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Abstract 

Harmful algae can have profound economic, environmental, and social consequences. As the 
timing, frequency, and severity of harmful algal blooms (HABs) change alongside global 
climate, efficient tools to monitor and understand the current ecological context of these taxa are 
increasingly important. Here we employ environmental DNA metabarcoding to identify patterns 
in a wide variety of harmful algae and associated ecological communities in the Hood Canal of 
Puget Sound in Washington State, USA. We track trends of presence and abundance in a series 
of water samples across nearly two years. We find putative harmful algal sequences in a majority 
of samples, suggesting that these groups are routinely present in local waters. We report patterns 
in variants of the economically important genus Pseudo-nitzschia (family Bacillariaceae), as well 
as multiple harmful algal taxa previously unknown or poorly documented in the region, 
including a cold-water variant from the saxitoxin-producing genus Alexandrium (family 
Gonyaulacaceae), two variants from the karlotoxin-producing genus Karlodinium (family 
Kareniaceae), and one variant from the parasitic genus Hematodinium (family Syndiniaceae). 
We then use data on environmental variables and the biological community surrounding each 
algal taxon to illustrate the ecological context in which these species are commonly found. 
Environmental DNA metabarcoding thus simultaneously (1) alerts us to potential new or cryptic 
occurrences of harmful algae, (2) expands our knowledge of the co-occurring conditions and 
species associated with the growth of these organisms in changing marine environments, and (3) 
provides a tool for monitoring and management moving forward. 

Introduction 

Harmful algae and associated blooms create environmental, health, and economic challenges at a 
global scale, causing mass die-offs in ecosystems from de-oxygenation (Gobler, 2020; Griffith & 
Gobler, 2020), multiple types of poisoning in humans (Trainer et al., 2013), and significant 
losses of revenue for the aquaculture industry (Trainer & Yoshida, 2014; Dìaz et al., 2019). For 
these reasons, local, national, and international governing bodies organize and fund monitoring 
programs to track HABs and identify the conditions that lead to their occurrence (Graneli & 
Lipiatou, 2002; Trainer, 2002; Lopez et al., 2008; Moestrup et al., 2020). In addition, changing 
marine environments appear to be causing increases in the duration, frequency, and severity of 
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HABs globally in association with rising temperatures and declining pH (Gattuso et al., 2015a; 
Gobler et al., 2017). 

Hood Canal, a natural glacial fjord within the Puget Sound of Washington, USA, is a useful 
natural system in which to study the ecology of harmful algae and likely future changes to their 
patterns of occurrence. Surface temperatures of the region have risen 1.0°C since the 1950s, 
dissolved oxygen levels are below 5 mg/L in deeper sections of the sound, and pH has dropped 
by 0.05 - 0.15 units since pre-industrial era (~1750) (Feely et al., 2010; Busch, Harvey & 
McElhany, 2013; Mauger et al., 2015). Warmer temperatures and longer durations of warm 
conditions will create larger windows of growth for some HABs moving forward (Moore, 
Mantua & Salathe Jr, 2011; Mauger et al., 2015), with ocean acidification exacerbating the 
impacts of these blooms by further increasing the toxicity and growth of harmful algal species 
(Fu, Tatters & Hutchins, 2012; Field et al., 2014). 

Harmful algae fall into four primary categories: diatoms, dinoflagellates, haptophytes, and 
raphidophytes. Of particular concern locally are diatoms from the genus Pseudo-nitzschia and 
dinoflagellates from the genera Alexandrium, Gonyaulax, and Protoceratium, each of which 
produces toxins that can accumulate in shellfish grazers (Shimizu et al., 1975; Satake, 
MacKenzie & Yasumoto, 1998; Cembella, Lewis & Quilliam, 2000; Trainer et al., 2009, 2016). 
When consumed by humans, the toxins then cause symptoms ranging from amnesia to paralysis, 
and can be deadly (Ferrante et al., 2013; Grattan, Holobaugh & Morris Jr, 2016). Additional 
harmful alga of concern are fish-killing species such as the diatom Chaetoceros concavicornis 
and the raphidophyte Heterosigma akashiwo (Yang & Albright, 1994; Khan, Arakawa & Onoue, 
1997). There is no current ensemble testing protocol for all of these local problematic algae, and 
both human-mediated transport and warming-related range shifts are likely to introduce 
additional taxa. For example, there is recent evidence that the toxic dinoflagellate Karenia 
mikimotoi (family Kareniaceae; described from Japan and also occurring in the North Atlantic) is 
now present along the west coast of North America, specifically off of Alaska and California 
(National Centers for Coastal Ocean Science, 2014). 

Because the effects of harmful algae are wide-ranging and potentially devastating (Lewitus et al., 
2012; Moore et al., 2019), monitoring these organisms and the environmental conditions with 
which they are associated has long been a public health priority in Puget Sound and in many 
locations around the world. Efforts to track blooms of harmful algae have historically relied on 
the work of skilled taxonomists using microscopic visual analysis of cells to identify species 
(e.g. Lapworth, Hallegraeff & Ajani, 2001; Yang et al., 2000). More recently, satellite 
spectrographic data (Tomlinson et al., 2004; Ahn et al., 2006), molecular assays for toxins 
(Pierce & Kirkpatrick, 2001; Murray et al., 2011), and flow cytometry coupled with machine 
learning (Campbell et al., 2010) have been employed to detect and track HABs. 

Adding to the list of technological advances for monitoring are two types of genetic techniques 
that rely on environmental DNA (eDNA) present in the water to classify and assess the 
abundance of harmful algae: quantitative Polymerase Chain Reaction (qPCR) and DNA 
metabarcoding (Al-Tebrineh et al., 2010; Erdner et al., 2010; Antonella & Luca, 2013; Grzebyk 
et al., 2017; Ruvindy et al., 2018). The former method tracks known taxa individually and 
requires substantial sequence data to design species-specific primers and/or probes; the latter 
method involves PCR with less-specific primers to generate amplicons from a broad swath of 
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taxa at a common locus. This second method, metabarcoding, allows detection and even 
quantification of many taxa simultaneously. 

Because the specific target organisms need not be chosen a priori, metabarcoding may uncover 
taxa unexpected in the study region, and in addition, can reveal a cross-section of the biological 
community surrounding any particular group of interest (Deiner et al., 2017; Taberlet et al., 
2018). Previous work has described the ecological context of harmful algae and their blooms 
using environmental covariates (e.g. Wells et al., 2015; Banerji et al., 2019), as well as 
assessments of bloom-associated taxa (typically other microorganisms or viruses) (e.g. Loureiro 
et al., 2011; Buskey, 2008), although the labor required for traditional survey methodology has 
limited the breadth of contextual taxa included in these studies. 

Here, we couple environmental monitoring with eDNA metabarcoding to track the presence of 
dozens of potential harmful algal taxa simultaneously, including a number unexpected or 
understudied in the region of interest. Because of their economic and public-health importance, 
we focus on variants in the genera Alexandrium (dinoflagellate family Gonyaulacaceae), 
Hematodinium (dinoflagellate family Syndiniaceae), Karlodinium (dinoflagellate family 
Kareniaceae), and Pseudo-nitzschia (diatom family Bacillariaceae), and examine the distribution 
of these in time and space across 19 months of sampling at ten locations in Hood Canal. We 
model the associations of individual algal lineages with key environmental variables, and 
subsequently improve the predictive value of these models by including co-occurring (non-algal) 
taxa as possible indicator species. With these analyses, we present useful information on the 
distributions and ecological contexts of potentially harmful algae in the Puget Sound region, and 
demonstrate how eDNA metabarcoding can improve our understanding and management of 
harmful algae, both locally and globally. 

Materials and Methods 

Environmental DNA Sampling and Measuring Environmental 
Variables 

To identify a broad range of potential harmful algal taxa and simultaneously survey the 
surrounding biological community, we sampled seawater for eDNA from ten sites within Hood 
Canal, a natural glacial fjord in Puget Sound, Washington, USA. Five sampling sites were 
intertidal, and five were nearby nearshore locations at the approximate center of the fjord. For 
intertidal locations at Salisbury Point County Park (SA), Triton Cove State Park (TR), Lilliwaup 
Tidelands State Park (LL), Potlatch State Park (PO), and Twanoh State Park (TW) (see Figure 1 
and Table S1 for location coordinates), we collected three 1 L samples of water from 
immediately below the surface using a bleach-cleaned plastic bottle held at the end of a 1.7 meter 
pole. We sampled intertidal locations every 1-2 months between March 2017 and July 2018 (see 
Table S1 for sampling dates). At these same stations and simultaneous with eDNA sampling, we 
collected one 120 ml water sample from each site and poisoned it with 0.1 ml of saturated HgCl� 
for carbonate chemistry analysis including pH (Dickson, Sabine & Christian, 2007). We also 
collected in situ measurements of temperature and salinity using a handheld multiprobe (Hanna 
Instruments, USA) and a portable refractometer. We characterized sample carbonate chemistry 
by measuring Total Alkalinity (TA; open-cell automated titration based on a Dosimat plus 
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(Metrohm AG) as part of a custom system assembled by Andrew Dickson (University of 
California San Diego) and used in the laboratory of Alex Gagnon at the University of 
Washington) and Dissolved Inorganic Carbon (DIC; Apollo Instruments, USA; CO2 extraction 
system with 10% (v/v) phosphoric acid). Both measurements were calibrated and validated with 
certified reference material from the Scripps Oceanographic Institute. Using DIC and TA, we 
calculated pH and the remaining carbonate system parameters with the R package ‘seacarb‘ 
(Gattuso et al., 2015b), removing a single outlier sample from the dataset used for environmental 
modeling (see below) due to an unreasonably low pH value (<7.5). 

For nearshore locations, we sampled a selection of stations (P8, P14, P12, P11, P402) surveyed 
by the Washington Ocean Acidification Center during triannual cruises (see Figure 1 and Table 
S1 for location coordinates). The samples used here were collected in September 2017 (2 
samples), April 2018 (3 samples), and September 2018 (3 samples); see Table S1 for sampling 
dates. At each station, a CTD was deployed with twelve Niskin bottles, and collected data on 
temperature, salinity, and pH (Alin et al., 2019a,b,c) in addition to water for eDNA from 
immediately below the surface. We filtered 500 mL of each water sample for eDNA from both 
intertidal and nearshore locations with a cellulose acetate filter (47 mm diameter, 0.45 �m pore 
size), and preserved this filter in Longmire buffer until DNA extraction (Renshaw et al., 2015). 
Many unmeasured variables influence planktonic communities (e.g., nutrients, sunlight, and 
wave energy); nevertheless the minimal set of parameters we analyzed here clearly distinguished 
communities and was adequate for the purposes of assessing temporal and spatial trends. Our 
purpose was to describe patterns of harmful algae over space and time, along with the 
environmental and ecological contexts in which they occurred, rather than to test any particular 
mechanism by which harmful algal taxa might respond to different environmental parameters. 

Extraction, Amplification, and Sequencing 

To extract DNA from sample filters, we used a phenol:chloroform:isoamyl alcohol protocol 
(modified from Renshaw et al., 2015). To maximize extraction efficiency and minimize co-
extraction of inhibitors, we incubated filter membranes at 56�C for 30 min before adding 900 �L 
of phenol:chloroform:isoamyl alcohol and shaking vigorously for 60 s. We conducted two 
consecutive chloroform washes by centrifuging at 14,000 rpm for 5 min, transferring the aqueous 
layer to 700 �L chloroform, and shaking vigorously for 60 s. After a third centrifugation, we 
transferred 500 �L of the aqueous layer to tubes containing 20 �L 5 molar NaCl and 500 �L 
100% isopropanol, and froze these at −20�C for approximately 15 h. Finally, we centrifuged 
samples at 14,000 rpm for 10 min, poured off or pipetted out any remaining liquid, and dried in a 
vacuum centrifuge at 45�C for 15 min. We resuspended the eluate in 200 �L water, and used 1 
�L of diluted DNA extract (between 1:10 and 1:400) as template for PCR. 

To identify a wide variety of metazoan taxa including putative harmful algae and their 
surrounding biological communities from eDNA, we amplified a ~315 base pair segment of the 
Cytochrome Oxidase I (COI) using universal primers described in Leray et al. (2013). To 
distinguish technical from biological variance and to quantify each, we ran and sequenced in 
triplicate PCR reactions from each of the samples (i.e., individual bottles of water). For multiplex 
sequencing on an Illumina MiSeq, we followed a two-step PCR protocol (O’Donnell et al., 2016) 
with redundant 3’ and 5’ indexing. In the first step, we used a PCR reaction containing 1X 
HotStar Buffer, 2.5 mM MgCl2, 0.5 mM dNTP, 0.3 �M of each primer, and 0.5 units of HotStar 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2020. ; https://doi.org/10.1101/2020.10.01.322941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.01.322941
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

Taq (Qiagen Corp., Valencia, CA, USA) per 20 �L reaction. The PCR protocol for this step 
consisted of 40 cycles, including an annealing touchdown from 62�C to 46�C (-1�C per cycle), 
followed by 25 cycles at 46�C. In the second step, we added identical 6 base-pair nucleotide tags 
to both ends of our amplicons, with unique index sequences for each individual PCR reaction. 
We allowed for no sequencing error in these tags; only sequences with identical tags on both the 
forward and reverse read-directions survived quality control. This gave us high confidence in 
assigning amplicons back to individual field samples. 

We generated amplicons with the same replication scheme for positive control kangaroo (genus 
Macropus) tissue, selected because this genus is absent from the sampling sites and common 
molecular biology reagents, but amplifies well with the universal primer set used in this study. 
We could therefore use positive control samples to identify possible cross-contamination: reads 
from other taxa that appear in these samples allow us to estimate and account for the proportion 
of sequences that are present in the incorrect PCR reaction (see Bioinformatics below). We also 
amplified negative controls (molecular grade water) in triplicate alongside environmental 
samples and positive controls, and verified by gel electrophoresis and fluorometry that these 
PCR reactions contained no appreciable amount of DNA (see Kelly, Gallego & Jacobs-Palmer, 
2018 for a discussion of the merits of sequencing positive and not negative controls). 

To prepare libraries of replicated, indexed samples and positive controls, we followed 
manufacturers’ protocols (KAPA Biosystems, Wilmington, MA, USA; NEXTflex DNA 
barcodes; BIOO Scientific, Austin, TX, USA). We then performed sequencing on an Illumina 
MiSeq (250-300 bp, paired-end) platform in seven different sets of samples: six for the intertidal 
dataset and one for the nearshore dataset. 

Bioinformatics 

We followed updated versions of previously published procedures for bioinformatics, quality 
control, and decontamination (Kelly, Gallego & Jacobs-Palmer, 2018). This protocol uses a 
custom Unix-based script (Gallego) calling third-party programs to perform initial quality 
control on sequence reads from all four runs combined, demultiplexing sequences to their sample 
of origin and clustering unique variants into amplicon sequence variants (ASVs) (Martin, 2011; 
Callahan et al., 2016). 

Specifically, to address possible cross-sample contamination (see Schnell, Bohmann & Gilbert, 
2015), we subtracted the maximum proportional representation of each ASV across all positive 
control samples (see Extraction, Amplification, and Sequencing above) from the respective ASV 
in field samples. We estimated the probability of ASV occurrence by performing occupancy 
modeling (Royle & Link, 2006; Lahoz-Monfort, Guillera-Arroita & Tingley, 2016). Following 
Lahoz-Monfort et al. (2016) and using the full Bayesian code for package rjags (Plummer et al., 
2016) provided by those authors, we modeled the probability of occupancy (i.e., true presence) 
for each of the unique sequence variants in our dataset. We treated replicate PCR reactions of 
each water bottle as independent trials, estimating the true-positive rate of detection (���), false-
positive rate (���), and commonness (psi, �) in a binomial model. We then used these 
parameters to estimate the overall likelihood of occupancy (true presence) for each ASV; those 
with low likelihoods (<80%) were deemed unlikely to be truly present in the dataset, and 
therefore culled. We removed samples whose PCR replicates were highly dissimilar by 
calculating the Bray-Curtis dissimilarity amongst PCR replicates from the same bottle of water 
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and discarding those with distance to the sample centroid outside a 95% confidence interval. The 
result was a dataset of 3.98 � 10� reads from 5275 unique ASVs. Lastly, to collapse variants 
likely due to PCR error, we converted ASVs to operational taxonomic units (OTUs) by 
clustering with SWARM (Mahé et al., 2015). All bioinformatic and analytical code is included in 
a GitHub repository (https://github.com/ramongallego/Harmful.Algae.eDNA), including the 
details of parameter settings in the bioinformatics pipelines used. Sequence and annotation 
information are included as well, and the former are deposited and publicly available in 
GenBank (upon acceptance; accession numbers will be provided in the published manuscript). 

Taxonomy 

We performed the taxonomic identification using a CRUX-generated database for the Leray 
fragment of the COI gene (see Extraction, Amplification, and Sequencing above), querying that 
database with a Bowtie2 algorithm (as described in Curd et al., 2019). The algorithm classifies 
the query sequence to the last common ancestor of ambiguously classified sequences. Only 
matches with a bootstrap support greater than 90% were kept. Here, we assigned taxonomy at the 
level of genus, rather than species, for two main reasons. First, for some taxa, variation may not 
be sufficient to distinguish species within a genus, and second, representation of local species in 
the databases used may not be complete, leading to the mis-assignment of sequences to their 
nearest represented neighbor. We denoted different lineages within genera using three-character 
abbreviation derived from the sequence variants themselves. Full sequences for each variant are 
provided in Table S2. To assess similarity of putative harmful algal lineages, we translated 
nucleotide sequences with the ExPASy Bioinformatics Resource Portal Translate tool using the 
mold, protozoan, and coelenterate mitochondrial, mycoplasma/spiroplasma genetic code 
(Gasteiger et al., 2003). We created both nucleotide and amino acid alignments with the Clustal 
Omega Multiple Sequence Alignment tool (Sievers & Higgins, 2014). 

Species Distributions in Space and Time 

To examine the distribution of potential harmful algal taxa in time and space, we calculated an 
index of relative eDNA abundance (hereafter eDNA abundance index). To derive this index, we 
first normalized taxon-specific ASV counts into proportions within a technical replicate, and 
then transformed the proportion values such that the maximum across all samples was scaled to 1 
for each taxon (Kelly, Shelton & Gallego, 2019). Such indexing allowed us to track trends in 
abundance of taxa in time and space by correcting for both differences in read depth among 
samples and differences in amplification efficiency among sequences. We plotted the eDNA 
abundance index for each potential harmful algal taxon across all sampling events from both 
intertidal and nearshore eDNA collections in our time series between March 2017 and September 
2018. 

Environmental and Biological Context 

To explore the ways in which environmental variables were associated with the presence or 
absence of our focal harmful algal taxa, we compared logistic-regression models using taxon 
presence as outcome, and combinations of three environmental variables (temperature, pH, and 
salinity) as predictors. We also fit a variety of models in a Bayesian hierarchical framework, 
where the slopes of predictors and intercepts could vary by season (summer/winter), and 
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included all models (hierarchical and non-hierarchical) in our model comparison. Rather than 
mechanically testing all possible combinations of models, we proposed models that were 
reasonable given the observed patterns of occurrences; in total, this resulted in between five and 
17 models per taxon. For purposes of the models, we designated April through September as 
being “summer”, and other months “winter”. Given many possible predictor variables, 
developing a useful model without overfitting can be a challenge. To combat this, we compared 
models using the widely applicable information criterion (WAIC) (Watanabe, 2010), which 
makes no assumptions about the shape of the posterior probability distribution and – like 
information criteria in general – penalizes more complex models. Moreover, WAIC quickly 
approximates the results of leave-one-out cross-validation (McElreath, 2020) to estimate out-of-
sample model performance. Following model selection using WAIC, we reported the in-sample 
model accuracy for reference. 

To determine the species most closely associated with potential harmful algal taxa, we performed 
canonical analysis of principal coordinates (CAP) for each focal variant by implementing the 
capscale function in vegan (Oksanen et al., 2013), which revealed the degree to which other taxa 
in the surrounding biological communities could be associated with presence (versus absence) of 
the potential harmful algal taxon. Using this ordination technique avoids the problem of testing 
each co-occurring taxon for significant associations with our focal putative harmful algae, 
thereby removing the need to statistically correct for multiple comparisons. We then used these 
putative indicator taxa as predictors in a second round of logistic regressions, adding only the 
single most-strongly associated taxon as a separate intercept term to the best-fit environmental 
models for each of our focal lineages (above). Such contextual ecological information is useful 
to the extent that it helps to predict the occurrence of harmful algal lineages without overfitting, 
which we evaluated as described above using WAIC. 

Results 

Taxonomy 

Environmental DNA metabarcoding of 63 samples from five intertidal and five nearshore 
locations in Hood Canal, Washington, United States revealed a total of 605 unique amplicon 
sequence variants (ASVs) for which we were able to assign taxonomy to 262 distinct genera. Of 
these, exactly 100 ASVs were assigned to genera that are known to contain harmful algae 
(Horner & Postel, 1993; Horner, Garrison & Plumley, 1997; Trainer et al., 2016; Moestrup et al., 
2020). These potential harmful algal taxa are members of four main taxonomic groups – diatoms, 
dinoflagellates, haptophytes, and raphidophytes – and represent seventeen genera (diatoms: 
Chaetoceros, Nitzschia, Pseudo-nitzschia; dinoflagellates: Alexandrium, Dinophysis, Gonyaulax, 
Gymnodinium (Akashiwo), Hematodinium, Heterocapsa, Karlodinium, Prorocentrum, 
Woloszynskia; haptophytes: Chrysocromulina, Phaeocystis; raphidophytes: Chattonella, 
Heterosigma, Pseudochattonella; See Table S2 for a complete list of potential harmful algal 
taxonomic assignments and COI sequences). 

Taxa that occur only in small numbers of samples lack sufficient observations to allow robust 
tests for association with environmental variables. Consequently, we focus hereafter on the 
ASVs present in at least ten percent of samples (minimum 7 occurrences out of 63 samples), an 
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adequate sample size to compare with environmental variables and biological context. This 
subset of sequences included 191 total variants, 37 of which belong to potentially harmful algal 
taxa (Table 1), and the rest to other members of the biological community. These putative 
harmful algal variants belong to 12 genera containing differing degrees of sequence variation, 
with some such as Hematodinium represented by a single DNA and protein sequence, and others 
such as Nitzschia represented by a much larger number of DNA (10) and amino acid (5) variants. 
Each of the potential harmful algal genera represented here exhibit varying degrees and types of 
toxicity or harm, ranging from physical irritation of fish gill tissue to production of toxins 
dangerous to human health (Table 1; Trainer et al., 2016; Simonsen & Moestrup, 1997; 
Lindberg, Moestrup & Daugbjerg, 2005; Stentiford & Shields, 2005; Kotaki et al., 2006; 
Peperzak & Poelman, 2008; Skjelbred et al., 2011; Place et al., 2012; Cho et al., 2017). 

Table 1: Potential harmful algal taxa identified by eDNA in at least ten percent of samples from 
in Hood Canal, WA. Type of harmful algae and genus are given, as well as the number of DNA 
and protein variants, toxicity, and sampling location(s) for member(s) of that genus.  

Type Genus 
DNA 

variants 
Protein 
variants Toxicity (target) 

Sampling 
Location 

Diatom Chaetoceros 8 5 Gill irritation 
(finfish) 

Intertidal; 
Nearshore 

Diatom Nitzschia 10 5 Domoic acid and 
derivatives 
(human) 

Intertidal 

Diatom Pseudo-nitzschia 3 2 Domoic Acid 
(human) 

Intertidal; 
Nearshore 

Dinoflagellate Alexandrium 2 2 Saxitoxin (human) Intertidal; 
Nearshore 

Dinoflagellate Hematodinium 1 1 Parasitism (crab) Intertidal 

Dinoflagellate Heterocapsa 2 2 Haemolysis 
(shellfish) 

Intertidal; 
Nearshore 

Dinoflagellate Karlodinium 2 2 Karlotoxin 
(human) 

Intertidal; 
Nearshore 

Dinoflagellate Woloszynskia 1 1 Reddening of water 
(general) 

Intertidal 

Haptophyte Chrysochromulina 3 3 Haemolysis 
(shellfish) 

Intertidal; 
Nearshore 

Haptophyte Phaeocystis 2 2 Oxygen depletion 
(general) 

Intertidal; 
Nearshore 

Raphidophyte Chattonella 2 1 Reactive oxygen 
species (finfish) 

Intertidal; 
Nearshore 

Raphidophyte Pseudochattonella 1 1 Gill irritation 
(finfish) 

Intertidal 
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Amplicon sequences from environmental samples cannot be matched directly with phenotypes, 
by definition, and taxonomic annotations of those sequences depend upon adequate reference 
material. Acknowledging both the intra-specific variation that exists at the COI locus and the 
incompleteness of the GenBank reference database for many of these groups, we treat 
polymorphism within a putative genus as being ambiguous: these variants may be intra-specific, 
or they may represent distinct evolutionary lineages. For these reasons, we conservatively 
perform analyses on the sequence variants themselves (denoted with their genus names and a 
three-character code that abbreviates the hash of the unique nucleotide sequence) rather than 
making assumptions regarding their status as haplotypes versus species. 

Putative harmful algal taxa from a few genera are of particular interest, due to the nature of their 
toxicity (Alexandrium), to their unexpected presence in the study region (Hematodinium and 
Karlodinium), or to their potential economic impact (Pseudo-nitzschia). For these reasons, we 
chose to examine aspects of their taxonomy, distribution, and ecology in greater detail. We first 
examined COI sequences for these taxa from our original metabarcoding effort, noting that both 
Alexandrium and Karlodinium genera were each represented by two sequence variants, Pseudo-
nitzschia by three sequence variants, and Hematodinium by a single sequence variant (Table 1). 
Amino acid translation revealed that the two Alexandrium ASVs differed by a single amino acid 
substitution, the two Karlodinium ASVs differed by five substitutions, and although two of the 
three Pseudo-nitzschia sequences (Pseudonitzschia_4e5 and Pseudonitzschia_d36) were identical 
in amino acid sequence, they differed from the third (Pseudonitzschia_d40) by two substitutions. 
The results below focus on these eight sequence variants, which we hereafter refer to as our 
“focal lineages.” 

Species Distributions in Space and Time 

To identify the seasonal and spatial distributions of taxa from our eight focal lineages, we next 
visualized their patterns of presence and absence in time and space (Figure 2). The variants 
assigned to Alexandrium, Alexandrium_3fc and Alexandrium_2b2, had completely non-
overlapping distributions in space and time, never appearing in the same sampling event. 
Alexandrium_3fc appeared solely in the summer (April-September) months (25 of 43 summer 
samples vs. 0 of 20 winter samples; p � 0.001) whereas Alexandrium_2b2 appeared primarily in 
the winter (October-March) months (1 of 43 summer samples vs. 7 of 20 winter samples; p � 
0.001). In contrast, the single variant assigned to Hematodinium, Hematodinium_449, was not 
significantly seasonal (9 of 43 summer samples and 3 of 20 in winter; � 
 0.742); neither were 
the two variants assigned to Karlodinium, Karlodinium_8ed and Karlodinium_a27 
(Karlodinium_8ed: 14 of 43 summer samples and 7 of 20 winter samples, � 
 1; 
Karlodinium_a27: 6 of 43 summer samples and 5 of 20 winter samples, � 
 0.322). One of the 
three variants assigned to Pseudo-nitzschia occurred significantly more frequently in summer 
than in winter months (Pseudonitzchia_d36: 10 of 43 summer samples and 0 of 20 winter 
samples, � 
 0.023), while the others did not (Pseudonitzchia_4e5: 8 of 43 summer samples and 
1 of 20 winter samples, � 
 0.244; Pseudonitzchia_d40, 7 of 43 summer samples and 4 of 20 in 
winter; � 
 0.737). 

All together, we detected at least one of the eight focal sequence variants in 51 out of 63 
sampling events (81%), indicating that these potential harmful algal taxa are present at some 
level more often than not in local waters. Additionally, the larger intertidal dataset was more 
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diverse, containing all eight focal lineages, while only three were detected on the nearshore 
cruises (Alexandrium_3fc, Karlodinium_8ed, Pseudonitzschia_d40). 

Environmental Context 

The above results suggest both Alexandrium lineages and at least one of the three Pseudo-
nitzschia lineages are associated with environmental conditions that change seasonally, while the 
others are more stochastic in space and time. For each focal taxon, we fit a series of logistic-
regression models (see Methods) describing taxon occurrence as a function of sea-surface 
temperature, pH, and salinity, both with and without a global intercept term (see Table S3 for a 
complete list of models tested, by taxon). A subset of our models was also hierarchical, allowing 
slopes to vary according to season, and we used WAIC to identify the best-fit models of those 
tested (Table 2). 

Table 2: Best-fit models of environmental covariates for eight focal algal lineages.  

Taxon Environmental Model Accuracy 

True 
Positive 

Rate 

True 
Negative 

Rate 

Alexandrium_2b2 Intercept + pH + (1 + 
Temperature | Season) 

0.92 0.29 1 

Alexandrium_3fc Intercept + (1 + Temperature | 
Season) 

0.69 0.33 0.84 

Hematodinium_449 pH + Temperature 0.79 0 0.98 

Karlodinium_8ed Intercept + (Intercept + 
Temperature | Season) 

0.76 0.45 0.9 

Karlodinium_a27 pH + (Intercept + Salinity | 
Season) 

0.84 0.09 1 

Pseudonitzschia_4e5 Salinity + Temperature + pH 0.87 0.22 0.98 

Pseudonitzschia_d36 Intercept + Salinity + pH + (1 
| Season) 

0.89 0.4 0.98 

Pseudonitzschia_d40 Salinity 0.82 0.27 0.94 

All but one of these models involves multiple environmental parameters, making them difficult 
to adequately visualize in two dimensions. Nevertheless, plotting the probability of taxon 
presence as a function of the single most-influential environmental variable and capturing 
seasonal variation in slope when models are hierarchical illustrates the degree to which the 
models do (or do not) explain the observed variance in potential harmful algal taxa (Figure 3). 
Among the environmental variables measured, both putative harmful algal variants most closely-
associated with pH occur more frequently in our samples at lower, more acidic values 
(Hematodinium_449, and Karlodinium_a27). For those that are most closely-associated with 
temperature, warmer waters see higher frequencies of a majority of putative harmful algae during 
the season in which they primarily occur (Alexandrium_2b2 in winter, Alexandrium_3fc in 
summer) with the notable exception of Karlodinium_8ed, which occurs frequently year-round 
and shows a conflicting relationship with temperature across seasons. 
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Although environmental covariates sea-surface temperature, pH, and salinity are associated with 
the presence or absence of our eight focal lineages, accuracy of these models varies widely, from 
0.69 for Alexandrium_3fc to 0.92 for Alexandrium_2b2 (Table 3). Additionally, these covariates 
alone can predict only a minority of occurrences for all taxa (Table 3, true positive rate). 
Consequently, we use eDNA metabarcoding data from the communities surrounding our focal 
lineages for potentially helpful information about the ecology of these putative harmful algae. 

Biological Context 

To identify the biological community associated with our focal lineages, we searched for co-
occurring taxa using a canonical analysis of principal coordinates (CAP) (Anderson & Willis, 
2003). Constraining this multivariate analysis according to the presence or absence of each 
potential harmful algal variant revealed no striking patterns of association across taxa (Tables 
S4-S11), but rather helped to identify individual community members particularly likely or 
unlikely to co-occur with our focal lineages. These associated community members were those 
with the strongest deviations from 0 on the CAP1 axis (Table 3), and included lineages of 
Ditylum, a centric diatom, Prasinoderma, a non-harmful green algae, Saxidomus, a clam, 
Balanus, a barnacle, and Calanus, a copepod. 

Table 3: Predictor taxa with highest positive associations to eight focal algal lineages by CAP.  

Taxon Predictor CAP1 

Alexandrium_2b2 Ditylum_ba4 0.2017 

Alexandrium_3fc Prasinoderma_6ac 0.2237 

Hematodinium_449 Saxidomus_33e 0.2105 

Karlodinium_8ed Ditylum_a31 0.2405 

Karlodinium_a27 Balanus_2eb 0.1727 

Pseudonitzschia_4e5 Calanus_79b 0.2233 

Pseudonitzschia_d36 Calanus_79b 0.229 

Pseudonitzschia_d40 Ditylum_ce4 0.2462 

For each of our focal lineages, adding the most closely associated predictor taxon improved 
model fit even after accounting for the additional model complexity (Table 4). Thus, including 
information about co-occurring organisms alongside baseline environmental covariates 
substantially increased our ability to predict the presence of these potential harmful algal taxa 
within the scope of our sampling. For example, Hematodinium_449 occurs somewhat 
stochastically in space and time (Figure 2) and is not strongly associated with environmental 
covariates (Table 2). However, the CAP analysis revealed that a haplotype from the clam genus 
Saxidomus (likely the species S. giganteus (butter clam), given the sampling location), was 
routinely found in samples in which Hematodinium also occurred (Table 3). Adding Saxidomus 
as a term in the previous best-fit model more than doubles the model’s overall accuracy (Figure 
4). All else being equal, when Saxidomus DNA is detected, it more than quadruples the 
likelihood of Hematodinium being detected (0.08 vs. 0.45 mean detection probability), making 
this biological variable a far better predictor than the measured environmental variables alone. 
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Performing the same analysis for each of our focal lineages yields similar results (Figure 4), 
demonstrating an overall model accuracy substantially above environmental covariates alone for 
most potential harmful algal variants. Specifically, adding these candidate indicator taxa 
improved the true-positive rate of detection for six of the eight models (Karlodinium_8ed and 
Pseudonitzschia_d36 are the exceptions), which accounted for the increase in overall accuracy 
across models. 

Table 4: Terms of the best-fit models combining environmental variables and most closely 
associated biological taxon for eight focal algal lineages.  

Taxon NA 

Alexandrium_2b2 Temperature + pH + (Intercept | Ditylum 
presence) 

Alexandrium_3fc (Intercept + Temperature | Season) + (Intercept | 
Prasinoderma presence) 

Hematodinium_449 pH + Temperature + (Intercept | Saxidomus 
presence) 

Karlodinium_8ed (Temperature | Season) + (Intercept | Ditylum 
presence) 

Karlodinium_a27 pH + (Salinity | Season) + (Intercept | Balanus 
presence) 

Pseudonitzschia_4e5 Salinity + Temperature + pH + (Intercept | 
Calanus presence) 

Pseudonitzschia_d36 Salinity + pH + (Intercept | Calanus presence) 

Pseudonitzschia_d40 Salinity + (Intercept | Ditylum presence) 

Discussion 

Here, we use genetic monitoring to highlight a wide variety of putative harmful algal taxa from a 
larger set of several hundred taxa in intertidal and nearshore marine habitats. Within these 
prospective harmful algal groups, we find several variants from lineages that are unexpected in 
the study area (Karlodinium, Hematodinium), in addition to cryptic lineages of others (most 
notably, Alexandrium sp.), and multiple variants of economically important taxa (e.g. Pseudo-
nitzschia). Our time-series sampling indicates different seasonal patterns and attendant 
associations of sea-surface temperature, pH, and salinity for some of these lineages, but on the 
whole, models using purely environmental covariates offer poor predictive value. We therefore 
use a constrained ordination to identify taxa (both algal and non-algal) that commonly occur in 
association with our focal lineages; adding only a single prospective biological indicator taxon 
greatly improved most of the predictive models. 

Detecting Expected and Unexpected Harmful Algal Taxa 

eDNA metabarcoding has a number of distinct advantages relative to common techniques 
currently used to identify harmful algae. First, this technique can reveal a diversity of potential 
harmful algal variants present, rather than targeting specific species. In our survey of intertidal 
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and nearshore communities using broad-spectrum eukaryotic mitochondrial COI primers, the 
taxa we identified were largely consistent with what we expected a priori, in that we found 
dozens of variants with excellent overlap from records of known local harmful algal genera 
(Table 1; Moestrup et al., 2020; Horner & Postel, 1993; Horner, Garrison & Plumley, 1997; 
Trainer et al., 2016), such as three from the genus Pseudo-nitzschia, which is represented by 
multiple species in the Puget Sound (Hubbard, Olson & Armbrust, 2014). While confirming 
expectations demonstrates the reliability of eDNA metabarcoding for identification, detecting 
unexpected taxa underscores the ability of this technique to reveal novel lineages, range-shifts, or 
nascent invasions with potentially profound ecological and economic consequences. For 
example, the genus Alexandrium, though known to cause paralytic shellfish poisoning in the 
region (Trainer et al., 2016), was not previously understood to have two distinct seasonal forms 
(see below). Additionally, members of Karlodinium produce karlotoxins responsible for fish kills 
in the United States and globally (e.g. Karlodinium veneficum (Place et al., 2012)), yet this genus 
is not reported from Puget Sound in the peer-reviewed scientific literature, despite having been 
noted by a local monitoring program (Amelia Kolb Gabriela Hannach & Swanson, 2016). 
Similarly, member(s) of the genus Hematodinium, which have caused massive losses for the 
tanner crab (Chionoecetes bairdi) and snow crab (C. opilio) fisheries in the United States 
(Meyers et al., 1987, 1996; Wood et al., 2017) and among other species worldwide (Stentiford & 
Shields, 2005), have also not previously been reported within Puget Sound in the peer-reviewed 
scientific literature. 

Additionally, eDNA metabarcoding can help to standardize data collection and analysis across 
studies. Here we employ samples collected with two distinct methods by two groups: intertidal 
water was gathered on foot and by hand, whereas nearshore water was gathered by boat on the 
Washington Ocean Acidification Cruise in a more routinized process. Nonetheless, potential 
harmful algal taxa identified in nearshore surface samples were all found within the larger 
intertidal dataset as well, suggesting excellent agreement despite differences in methods and 
personnel. Such congruence between studies also arises from how the data are analyzed: eDNA 
sequences from multiple studies can consistently identify cryptic taxa by sequence (e.g. Uchii, 
Doi & Minamoto, 2016; Thomsen & Willerslev, 2015), and can undergo identical taxonomic 
analyses that are not subject to differences in interpretation via morphology (Proschold & 
Leliaert, 2007). However, we note that the success of eDNA studies rests heavily on the 
shoulders of expert taxonomists: without their contributions to the identification of specimens 
with sequences in databases, it is impossible to link a fragment of DNA found in the water to an 
organism (Manoylov, 2014; Zimmermann et al., 2014). 

Species Distributions in Space and Time 

Our spatial and temporal data indicate that many putative harmful algal taxa are constitutively 
present in the intertidal and nearshore environment, or at the very least are routinely detectable 
(Table 1; Figure 2). Although challenges in relating sequence counts to absolute organism 
abundances limit the utility of eDNA metabarcoding for precise measurement of bloom intensity, 
the ability of eDNA to reveal harmful algal taxa even when cell counts are much lower than 
bloom conditions can be advantageous. For example, we detect Alexandrium variants year-round 
in Hood Canal, including winters, when recorded Alexandrium blooms are rare, but when 
fisheries closures due to presence of paralytic shellfish toxin do exist (Trainer et al., 2003; 
Moore, Mantua & Salathe Jr, 2011). When paired with more traditional methods, this tool 
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therefore provides another layer of information regarding the behavior of harmful algae, and at 
the very least can indicate a temporal and spatial starting place for more time-, labor-, and 
taxonomic expertise-intensive counting strategies. 

Sampling many taxa over time and space additionally facilitates important within- and cross-
species comparisons (Figure 2). Here, such comparisons reveal two lineages of Alexandrium 
with different temporal patterns, and completely non-overlapping distributions. Although 
taxonomic revisions of the Alexandrium tamarense species complex – and competing 
classifications of local taxa (Lilly, Halanych & Anderson, 2007; John et al., 2014) – make it 
impossible to identify the variants present in our survey without additional information, amino 
acid differences in the COI sequence of the two lineages alongside temporal distribution 
information suggest that they may represent distinct species, rather than haplotypes. Regardless, 
recognizing two distinct Alexandrium lineages with opposite seasonal dynamics is likely to be 
important to local monitoring and research programs aiming to identify risk of saxitoxin 
poisoning (e.g. Amelia Kolb Gabriela Hannach & Swanson, 2016; Trainer et al., 2016). Previous 
work on Alexandrium within the Puget Sound found a lower limit for toxic bloom events at 13�C 
(Nishitani & Chew, 1984), with recent work identifying higher growth of cells above 17-18�C 
(Bill et al., 2016), and more frequent blooms accompanying warmer air and sea surface 
temperatures over multiple decades (Moore et al., 2009; Moore, Mantua & Salathe Jr, 2011). 
Alexandrium_2b2, present nearly exclusively in winter, cold-water samples, does not match the 
profile expected given these studies, suggesting either that it does not bloom frequently and/or 
that it is a recent introduction to the local algal community, whose role is not yet appreciated. 

Our dataset also underscores the dynamism and diversity of harmful algal taxa in local waters 
(Figure 2). For example, some unexpected variants in our dataset (e.g. Hematodinium_449 and 
Karlodinium_a27) are highly variable in space and time, while others are more consistent and 
widespread (e.g Karlodinium 8ed, which appears in 20 of 63 samples). These results indicate our 
method may reveal transient appearances as well as the well-established presence of 
understudied taxa in the region. Notably, members of the genus Hematodinium have been 
reported on the west coast of North America in the Bering Sea and Southeast Alaska (Meyers et 
al., 1987, 1996; Jensen et al., 2010; Small, 2012). Likewise, Karlodinium venificum was first 
documented in San Francisco Bay in 2005, with continuing observations over the following 
decade (Nejad, Schraga & Cloern), but not elsewhere on the West Coast of North America 
(Moestrup et al., 2020). This study therefore adds evidence to reports of these taxa in nearby 
locales, suggesting that more work is necessary to track their presence in the Puget Sound region, 
where it is possible that they might impact important fisheries in the future. 

Nucleotide variants from the genus Pseudo-nitzschia identified here are not unexpected; multiple 
species from this genus have been described locally using both visual (e.g. Trainer et al., 2016) 
and molecular tools (e.g. Hubbard, Olson & Armbrust, 2014). In the Western Pacific, clades of a 
single Pseudo-nitzschia species (P. pungens) with distinct ecological niches and hybrid zones 
have been documented (Kim et al., 2018); it is interesting to note that here we similarly find two 
Pseudo-nitzschia variants with distinct nucleotide but identical amino acid sequences at the COI 
locus. Based on their overlap in time and space, it is likely these represent haplotype lineages 
that have begun to diverge but are not yet distinct species. Additionally, the specific local 
antecedents of toxicity in Pseudo-nitzschia are still under study (e.g. Zhu et al., 2017; Trick et 
al., 2018), with production of domoic acid historically limited to the outer coast of Washington 
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(Trainer et al., 2017), but recently moving into Puget Sound (Trainer et al., 2007). Revealing the 
diversity and pattern of genetic variants present in time and space by eDNA metabarcoding 
might thus support efforts to better characterize the causes underlying dangerous and costly 
Pseudo-nitzschia bloom events. 

Environmental and Biological Context 

Quantitative models of each focal lineage with respect to environmental variables (Table 2), 
motivated by taxon-specific patterns in space and time (Figure 2), yield a synoptic view of the 
occurrence of many potentially harmful algal taxa in the region – a perspective that is otherwise 
not easily achievable, though many detailed quantitative models have been built for individual 
harmful algal species (e.g. Moore et al., 2015; Hubbard, Olson & Armbrust, 2014). Across taxa, 
we note that values expected with global climate change (higher sea surface temperature) and 
ocean acidification (lower pH) are typically associated with increases in the occurrence of our 
focal lineages, such as Alexandrium_2b2, Alexandrium_3fc, Hematodinium_449, and 
Karlodinium_a27. These results in sum align with other studies of local harmful algal taxa, 
suggesting future scenarios will involve greater seasonal windows of opportunity for toxic bloom 
events (e.g. Moore, Mantua & Salathe Jr, 2011; Trainer et al., 2020). 

Overall, however, the quantitative models we have built with environmental variables alone have 
low accuracy, and universally fail to predict a majority of occurrences for our focal lineages 
(Table 2). The difficulty of predicting the presence of harmful algal taxa and their blooms based 
on a limited number of environmental covariates is not atypical; building accurate models of 
these species’ ecology has long been a challenge for the field (Flynn & McGillicuddy, 2018), 
even when many more environmental covariates are considered. In this study, the variant 
Hematodinium_449 is an extreme representative of this challenge; our environmental model 
does not predict its presence correctly even once (Table 2), though it appears in 12 of 63 samples 
gathered. Similarly, Karlodinium_a27 and Pseudonitzchia_4e5 models both have true positive 
rates less than 0.25, according to their respective environmental models (Table 2). These models 
are consequently worse than uniformative; they can be actively misleading by inaccurately 
predicting the absence of harmful species. 

Fortunately, eDNA metabarcoding provides an additional layer of information regarding the 
context of harmful algal taxa: the surrounding biological community members (both algal and 
non-algal). Specifically, the choice of universal eukaryotic primers amplifying a common 
molecular marker (mitochondrial COI) allows us to identify over 600 taxa in total, from more 
than 250 genera. These data enable us to associate the presence and absence of individual focal 
variants with a wide range of eukaryotes by CAP (Tables 3 and S4-S11). Studies such as this one 
that examine harmful algae within the breadth of their biological communities are rare, but 
provide an opportunity to improve prediction (e.g. Banerji et al., 2019). Here, we see that adding 
only the single best predictor taxon to our quantitative models of focal lineages universally 
improves their fit (Table 5), justifying added model complexity. Although it may appear circular 
to identify co-occurring species in the dataset and subsequently add them into the model of the 
same dataset, use of WAIC allows us to assess the value of additional information for future out-
of-sample data, generating testable hypotheses for harmful algal indicator species. As an 
example, adding the presence of an easily surveyed indicator taxon, a Saxidomus clam, improves 
the prediction of Hematodinium_449 dramatically, in particular the true-positive measure 
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essential to management (Figure 4). The majority of focal lineages examined here similarly show 
an improvement in model accuracy driven by large increases in the true positive rate with 
addition of biological information. 

Conclusion 

In this study, we employ COI universal primers (Leray et al., 2013) to simultaneously identify 
dozens of potentially harmful algal variants, as well as hundreds of other local taxa comprising 
the biological context for these harmful algae. The broad nature of eDNA metabarcoding surveys 
allows us to track both expected and unexpected taxa, and the distribution in time and space of 
eight focal variants from the genera Alexandrium, Hematodinium, Karlodinium, and Pseudo-
nitzschia suggests the constitutive presence of harmful algae in the study region, as well the 
possibility of nascent range shifts, invasions, and/or ongoing evolutionary divergence. Building 
individual quantitative models for each of eight focal lineages, we find that many variants are 
likely to become more common under conditions of higher sea surface temperature and ocean 
acidification, but note that models using environmental covariates alone have low explanatory 
power. Adding even a single associated member of the biological community, however, 
improves most models, and in particular boosts the true positive rates useful for prediction of 
harmful algal taxa in the field. eDNA metabarcoding is hence an opportunity to reveal harmful 
algae outside of bloom events and expected ranges, to map phylogenetic complexity underlying 
HAB dynamics, to interrogate the relevant environmental context in an era of global change, and 
to improve models of harmful algal prediction with inclusion of the biological milieu. 
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Figure Legends 

Figure 1: Intertidal and nearshore sampling locations in Hood Canal, Washington, USA. Site 
abbreviations are described in the text, and coordinates are given in Table S1. Inset map shows 
the Pacific coast of the continental United States. 

Figure 2: Spatial and temporal distribution of HAB taxa. Distribution of eight focal algal 
lineages across time and space. Larger and lighter circles indicate greater relative abundances; 
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‘x’ symbol indicates non-detection at that site/date. Site abbreviations are as in Figure 1 and 
Table S1. 

Figure 3: Best-fit logistic models for eight focal algal lineages. Here, probability of presence is 
shown as a function of the single most influential environmental variable in the model, along 
with overall model means (lines) and 50% and 95% credibility intervals (shaded areas). Where 
two-panel figures are shown for a taxon, the best-fit model included a slope term that varied by 
season. 

Figure 4: In-sample predictive value of best-fit models for eight focal algal lineages, as 
measured by accuracy, true-negative rate, and true-positive rate. Red dots indicate values for 
models combining environmental information with a single associated predictor taxon; blue dots 
indicate values for models with environmental information alone. Where only a single dot is 
visible, models produced equivalent results. 
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