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Abstract

Background: Cancer evolution depends on epigenetic and genetic diversity.
Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution
have been investigated mostly from a genetic perspective.

Results: Here, we combined the notions of epipolymorphism and epiallele
switching to analyze DNA methylation heterogeneity in MM patients. We show
that MM is characterized by the continuous accumulation of stochastic
methylation at the promoters of development-related genes. High entropy change
is associated with poor outcomes and depends predominantly on partially
methylated domains (PMDs). These PMDs, which represent the major source of
inter- and intrapatient DNA methylation heterogeneity in MM, are linked to
other key epigenetic aberrations, such as CpG island (CGI)/transcription start
site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D
organization alterations. In addition, transcriptome analysis revealed that
intratumor methylation heterogeneity was associated with low-level expression
and high variability.

Conclusion: We propose that disordered methylation in MM is responsible for
high epigenetic and transcriptomic instability allowing tumor cells to adapt to
environmental changes by tapping into a pool of evolutionary trajectories.

Keywords: multiple myeloma; disordered DNA methylation; epipolymorphism;
epiallele switching; inter- and intrapatient heterogeneity; transcriptomic variability

Background

Multiple myeloma (MM) is a neoplasm of plasma cells (PCs) with an incidence

rate of approximately 5/100,000 in Europe. The median survival time of patients

has improved substantially over the past decade. This is due to the establishment

of high-dose therapy followed by autologous stem cell transplantation as a routine

procedure, significant improvements in supportive care strategies, and the introduc-

tion and widespread use of drugs including immunomodulatory drugs, proteasome

inhibitors, histone deacetylase inhibitors and monoclonal antibodies. Nevertheless,

almost all patients ultimately relapse due to the emergence of more aggressive sub-

populations of myeloma PCs resistant to therapeutic agents.
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Several mechanisms have been suggested to explain the capacity of the subpop-

ulations of myeloma cells within an individual to survive the pressure of frontline

therapy and proliferate. These mechanisms include: the emergence of myeloma cells

that achieve bortezomib resistance by decommitment from immunoglobulin synthe-

sis [1] or by the derepression of growth factor receptors typically not associated with

the plasma cell lineage [2], somatic mutations that emerge during disease progres-

sion involving key driver genes in MM such as the mono- or biallelic loss of TP53

[3, 4] or the biallelic loss of TRAF3 [5]. These mechanisms facilitate the expansion of

proliferative subclonal populations. Genetic intratumor heterogeneity increases the

evolutionary fitness potential of a rare subset of myeloma cells harboring a particu-

lar combination of molecular aberrations to survive when challenged by multiagent

chemotherapy [4]. The disease evolves predominantly through a Darwinian process

of clonal expansion, and the population of tumor PCs represents an admixture

of competing genetic subclones [6, 5, 7, 8]. In most patients, the treatment pres-

sure causes the profound reorganization and diversification of subclonal populations

with complex dynamics of tumor evolution raising the possibility of biologically and

clinically important cross-talk between subclones [9]. However, the small number

of genetic alterations detected in MM and relevant in relapse mechanisms do not

alone explain the profound phenotypic variability across patients [10, 4]. Beyond ge-

netic diversity, other processes generate the intratumoral functional heterogeneity

of cancer cells, including global epigenetic changes [11].

To address this question in MM, we conducted an analysis of the DNA methyla-

tion landscape of 47 myeloma samples from 26 patients. This study was motivated

by the facts that (1) MM is characterized by extreme heterogeneity in median DNA

methylation levels compared with normal plasma cells (NPCs) [12], (2) intratumor

methylome variability is higher in various cancer types including other B-cell malig-

nancies [13, 14, 15, 16], than in normal cells, and (3) genome-wide analysis of DNA

methylation at single-base-pair resolution combined with analysis of the methyla-

tion states of neighboring CpGs (in the local sequence context) is now available

[17].

Results

Intrapatient epigenetic heterogeneity arises from stochastic DNA methylation

To explore the global DNA methylation spectrum of MM patients, we compared

whole-genome bisulfite sequencing (WGBS) datasets of myeloma cells from patients

with those of controls (Additional file 1: Table S1). We found a marked global

hypomethylation (Fig. 1a), as previously reported in MM and other cancers [12, 13,

15]. Individual CpG sites showed a predominantly bimodal pattern in MM patients

(Fig. 1b) with methylation levels depending on the local density of CpG (Fig. 1c

and Additional file 2: Table S2). Although MM displayed no evidence of aberrant

DNA methylation at many genes (Additional file 3: Figure S1), we observed slight

methylation gain at CpG islands (CGIs) and methylation loss at adjacent shores

and shelves regions compared to NPCs (Fig. 1d), as illustrated in the genomic region

of DOC2B (Fig. 1e).

These results show that the MM epigenome is characterized by global DNA hy-

pomethylation and variable intermediate methylation states depending on the local
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CpG content. We investigated whether these epigenetic changes could be a source

of intrapatient heterogeneity. To assess the degree of epigenetic variability within

patients, we employed enhanced reduced representation bisulfite sequencing (eR-

RBS) technology on 21 MM patients because eRRBS provides an average depth of

50X per covered CpG and approximately 2.7 million CpGs per sample, with more

than 10X sequencing coverage (Additional file 4: Table S3 and Additional file 5:

Table S4), and is cost effective for a large number of samples (48 in our study,

Additional file 1: Table S1 and Additional file 3: Figure S2). We then applied a

computational method that analyzes DNA methylation modifications at a genomic

locus defined as a group of four contiguous CpGs covered by single sequence reads

[17]. We computed for each genomic locus the epipolymorphism, defined as a prob-

ability distribution of the 16 possible methylation patterns (epialleles): a high value

of epipolymorphism indicates a stochastic process of DNA methylation [18] (Ad-

ditional file 3: Figure S3). Almost all genomic loci were located in CGIs (85% in

MM samples) and, to a lesser extent, in promoter transcription start sites (TSSs)

and gene bodies (74% in MM samples, Additional file 3: Figure S4). We plotted

epipolymorphism distribution as a function of methylation level for all loci in NPCs

and MM samples (Fig. 2a). Remarkably, loci with modest methylation levels (5% -

25%) showed a higher degree of epipolymorphism in cancer cells than in control cells

whereas at higher methylation levels, epipolymorphism distribution was similar in

MM and NPCs, indicating enrichment of a fraction of loci-CGIs with a stochastic

methylation state at the expense of a bimodal methylation profile in MM samples.

In all cases, promoter CGI methylation gain was associated with an increase in

epipolymorphism (Additional file 3: Figure S5).

To further characterize epiallele patterns of each sample, we stratified loci accord-

ing to the frequency of fully methylated or fully unmethylated epialleles (Fig. 2b

and Additional file 3: Figure S6). NPC loci displayed near-bimodal distribution,

with a large number of homogeneous loci either fully unmethylated or fully methy-

lated (Fig. 2b, top). Conversely, in MM samples, a large number of loci showing

high epipolymorphism levels were along the axes, indicating marked enrichment for

stochastic (i.e., neither fully methylated nor fully unmethylated) methylation pat-

terns (Fig. 2b, bottom). Notably, this intrasample methylation heterogeneity was

already present at the early stage of the disease, recognized as smoldering MM

(SMM), and persisted at relapse (Additional file 3: Figure S6). A complementary

approach that measures the proportion of discordant reads (PDR) [15] confirmed

the increase in epigenetic heterogeneity in MM cells compared to NPCs. We found

that the average PDR (i.e. genomic loci with a large number of reads that contain

both unmethylated and methylated CpGs over the total number of reads) was sig-

nificantly higher (p-value < 0.05 (DTK pairwise)) in MM samples, regardless of the

disease stage, than in NPCs (Fig. 2c).

Overall, these results revealed that during disease initiation, growth and progres-

sion, malignant PCs accumulate randomness in DNA methylation at the expense

of a more coherent methylation state, leading to a high degree of intratumoral

epigenetic heterogeneity in MM patients.
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Entropy changes in MM development

Since we have shown that stochastic DNA methylation gains lead to intratumor

heterogeneity, we sought to analyze epiallelic dynamics during MM development

and progression. We used an algorithm that allows the identification of epigenetic

loci (eloci) that have a significant epiallele composition change (entropy change)

between two states (e.g., normal vs cancer or diagnosis vs relapse). To compare

global methylome changes across patient samples, the number of eloci was nor-

malized according to the number of covered loci, referred to as eloci per million

loci covered (EPM ) (Additional file 3: Figure S7)[17]. We first examined the link

between the degree of epiallelic shifting and outcome. For this purpose, patients

were separated into two groups according to their EPM values. We found that MM

patients with high EPM had reduced relapse-free survival (p-value = 0.02 (log-rank

test); Fig. 3a). EPM was independent of age, sex and ploidy. Remarkably, the ex-

tent of entropy changes varied greatly between patients at diagnosis and persisted

at relapse compared to NPCs (Fig. 3b, c). The genome-wide distribution of eloci

showed a predominant location at CGIs (average 54% in MM vs NPCs). As a con-

trol, we determined eloci by comparing NPCs to NPCs (NPC eloci) and found, on

average, 19% of eloci in CGIs (p-value (Wilcoxon) = 0.0018) and at promoter-TSS

(average 15% in MM vs NPCs and average 3% in NPC eloci; p-value (Wilcoxon)

= 0.0123) (Additional file 3: Figure S8). We observed a similar distribution of eloci

in relapse samples compared to NPCs (p-value (Wilcoxon) = 0.75 (CGIs) and 0.82

(promoter-TSS), Additional file 3: Figure S8).

To gain insights into the biological functions of epigenetic perturbations, we per-

formed gene ontology enrichment analysis for genes having eloci (MM diagnosis vs.

NPCs) in promoter CGIs (Fig. 3d). Interestingly, associated genes showed marked

enrichment for developmental regulators and transcription factor activity, while

genes with promoter CGIs, including NPC eloci, were not enriched in any pathways

or gene ontology terms. The identification of key signaling pathways rather than

specific genes was not surprising considering the high DNA methylation variability

across patients. Similar finding were reported by Easwaran et al. across different

tumor types [19].

To further examine the impact of treatment on entropy changes, we assessed the

epiallele shifting level during time to relapse by comparing diagnosis vs relapse

paired samples (Fig. 3e). The degree of difference was highly variable from one pa-

tient to another; 24% of patients showed no epigenetic changes (EPM = 0) while

42% showed substantial changes (EPM > 1000) between diagnosis and relapse. We

then focused our analysis on the evolution of extreme epiallele patterns (i.e., one

predominant epiallele or a mixture of low represented epialleles) during two disease

stages (i.e., before and after treatment). For this purpose, we compared epiallele

shifts between NPCs and diagnosis samples and between paired samples at diag-

nosis and relapse. Interestingly, among the four possible epiallele pattern changes

(Additional file 3: Figure S9), the selection pattern was significantly enriched at

relapse compared to that at diagnosis (p-value (paired Wilcoxon) = 0.0059, Fig.

3f). Although this pattern involved a small number of eloci (median value = 4.2%),

this finding suggests that treatment escape is associated with clonal selection at

specific genomic loci.
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Given the central role of chromatin in stabilizing gene expression and cellular

states, we wanted to determined whether chromatin states are associated with ge-

nomic loci showing significant entropy changes in MM. To answer this question, we

analyzed the distribution of eloci using 127 cell/tissue types at 25-state chromatin

state segmentation [20] (Additional file 3: Figure S10a). Hypomethylated eloci were

found in quiescent states while hypermethylated epiallele shifts were predominant

in bivalent promoter-associated chromatin states (Additional file 3: Figure S10b).

In addition, the frequency of these two subtypes of eloci varied widely between

patients (Additional file 3: Figure S11).

Abnormal bivalent promoter eloci CGI methylation increases intra- and intertumor

heterogeneity and targets Wnt and Ras/MAPK signaling

We found that eloci were predominantly enriched (82.5%) in the bivalent promoters

of embryonic stem cells (ESCs) (Additional file 3: Figures S10a and S12). In the

embryonic system, bivalent promoter genes are not regulated by DNA methylation

but rather by the simultaneous presence of the repressive mark H3K27me3 and

the active transcription mark H3K4me3, which allow low basal transcription states

that are dynamically inducible to ensure a balance between self-renewal and lineage

commitment [21]. We compared the average change in the DNA methylation of eloci

between MM samples and NPCs. In patient M#17, who had the highest number of

eloci, we observed that 93% of the eloci acquired extensive gains of DNA methylation

(higher than 40%) during neoplastic transformation (Fig. 4a and Additional file 3:

Figure S13). Methylation gains are maintained during progression (Fig. 4a). This

perturbation was associated with a decrease in gene expression in diagnosis and

relapse samples compared to NPCs, whereas upregulated genes were present mostly

at the time of diagnosis in almost all patients (Fig. 4b and Additional file 3: Figure

S14). To further examine the relationship between gene expression and entropy

changes in MM patients, we compared the expression levels between bivalent genes

containing hypermethylated eloci in their promoter and bivalent genes without eloci.

We found that disrupted (i.e., containing hypermethylated eloci) bivalent genes were

less expressed but displayed greater interpatient variability (Fig. 4c; only genes

with a mean expression level above 1 were taken into account for the coefficient

of variation). Gene set enrichment analysis revealed that disrupted bivalent genes

were enriched for important cancer-related pathways, including the Wnt and MAPK

signaling pathways (Fig. 4d).

Myeloma cells are characterized by predominant stochastic methylation gains at

bivalent promoters reflected by a high PDR and epipolymorphism, leading to intra-

tumor heterogeneity (Fig. 4e). We then analyzed the consequences of intratumoral

methylation variability on bivalent gene expression levels across the 20 MM sam-

ples. We separated the genes into two groups according to the PDR level of their

bivalent promoter (lower or higher than the mean PDR) and calculated, in each

group and for each patient, the odds ratio (OR) of the association between gene

expression (FPM > 1 vs. ≤ 1) and bivalent promoter methylation (mean methyla-

tion < 25% vs. mean methylation > 75%; Fig. 4f and Additional file 6: Table S5).

In all MM samples, promoters with a low PDR tended to maintain the expected

opposite relationship between promoter methylation and transcription, whereas in
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promoters with a high PDR, for the majority of patients, the link between methyla-

tion and expression did not remain significant, and for some patients, we observed a

significant link, but the relationship was opposite to the expected result (OR > 1).

For example, LIPG, which showed comparable methylation levels in two samples

(0.61 in M#14 and 0.63 in M#08) coupled with opposite expression levels (FPM

of 4.57 in M#14 and 0.29 in M#08), demonstrates the decoupling relationship be-

tween promoter methylation and gene expression. M#14 displayed a high promoter

PDR (0.80), whereas M#08 displayed a low promoter PDR (0.29, Additional file 3:

Figure S15). OR analysis clearly showed the contribution of intratumoral methyla-

tion heterogeneity to increased transcriptional variability in MM. These results are

concordant with those obtained in chronic lymphocytic leukemia (CLL) [15].

Entropy changes towards hypomethylation preferentially occur in PMDs

Hypomethylated epiallele shifts are localized mainly in quiescent genomic regions

(Additional file 3: Figure S10). We identified in most of the MM samples two subsets

of hypomethylated eloci compared to normal samples (Fig. 5a, b and Additional

file 3: Figure S16). The first type included extensively demethylated loci (Fig. 5b,

bottom) and the second type contained epipolymorphic loci emerging due to partial

methylation loss (Fig. 5b, top). Genomic regions that have lost their methylated

state, termed partially methylated domains (PMDs), were initially discovered in

a fibroblast cell line [22]. Several studies have reported cancer and noncancer hu-

man primary cells with PMDs [23, 24, 25, 26, 27]. PMDs cover approximately 50

to 75% of the genome of the human primary cell types and tissues investigated,

while roughly a quarter are shared which indicates that PMDs retain strong tissue

and cell type specificity characteristics [26]. To perform a comprehensive analysis

of PMDs in MM, we used MethylSeekR [28] with default parameters to analyze

WGBS data from our cohort of MM samples and the available WGBS dataset. We

detected PMDs in both NPC samples and in only five MM samples from our co-

hort (Additional file 3: Figure S17). The PMD structure was highly similar between

normal and MM cells despite a very variable level of DNA methylation (Additional

file 3: Figure S18a). The base overlap was greater than 80%, the median length

distribution was approximately 51 kb and the mean genome coverage was approx-

imately 65% of the genome (Additional file 3: Figure S18b). Given the very good

overlap between NPC and MM PMDs, we subsequently studied PMDs determined

from NPCs (referred to as PC-PMDs) in MM patients.

PC-PMD borders are not random and coincide with spatial genome organization,

as indicated by the closeness of topological associated domain (TAD) borders to PC-

PMD borders, which is larger than expected by chance (p < 0.001). In addition,

PC-PMDs share key features with PMDs of various tumor types and normal tissues

[24, 26, 27], including the correlation with lamina-associated domains (LADs) [29],

late-replication timing and low gene density (Additional file 3: Figure S19a,b,c).

Except for one sample, PC-PMDs that intersected with LADs displayed a long

replication time and significantly low methylation levels (Additional file 3: Figure

S19d,e). Importantly, the vast majority of hypomethylated eloci (70%) were located

within PC-PMDs.
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Severe DNA methylation loss in PC-PMDs contributes to the redistribution of

repressive histone marks and perturbations in CGIs/TSSs

We next examined the PC-PMDs methylation status across patients and the as-

sociated functional features. As expected, the DNA methylation level was lower

within than outside of PC-PMDs (Fig. 5c) and variable between patients (Fig. 5d).

In addition, this variability was associated with the PC-PMD length and replica-

tion time (Additional file 3: Figure S20). To study the relationship between DNA

methylation and other epigenetic features, we integrated available WGBS data to-

gether with ChIP-seq data for histone marks. We found that the DNA methylation

changes within PC-PMDs were associated with perturbations in both H3K9me3

and H3K27me3. Notably, the H3K9me3 deposit was associated with severe DNA

methylation loss in long PC-PMDs (> 1 Mb) (Fig. 6a), as exemplified for the pa-

tient MM15548, with an unmethylated 3 Mb PC-PMD that was highly enriched

with H3K9me3 (Fig. 6b). To our knowledge, such widespread H3K9me3 deposits

associated with DNA methylation loss have so far been observed only in PMDs

of cancer cell lines [26, 30, 31]. H3K27me3 was also perturbed inside PMDs. No-

tably, H3K27me3 enrichment was correlated with DNA methylation erosion (Fig.

6c). One notable example is the DOCK3 -containing PC-PMD, which is enriched in

H3K27me3 and showed H3K27me3 deposits in patients MM15548 and MM22965,

who also exhibited DNA methylation erosion in this PMD; howerver, in another

patient (MM23977) with a methylation level in this PMD comparable to that in

NPCs, the H3K27me3 mark was absent (Fig. 6d). Taken together, these result show

that perturbations in repressive histone marks are variable and depend on genomic

regions, patients and DNA methylation levels.

We next investigated the impact of PC-PMD methylation erosion on regulatory

regions. We found that the normal near-bimodal methylation state observed outside

of PC-PMDs, was completely abolished inside PC-PMDs (Fig. 6e). As a result, pro-

moter CGIs lost their hypomethylated state and gained intermediate methylation

levels, while adjacent regions became less methylated to reach an intermediate de-

gree of methylation. Notably, the acquisition of DNA methylation inside PC-PMDs

resulted in a significant increase in the intermediate methylation state (>20% to

<80%) of CGIs at the expense of strictly methylated or unmethylated states in

all MM patients examined (Fig. 6f), in agreement with results obtained in breast

cancer [24]. We noted that this phenomenon was also observed, albeit to a lesser

extent, in NPCs (Additional file 3: Figure S21a); however, the percentage of loci

with a high level of discordant reads (> 50%) was higher in all MM compared to

normal samples (Additional file 3: Figure S21b) indicating that although PC-PMD

methylation is perturbated in NPCs, CGI methylation patterns are more homo-

geneous (i.e., either fully methylated or unmethylated) (Additional file 3: Figure

S21c).

Interestingly, a large proportion of bivalent promoter CGIs with disrupted DNA

methylation was embedded within PC-PMDs (39% totally included and 54% with

at least 30% of shared bases, as exemplified in Additional file 3: Figure S22). Fur-

thermore, PC-PMD methylation loss was correlated with an overall epiallele shift

increase (Spearman p = 0.46) (Additional file 3: Figure S23). These results support

the notion that PC-PMD methylation loss may locally fuel epiallele shifts.
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Given the interpatient heterogeneity of PMD methylation, we also investigated

variations in gene expression. We found more gene expression variability inside

PC-PMDs than outside of PC-PMDs; this difference was also maintained at re-

lapse (Fig. 7a). Interestingly, we found that genes inside PC-PMDs were abundant

within 186 kb of PC-PMD boundaries (Fig. 7b). We therefore focused our analy-

sis on genes located near boundaries: Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis revealed specific enrichment in immune-related pathways

including cytokine-cytokine receptor interaction, complement and coagulation cas-

cades, autoimmune thyroid disease, natural killer cell-mediated cytotoxicity, anti-

gen processing and presentation, regulation of autophagy, cell adhesion molecule

and graft-versus-host disease (Fig. 7c). This enrichment pattern in PC-PMDs could

provide an explanation for immune evasion mechanisms that occur during tumor

progression [32, 33].

Taken together, these results show that MM displays a high epigenomic instability

and great transcriptomic variability in PC-PMDs which might be beneficial for

tumor cells.

Three-dimensional (3D) reorganization is favored in hypomethylated PMDs

Global DNA methylation loss impacts spatial genome organization in the nucleus

[34]. We wondered whether severe DNA hypomethylation that occurs during MM

development could reshape 3D chromatin architecture in MM cells. The chromatin

fiber of eukaryotic genomes is folded at multiple levels, including large-scale ge-

nomic structures to form distinct chromatin compartments A and B, characterized

by gene-dense transcriptionally active open chromatin and gene-sparse transcrip-

tionally closed chromatin, respectively [35]. During cancer development the genome

is reorganized, and as a consequence, genomic regions of compartment A switch

to those of compartment B and vice versa. The proportion of compartment A/B

switching varies according to tumor type [36, 37]. We investigated the relationships

between PC-PMDs and compartment A/B switching. We determined compartment

A/B boundaries at 20-kb resolution from Hi-C data in a lymphoblastoid B cell line

(GM12878), with a DNA methylome similar to that of PCs [12], and in the myeloma

cell lines U266 and RPMI8226. We found that PC-PMDs were more prone to switch

than other genomic regions (Fig. 8a). As a representative example, IGF1R, which

encodes a major mediator of growth and survival in MM, and is located astride com-

partments A and B in NPCs, switched entirely to compartment A in both myeloma

cell lines (Fig. 8b).

Altogether, these results show that compartment switching might be favored by

PMD instability.

Discussion
MM is a heterogeneous disease. However, until now, only studies on genetic abnor-

malities have demonstrated the presence of subclonal populations that encountered

complex evolution during the course of a disease. A recent study highlighted the

contribution of intratumor epigenetic heterogeneity to shape CLL evolution after

therapy [38]. To assess intrapatient DNA methylation heterogeneity in MM, we

used the eRRBS technique, which allows us to capture the methylation status of
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individual CpGs in a single cell (more precisely in one single allele), with a large

sequencing depth. Combining the notions of epipolymorphism and epiallele switch-

ing, we showed that the MM epigenome is characterized by high intratumor hetero-

geneity with a predominantly stochastic methylation pattern. Furthermore, a high

methylation entropy change between malignant and NPCs is associated with a high

risk of relapse.

We found that genes that undergo epiallele shifting are enriched in the control of

developmental genes. Interestingly, in a model wherein hematopoietic progenitors

are proposed to be the cells of origin in MM, an aberrant epigenetic program persist-

ing through normal cell differentiation is implicated in tumor initiation [39]. Further

analysis of this aberrant epigenetic program revealed strong enrichment of biolog-

ical functions associated with developmental regulation (Additional file 3: Figure

S24), suggesting that a disruption in developmental pathways could play a key role

in the initiation of MM and increase susceptibility to oncogene transformation in

response to environmental changes [40].

Entropy changes in bivalent promoters are associated with DNA methylation

gains. These gains are stochastic, with an elevated PDR, which leads to a decoupling

relationship between promoter methylation and transcription. These results are in

line with those obtained in CLL [15]. Moreover, in CLL, single cell RNA-seq analy-

sis showed that a high PDR is correlated with a “noisy” transcriptional landscape

and an intermediate transcriptional state that interferes with complete silencing or

high-level expression. Several studies have also shown the role of cellular heterogene-

ity and gene expression noise in overcoming drug resistance or metastatic barriers

[41, 42, 43]. Together, these data suggest that increased stochastic methylation vari-

ation allows tumor cells to better adapt and find new trajectories in response to

environmental changes.

A large majority of entropy changes between normal and malignant plasma cells

associated with DNA methylation loss are found in regions that are already par-

tially methylated in normal cells, indicating that PC-PMDs delimit genomic regions

in which methylation information is not accurately maintained due to reduced en-

ergy consumption and channel capacity, as recently demonstrated for compartment

B [44]. These large regions that cover approximately 70% of the genome are the

major source of variability within MM patients. The PMDs of naive B cells display

strong, progressive DNA methylation loss with differentiation into PCs [25]. Dur-

ing their maturation, PCs undergo successive rounds of division coupled with DNA

methylation loss, thus supporting the idea that PMD hypomethylation is linked to

mitotic dynamics [45, 46, 47].

In myeloma cells, PC-PMD hypomethylation is associated with other key epige-

netic aberrations, such as promoter CGI hypermethylation. Indeed, we observed

a loss of the hypomethylated state and gained intermediate methylation levels in

regulatory regions within PC-PMDs. This disturbance has already been observed in

NPCs; however, disordered methylation at promoters is lower in NPCs than in ma-

lignant cells, indicating a homogeneous methylation pattern at the promoter being

either fully methylated or unmethylated. Approximately half of bivalent promoters

with a high PDR in MM are associated with PC-PMDs. Therefore, the DNA methy-

lation landscape of MM resembles that of the placenta, with stochastic methylated
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gain in CGIs embedded in large hypomethylated regions, suggesting that, as in other

cancers, myeloma cells coopt placental nuclear programming [48, 49]; this finding is

of particular interest since placental and cancerous tissues share relevant features

such as immune modulation, angiogenesis and tissue invasion [50]. Interestingly,

the specific enrichment of genes in immune-related pathways was revealed when we

focused our analysis on genes located near PC-PMD boundaries.

PC-PMDs are also linked to the redistribution of repressive marks. We showed

that PC-PMD hypomethylation is associated with a disruption in the H3K9me3 and

H3K27me3 marks and variable depending on genomic regions, patients and DNA

methylation levels. Promoter CGI controlling developmental genes are silenced by

the PRC2 complex, which is responsible for the deposition of H3K27me3 via its

catalytic component, EZH2. According to the model of Reddington et al [51], we can

hypothesize that DNA methylation prevents PRC2 from binding to inappropriate

targets, and that global hypomethylation due to tumorigenesis drives H3K27me3

redistribution responsible for the derepression of target genes and the repression of

new genes. This redistribution may partially explain the derepression of HOXA9 [52]

and the de novo bivalent promoters [53] observed in MM. H3K27me3 redistribution

could also play an important role in chromatin decompaction, as has been shown

in ESCs [54], and could explain the increase in open chromatin regions within the

heterochromatin state of MM samples [55]. These data highlight that PMDs must

be considered as a separate entity in genomic analyses.

Furthermore, we showed that DNA hypomethylation is variable within the

myeloma cells of one individual and that methylation loss modifies H3K27me3

distribution across patients; we can hypothesize that H3K27me3 redistribution is

heterogeneous among myeloma cells, leading to cell-to-cell epigenetic variability.

Consequently, the tumoral mass in a MM patient would be composed of an admix-

ture of myeloma cells with divergent epigenetic identities, in accordance with what

has been demonstrated recently in CLL [56].

Conclusion
Altogether, our results show the importance of genome-wide epigenetic analysis and

reveal marked PMD instability in MM patients at presentation. The perturbation

in PMDs occurs at the epigenetic, transcriptomic and 3D organization levels and

is responsible for interpatient variability. This disturbance in PMDs could explain,

in part, some aberrant and heterogeneous phenotypes across MM samples [57, 58].

In addition, the lack of accurate global DNA methylation maintenance also drives

intrapatient DNA methylation heterogeneity, which can contribute to intrapatient

variability, allowing cell-to-cell diversity in transcriptional programs and opening

multiple trajectories in response to therapy (Additional file 3: Figure S25).

Materials and Methods

Patients and samples

Myeloma PCs were derived from bone marrow samples collected at different stages

of myeloma: 47 samples form 26 patients were collected at the SMM, diagnosis and

relapse stages. Patients (15 women and 11 men, with a median age of 59 years)

were monitored at the Intergroupe Francophone du Myélome (IFM) center, and all

provided informed consent (Additional file 1: Table S1).
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Sample preparation and nucleic acid purification

Myeloma cells were purified using nanobeads and an anti-CD138 antibody (Ro-

boSep, Stem Cell Technologies). After immunomagnetic sorting, the purity of the

plasma cell suspension was verified, and only samples with at least 85% of PCs were

subjected to genomic analysis. The average cell purity of MM was > 99% (range 90-

100%). Control normal plasma cells (NPC1 to NPC3) were obtained from the bone

marrow samples of three patients suspected of having monoclonal gammopathy of

undetermined significance (MGUS), and the absence of abnormal PCs was assessed

by flow cytometry. The average CD138+ cell purity was > 75%. The DNA and

RNA of CD138+ cells were purified using the Qiagen protocol and the quality and

quantity of the nucleic acids were measured on the Nanodrop, Qubit and Agilent

profiles and stored in the MM biobanks of the Nantes and Toulouse Hospitals.

eRRBS

eRRBS is an improvement of the reduced representation bisulfite sequencing

(RRBS) protocol, resulting in an increase in CpG detection and coverage. eRRBS

library preparations were performed by Integragen and adapted from the protocol

described by Garrett-Bakelmanet al. [59]. DNA was digested with the Msp1 enzyme,

fragments between 150 bp and 400 bp were selected, and bisulfite conversions were

processed. Libraries were sequenced on a HiSeqTM 4000 Illumina machine using

75 bp paired-end reads to an average depth of 50X per covered CpG. The average

number of reads sequenced per patient was 55 216 285; and the average alignment

rate of uniquely mapped reads was 60.81%, with an average of 2 712 252 CpGs per

patients with a coverage of 10X and an average of 1 538 510 CpGs per patient with

a coverage of 60X (Additional file 4: Table S3).

eRRBS analysis

The adaptor sequences were removed by Cutadapt (version 1.10) [60]. FastQC (ver-

sion 0.11.4) was used for quality control of the Illumina paired-end sequencing

data [61]. Bisulfite reads were aligned to the bisulfite-converted hg19 genome with

the nondirectional model of Bismark alignment software (version 0.14.1) [62]. CpG

methylation levels were obtained using the R package methylKit with the default

settings: a minimum of 10 reads covering a CpG and at least 20 PHRED quality

scores by CpG [63]. We calculated the epigenetic changes between two stages using

methclone [17], an algorithm that detects loci of 4 adjacent CpGs (minimum depth

of 60 reads), called epialleles (16 possible patterns according to CpG methylation).

Epipolymorphism and epiallele shifting

Epipolymorphism (e) was calculated for each locus of the four adjacent CpGs, to

measure intratumor epigenetic heterogeneity, as previously described by Landan et

al. [18]:

e = 1 −
∑16

i=1 p
2
i

where pi is the proportion of the epiallele i. The minimal epipolymorphism is 0

(only one pattern represented); epipolymorphism cannot have a value greater than

1. The maximum value of epipolymorphism is 0.9375 (when all 16 patterns are

equally distributed). To quantify the degree of epiallele pattern shift, methclone was
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used to compute the entropy difference (∆S) and thus compare the distributions of

epialleles between different stages. The entropy difference value can range from 0 (no

change) to -144 (maximum change). Loci are characterized as eloci when ∆S < -70

(corresponding to a significant entropy shift). The methclone algorithm allows the

discovery, quantification and ranking of subclonal selection based on epiallele shifts.

This allows us to measure clonal evolution between disease stages and epigenetic

heterogeneity.

To normalize and compare the number of eloci per patient, we computed the

number of eloci per million loci sequenced (EPM) as previously described by Sheng

Li et al. [17]:

EPM = 106

C × E

where E is the total number of eloci detected between the two stages and C is the

total number of loci covered by both samples.

A locus between the NPC and diagnosis samples was defined as an elocus only if it

was annotated as an elocus with the 3 NPCs. A hypermethylated or hypomethylated

elocus was defined as a DNA methylation difference of at least 25%.

The PDR variable was defined as the percentage of epialleles exhibiting hetero-

geneous DNA methylation (i.e., not fully methylated or unmethylated).

WGBS

Data quality control and adaptor trimmed were performed with the Trimmo-

matic tool [64]. Read mapping was carried out with the methylCtools aligner [31].

methylCtools uses an alignment approach similar to that of Bismark by improving

the handling of large amounts of data and the speed of alignment. CpG extrac-

tion and methylation analyses were carried out with methylCtools and the bsseq

R package [65], allowing the analysis, management and storage of WGBS data. As

with eRRBS data, we set a coverage threshold of a minimum of 10X for each CpG

sequenced for our analyses. The dmrseq R package was used to visualize WGBS

data and smooth methylation signals [66].

Detecting PMDs

PMDs were detected in WGBS samples using the R package MethylSeekR [28].

Prior to the detection of PMDs, CpGs overlapping with common single-nucleotide

polymorphism (SNPs) were removed from the data (dbSNP137commonhg19, ver-

sion 1.0.0). The distribution of α values was used to determine the presence or

absence of PMDs in samples. When the α distribution was bimodal, the segmentP-

MDs function was run to identify PMDs on the genome by a hidden Markov model.

RNA sequencing (RNA-seq)

RNA-seq was performed using 200 ng of total RNA by GATC Biotech. Directional

libraries were generated after mRNA selection by polyA selection using the UTP

method. RNA-seq libraries were sequenced on a HiSeq 2500 Illumina machine using

100 bp paired-end reads. The average number of reads sequenced per sample was

68 454 433. The average alignment rate of uniquely mapped reads was 66% (cor-

responding to 48 034 921 reads). Read alignment was performed using the STAR

aligner (version 2.4.0f1) [67] and human genome hg19 as the reference. FastQC
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(version 0.11.4) [61] was used for basic quality control of the Illumina paired-end

sequencing data. PCR duplicates were determined and removed using the Picard

algorithm [68]. The number of reads mapped to each gene was calculated using

HTSeq-count, part of the HTSeq framework [69], version 0.6.0. We then normalized

the mapped read counts per million of mapped fragments (FPM) using the robust

median ratio method with the DESeq2 R package [70].

Hi-C data analysis and compartments A/B

Hi-C datasets were downloaded for three cell lines: GM12878 (GSM1608505),

RPMI-8226 (GSM2334832) and U266 (GSM2334834). HiC-Pro software (version

2.10.0) [71] was used to process Hi-C data, from raw-data to normalized contact

maps. All reads were mapped to hg19 using Bowtie2 (global parameters: –very-

sensitive -L 30 –score-min L,-0.6,-0.2 –end-to-end –reorder; local parameters:–very-

sensitive -L 20 –score-min L,-0.6,-0.2 –end-to-end –reorder). Contact maps were

generated at 20 kb resolution and normalized by the iterative correction and eigen-

vector decomposition (ICED) technique.

The 20-kb resolution intrachromosomal contact matrices generated by HiC-Pro

were used as input to determine compartments A/B and to annotate and visualize

interaction maps with R package HiTC version 1.22.1 [72] . Principal component

analysis was used to separate chromatin into two compartments: compartment A,

with higher gene density, and compartment B, with lower gene density. The determi-

nation of compartments A and B was estimated by the analysis of the eigenvectors

of the genome contact matrix by the observed-expected method. On the basis that

changes in the sign of the eigenvector of the contact matrix correspond to the limits

of the genome compartments and taking into account gene density, the compart-

mentalization of the genome was defined.

TADs

Hi-C data were used to determine the TADs with the HiCExplorer tool, a set of

programs used to process, normalize, analyze and visualize Hi-C data [73]. TADs

were defined with hicFindTADs and hicPlotTADs was used to visualize the TADs.

For the comparison of PMD and TAD borders, we generated a set of randomized

PMDs with a size and genomic distributions similar to those of real PMDs. We then

calculated the distance between TAD borders and, on the one hand, PMD borders,

and, on the other hand, random PMD borders. A t test was carried out to compare

the distributions of these distances.

Genomic annotation

RefSeq annotation and CpG islands were obtained from UCSC (https:/garance/

genome.ucsc.edu/) using the February 2009 (GRCh37/hg19) assembly. CpG

shores were defined as regions flanking 2 kb of CpG islands, and CpG shelves were

defined as regions flanking 2 kb of CpGs shores.

HOMER was used to annotate loci and eloci, using the annotatePeaks.pl script

[74], which determines the genomic type annotation occupied by the center of the

loci. We used their basic annotation, including TSSs, transcription termination sites

(TTSs), exons, introns and intergenic regions. We defined the promoters as regions

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.10.01.321943doi: bioRxiv preprint 

https:/garance/genome.ucsc.edu/
https:/garance/genome.ucsc.edu/
https://doi.org/10.1101/2020.10.01.321943
http://creativecommons.org/licenses/by-nc-nd/4.0/


Derrien et al. Page 14 of 27

flanking 2 kb of the TSS, and we defined promoter CGIs as promoters that intersect

with CpG islands.

All 127 reference epigenomes with 25 chromatin state segmentation annotations

were downloaded from the NIH Roadmap Epigenomics Project (https://egg2.

wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/imputed12marks/

jointModel/final/;all\OT1\textquotedblleft25_imputed12marks_mnemonics.

bed.gz\OT1\textquotedblrightfiles).

To measure the intersections between regions, bedtools was used (more precisely,

the ”intersect” option) [75].

Data from the BLUEPRINT Consortium were converted to hg19 coordinates

using the liftOver tool [76].

Functional annotation

GREAT tools (version 3.0.0) was used to assign biological functions to noncoding

genomic regions by analyzing the annotations of the nearby genes [77] under the

following default gene regulatory domain definitions; basal promoter: 5 kb upstream,

1 kb downstream and extension up to 1 Mb. Enrichment statistics were computed

using the binomial test and the hypergeometric gene-based test. Pathways were

selected as significantly enriched if the false discovery rate (FDR q-value) was <

0.01.

The Database for Annotation, Visualization and Integrated Discovery (DAVID)

web interface (version 6.7) was used to perform functional enrichment analysis from

a list of genes, especially the KEGG pathways functional database [78]. Enrichment

statistics were computed using the Fisher test. For the significance threshold, we

have considered genes as greatly enriched if the annotation categories yielded a

p-value less than 0.1 (DAVID default threshold)[79].

Survival analysis

Time to relapse data were available for 17 patients. For the relapse-free survival

(RFS) analysis, the survival endpoint in this study was the time from diagnosis

until relapse. The patients were divided into two groups by the median EPM value:

low and high EPMs. Survival curves were estimated using the Kaplan-Meier method

and compared with the log-rank test.

For all statistical tests in this study, a two-sided p-value of 0.05 was consid-

ered statistically significant. All statistical analyses were performed with software

R 3.5.1 [80], in addition to the packages already mentioned in the text, pack-

ages data.table [81], viridis, ggbio, GenomicRanges, RColorBrewer, biovizBase, grid,

gridBase, MASS, fields, KernSmooth, sp, org.Hs.eg.db, DBI and survival were used.

Abbreviation
MM: Multiple myeloma; PMDs : Partially methylated domains; CGI: CpG island; TSS: Transcription start site; PCs:

Plasma cells; NPCs: Normal plasma cells; WGBS: Whole genome bisulfite sequencing; eRRBS: Enhanced reduced

representation bisulfite sequencing; SMM: Smoldering multiple myeloma; PDR: Proportion of discordant reads;

eloci: Epigenetic loci; EPM: Eloci per million loci covered; ESCs: embryonic stem cells; FPM: mapped read counts

per million of mapped fragments; OR: Odd ratio; CLL: Chronic lymphocytic leukemia; TAD: Topological associated

domain; LAD: lamina-associated domain; KEGG: Kyoto encyclopedia of genes and genomes; 3D: Three-dimensional;

IFM: Intergroupe francophone du myélome; MGUS: Gammopathy of undetermined significance; RRBS: Reduced

representation bisulfite sequencing; SNPs: Single-nucleotide polymorphism; RNA-seq: RNA sequencing; ICED:

Iterative correction and eigenvector decomposition; TTS: Transcription termination site; FDR: False discovery rate;

DAVID: Database for annotation, visualization and integrated discovery; RFS: Relapse-free survival.
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Figure 1 Global analysis of the DNA methylome of myeloma samples at diagnosis and NPC
samples. (a) Circos plot of DNA methylation levels measured in WGBS data. From the center to
the outside: NPC5 (data from the BLUEPRINT project, ERX301127), M#17, M#19, and M#10.
Histograms represent CpG methylation levels averaged in 10-Mbp genomic windows. (b) Density
distribution of DNA methylation levels measured in WGBS data for NPC (green, data from the
BLUEPRINT project, ERX301127,ERX715130) and MM diagnosis (orange) samples. This color
code was used in all figures. (c) CpG methylation within 100 bp genomic units as a function of
local CpG density. (d) Mean methylation of CGIs and flanking regions in MM patients compared
to NPCs. (e) Dispersive DNA methylation surrounding the DOC2B promoter in MM samples and
in NPCs.
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Figure 2 Intrapatient DNA methylation heterogeneity in MM. (a) Epipolymorphism levels as a
function of the average DNA methylation at each locus in NPC (green) and diagnosis (orange)
samples. The maximal epipolymorphism (continuous black line) and the bimodal epipolymorphism
(dotted black line) are represented. (b) Scatterplots showing loci organization for NPC2 and
M#19 diagnosis samples. Each point corresponds to a locus of 4 adjacent CpGs. On the left, each
point is color coded according to the density of the surrounding points; on the right, each point is
color coded according to its epipolymorphism level. (c) Mean proportion of discordant reads per
sample.
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Figure 3 Evolution of epiallelic changes during the progression of MM and their clinical
impact. (a) Time to relapse analysis for patients with high (blue, n=9) or low (gray, n=8) EPM
values. (b) EPM values of NPC samples (NPC eloci, in green) and MM samples at diagnosis (MM
eloci in orange). (c) Correlation between EPM at diagnosis and relapse compared to that in
NPCs. (d) Enrichment analysis of eloci (NPC vs diagnosis) located in promoter CGIs and their
associated ontological terms was performed with the GREAT tool [77]. (e) EPM value for each
pairwise comparison between diagnosis and relapse (diagnosis vs relapse eloci). (f) Proportion of
eloci presenting a selection of a methylation pattern at diagnosis compared to NPCs (in gray) and
at relapse compared to diagnosis (in blue).
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Figure 4 Methylation disruption in bivalent promoters in MM. (a) Scatterplot of eloci in
bivalent promoters as a function of DNA methylation in NPCs and diagnosis (left) and as a
function of DNA methylation at diagnosis and relapse (right) for patient M#17. The color
gradient corresponds to the point density (low is green; high is red). (b) Scatterplot of DNA
methylation of the eloci promoters versus RNA expression of the associated genes. (c) Normalized
expression values of genes with a promoter CGI containing a hypermethylated elocus or no elocus
(left) and the variation coefficient of these genes in MM samples (right). (d) Ontological analysis
of genes with a bivalent promoter CGI affected by hypermethylated eloci. (e) Average methylation
epiallele patterns of eloci in promoter CGIs for NPC and diagnosis samples (epi=
epipolymorphism). (f) Odds ratios with 95% confidence intervals for the association between gene
expression (FPM > 1) and promoter methylation (average methylation > 0.75/average
methylation < 0.25) for genes with high (red) or low (blue) PDR levels in the promoter.
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Figure 5 DNA methylation loss in partially methylated domains. (a) Scatterplot of
hypomethylated eloci as a function of their epipolymorphism in NPC and diagnosis samples
(M#09). The color gradient corresponds to the point density (low is green; high is red). Two eloci
populations can be distinguished. The first population (top box) had a moderate decrease in
methylation associated with a strong epipolymorphism, and the second population (bottom box)
had a low heterogeneity and a drastic methylation decrease at diagnosis. (b) DNA methylation
levels by patient of eloci with partial demethylation (eloci with an epipolymorphism value between
0.4 and 0.8 in NPCs and remain at the same level in MM) per patient are shown at the top, and
DNA methylation levels of eloci with a decreased epipolymorphism value at diagnosis (eloci with
an epipolymorphism value between 0.4 and 0.8 in NPCs, and an epipolymorphism value ≤0.2 at
diagnosis) per patient are shown at the bottom. Green segments show the average methylation
level of NPCs for these loci. The circles under the patient labels represent the size of the
population compared to all hypomethylated eloci. Patient M#19, as an example in Fig. 5a, is
outlined in orange. (c) DNA methylation levels of WGBS samples inside PC-PMD regions and
outside PC-PMD regions (data from the BLUEPRINT project, see Additional file 1: Table S1).
(d) Representation of the global DNA methylation of PC-PMDs in WGBS samples.
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Figure 6 DNA methylation loss and associated DNA functional features. (a) The average
methylation levels inside PC-PMDs according to average H3K9me3 intensity (data from the
BLUEPRINT project: ERX1199099 and ERX712768). Each point represents a PC-PMD, and
points are colored according to the size of the PC-PMD. (b) Example of a long unmethylated
PC-PMD (pink area) associated with an increase in H3K9me3 in patient MM15548 . (c) Average
methylation levels in PC-PMDs according to their average H3K27me3 intensity (data from the
BLUEPRINT project: ERX1199099 and ERX712769). (d) Example of PC-PMDs (pink areas) with
methylation loss at diagnosis associated with an increase in H3K27me3 marks. (e) Mean DNA
methylation level at diagnosis in promoter, CGIs, shores and shelves regions according to the
presence or absence of PC-PMDs. (f) Proportion of CGIs with partial methylation inside and
outside PC-PMDs.
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Figure 7 Gene expression variability in hypomethylated PC-PMDs. (a) Variation coefficient of
gene expression in PC-PMD and non-PMD regions at diagnosis (left) and relapse (right). (b)
Density of the TSS distance to the nearest PC-PMD boundary. The red dotted line corresponds to
the 3rd quartile of the TSS distance to the nearest PC-PMD boundary. (c) Ontological analysis of
genes in PC-PMDs located less than 186 kb from a PC-PMD boundary.
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Figure 8 Hypomethylated PC-PMDs and the reorganization of compartment A/B. (a) Mosäıc
plot illustrating the proportions of regions inside or outside PC-PMDs and with or without an
intersection with a switch from B to A (left) and from A to B (right). (b) Example of IGF1R gene
locus switching from compartment B to A (GM12878 cell line versus MM cell lines). Pink
indicates PC-PMD regions.
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Additional Files
Additional file 1 — Table S1

Data resource.

Additional file 2 — Table S2

Distribution of CpG sites within 100 bp genomic units in the human genome.

Additional file 3 — Figures S1–S25

Supplementary figures.

Additional file 4 — Table S3

Description of sequencing metrics for eRRBS data.

Additional file 5 — Table S4

Average number of CpGs covered by eRRBS with read depths greater than 10X and 60X, given by genomic features.

Additional file 6 — Table S5

Odds ratios and 95% confidence intervals for association between gene expression and promoter methylation

according to low or high PDR levels in the promoter.
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