25, L100) at 24 h and 48 h.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2020. ; https://doi.org/10.1101/2020.10.02.324319doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.02.324319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pirayre et al. Page 23 of 24

Figure 3 Heatmap and median profiles of clustered genes. Clustering results on the 650
differentially expressed genes : cluster D` (green), D´ (dark green) for down-regulation, U»

(orange), U` (red) and U´ (dark red) for up-regulation. We have highlighted the median profile
of the corresponding cluster in black and left the median profiles of the other clusters in grey in
the background to facilitate visual comparison.

Tables

Gene ID Name Up/Down Link to CP Species Reference
122208 xyr1 up direct T. reesei [19]
26163 clr2 up direct N. crassa [33]
77513 ace3 up direct T. reesei [22]

122523 pmh29 down direct T. reesei [22]
123713 medA down indirect P. decumbuns [76]
76590 pro1 down direct P. oxalicum [37]
4430 wetA down indirect P. decumbuns [76]

Table 1 BRANE Cut network validation from literature. Direct link refers to genes identified as
implied in the cellulase production while indirect refers to genes having a side effect on the cellulase
production (CP).
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Figure 4 Inferred network. Network built with BRANE Cut from expression profiles of the
differentially expressed genes. BRANE Cut selected 205 edges involving 161 genes. Node colors
correspond to cluster labels: U` (red, genes highly and monotonically up-regulated on lactose),
U´ (dark red, genes slightly and monotonically up-regulated on lactose), U» (orange, genes
up-regulated and non-monotonically on lactose), D´ (dark green, genes slightly and
monotonically down-regulated on lactose) and D` (green, genes highly and monotonically
down-regulated on lactose). Bigger nodes with bold frame correspond to genes coding for a
transcription factor while smaller nodes with thin frame correspond to genes not identified to code
for a transcription factor.

Additional Files
Additional file 1 — Study of the biomass concentration during the fed-batch

This PNG file contains experimental results regarding the study of the Rut-C30 biomass concentration at 0h, 24 h,

48 h and 120h during the fed-batch on G100, G75-L25, G90-L10 and L100.

Additional file 2 — Circuit design

This PDF file contains an illustration of the methodology used to perform the differential analysis.

Additional file 3 — List of mutated and/or differentially expressed genes

This Excel file contains two sheets. In the first one, we found the list of differentially expressed genes and contains

information regarding gene name, gene function, orthologs in various species (S. cerevisiae, A. nidulans and N.

crassa), whether the gene is a transcription factor, expression ratios and the label of the cluster to which it belongs.

In the second sheet, there is the list of mutated genes in Rut-C30, by comparison to QM6a, and the ones which are

identified to be differentially expressed in our conditions.

Additional file 4 — Promoter analysis of clr2

This Excel file contains three sheets. The first one gathers results regarding the promoter analysis of clr2 based on

results obtained in the sub-network SubN1 generated by BRANE Cut [40]. The second sheet displays the pattern

feature map while the third one contains the statistical analysis regarding the discovered promoter sequence.
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