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Abstract

The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The
P, V, and W proteins are generated by transcriptional slippage. This process results in
the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit
site. The P protein is an essential component of the viral RNA polymerase, and is encoded
by a direct copy of the gene in the majority of paramyxoviruses. However, in some cases
the non-essential V protein is encoded by default and guanosines must be inserted into the
mRNA in order to encode P. The number of guanosines inserted can be described by a
probability distribution which varies between viruses. In this article we review the nature of
these distributions, which can be inferred from mRNA sequencing data, and reconstruct the
evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model
suggests that, throughout known history of the family, the system has switched from a P
default to a V default mode four times; complete loss of the editing system has occurred
twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated
a further two times, and the W protein has independently evolved a novel function three
times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage
of the viral RNA polymerase.
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1 Introduction

The Paramyxoviridae are a family of nonsegmented, negative-sense, single-stranded RNA
viruses, within the order Mononegavirales (Amarasinghe et al., 2019; Pringle, 1991; Rima
et al., 2018). Type species include measles virus (MeV; genus: Morbillivirus), mumps virus
(MuV; genus: Orthorubulavirus), Sendai virus (SeV; genus: Respirovirus), and Hendra virus
(HeV; genus: Henipavirus). The Paramyxoviridae appear to infect most vertebrate species
and are responsible for a number of serious diseases in both animals and humans.

The single-stranded RNA genome is bound to the viral nucleocapsid protein, forming a
helical protein-nucleic acid complex which organises and protects the genome. The nucleo-
capsid acts as a template for both gene transcription and genome replication, processes that
are executed by the viral RNA-dependent RNA-polymerase (RdRp; Whelan et al. (2004);
Noton and Fearns (2015); Fearns and Plemper (2017); Guseva et al. (2019)). Each nucleo-
capsid protein binds six nucleotides of RNA (Gutsche et al., 2015; Alayyoubi et al., 2015;
Jamin and Yabukarski, 2017; Webby et al., 2019), and paramyxoviral genomes always con-
form to the "rule of six" whereby genome length is some multiple of six (Kolakofsky et al.,
1998; Calain and Roux, 1993; Kolakofsky et al., 2005). This is hypothesised to result from
the requirement to position the promoter sequences required for initiation of RNA synthesis
in the correct register, or phase, with respect to the nucleocapsid protein.

The phosphoprotein (P protein) is the non-catalytic subunit of the viral RdRP and me-
diates interaction between the polymerase and the nucleocapsid. The P protein is essential
for translocation of the RdRP along its template, among other roles (Kingston et al., 2004;
Du Pont et al., 2019; Bruhn et al., 2019; Milles et al., 2018; Guseva et al., 2019). The P
gene, however, encodes multiple protein products through a combination of non-canonical
transcription and translation events. This phenomenon, known as overprinting, is particu-
larly common in viruses as it increases the utility of the genome, which is often under strong
size constraints (Brandes and Linial, 2016; Sabath et al., 2012).

Cotranscriptional editing at the P gene governs production of the P, V, and W proteins.
Production of multiple proteins results from insertion of one or more non-templated guano-
sine nucleosides (G) into the mRNA at a conserved edit site, through transcriptional slippage
(Vidal et al., 1990b; Hausmann et al., 1999a). This process of base insertion stochastically
shifts the reading frame. As a result, the P, V, and W proteins share a common N-terminal
region (encoded by the gene sequence upstream of the edit site), but possess distinct C-
terminal regions (encoded by the gene sequence downstream of the edit site), conferring
differing functions on these three proteins. The mRNA encoding P, V, and W occur at
different frequencies in different paramyxoviruses.

Although not the focus of this paper, operations at the translational level (Firth and
Brierley, 2012), including leaky scanning (Giorgi et al., 1983; Shaffer et al., 2003), non-
AUG initiation (Boeck et al., 1992; Curran and Kolakofsky, 1988), and ribosomal shunting
(Latorre et al., 1998), facilitate production of yet more proteins from the P gene in many
paramyxoviruses.

In this article we review cotranscriptional editing of the P gene in the Paramyxoviridae.
We briefly discuss the assigned functions of the P, V, and W proteins, collate the available
experimental information on the size distribution of guanosine nucleoside insertions, and
propose a maximum parsimony model for evolution of the editing system. We also review
what is known about transcriptional slippage and its connection with the genomic sequence
at the edit site and displacement of nucleocapsid proteins from the genome.
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2 Cotranscriptional editing in the Paramyxoviridae

Cotranscriptional editing at the P gene occurs through the insertion (or in certain mutants
the deletion; Jacques et al. (1994)) of m ∈ {0, 1, 2, . . . } guanosines, Gm, into the mRNA at a
conserved edit site. A G3k+1 insertion (m = 1, 4, 7, . . . ) shifts the reading frame downstream
of the edit site by -1 (or alternatively +2). A G3k+2 nucleotide insertion (m = 2, 5, 8, . . . )
shifts the reading frame by -2 (or alternatively +1). A G3k insertion (m = 0, 3, 6, . . . ) leaves
the reading frame unaltered.

Proteins translated from a G3k+n mRNA species are considered to be functionally equiv-
alent across all values of k ∈ {0, 1, 2, . . . }. The mRNA flanking the edit site encodes an in-
trinsically disordered region of the protein (Habchi and Longhi, 2012; Guseva et al., 2019).
Any extended sequence of G nucleotides is translated into polyglycine. While the conforma-
tional preferences of polyglycine are still not entirely established (Tran et al., 2008; Ohnishi
et al., 2006), the homo-polymeric sequence will be disordered, and small variations in the
length of this sequence are likely to be functionally neutral in this context.

The cotranscriptional editing system for the P gene operates in two different modes
(Figure 1). In the P G−→ V

G−→ W mode, P is encoded by the unedited gene. This is the
situation in MeV (Cattaneo et al., 1989) and SeV (Vidal et al., 1990a). In the V G−→W

G−→ P
mode, V is the default and a G3k+2 insertion is required to encode P. This is the situation
in MuV (Paterson and Lamb, 1990).

We note that switching between these two edit modes requires a frameshift mutation
in the genome, i.e. during genome replication. This mutation must occur at a position
upstream of the edit site, but not so far upstream that it disrupts some other function of the
encoded P protein. Moreover, due to the rule of six, any insertion or deletion (indel) must
be rapidly compensated such that the genome length remains divisible by six. Otherwise
the replication efficiency of the virus would be severely impacted (Calain and Roux, 1993;
Kolakofsky et al., 2005; Skiadopoulos et al., 2003; Sauder et al., 2016). For example, a
single nucleotide insertion upstream and proximal to the edit site, accompanied by a single
nucleotide deletion elsewhere in the genome, would be sufficient to transit the system from
P

G−→ V
G−→W to V G−→W

G−→ P .

2.1 P protein

The phosphoprotein has a range of functions. In complex with the viral large protein (L
protein) it forms an integral part of RdRP. However, due to its greater relative abundance
– a result of the “transcriptional gradient” that exists in all paramyxoviruses (Cattaneo
et al., 1987; King et al., 2011) – it must also function independently of the L protein.
The disordered N-terminal region of P is shared with V and W and contains the highly
conserved soyuz1 and soyuz2 motifs (Karlin and Belshaw, 2012). These modules, together
with internally located sequences, are involved in chaperoning the viral nucleocapsid protein
monomers during replication (Yabukarski et al., 2014; Milles et al., 2018; Alayyoubi et al.,
2015; Guryanov et al., 2016). This region also binds host proteins such as the STATs (Li
et al., 2019; Devaux et al., 2007; Röthlisberger et al., 2010; Puri et al., 2009; Ciancanelli et al.,
2009; Devaux et al., 2010; Chinnakannan et al., 2014), and its function is likely regulated by
phosphorylation (Saikia et al., 2008; Sun et al., 2009; Sugai et al., 2012; Young et al., 2019;
Pickar et al., 2014). The N-terminal region ranges from 109 aa (in APMV-3) to 570 aa (in
GH-M74a) in length.
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Figure 1: Cotranscriptional editing of the P gene. The two observed modes of editing
are depicted: these are the P G−→ V

G−→ W and V G−→ W
G−→ P modes. A single transcript

can encode one of P, V, or W depending on the number of guanosines stochastically inserted
at the edit site during transcription. While the P, V, and W proteins share a common
N-terminal region, their C-terminal regions are distinct.

Downstream of the edit site, the unique region of the phosphoprotein contains an oligomeri-
sation domain (a coiled coil; Burmeister et al. (2000); Tarbouriech et al. (2000); Communie
et al. (2013a); Cox et al. (2013); Bruhn et al. (2014)) and a nucleocapsid / large binding
domain (the foot domain, or X domain; Johansson et al. (2003); Kingston et al. (2008);
Yegambaram et al. (2013); Blanchard et al. (2004)) which are connected by a flexible linker.
The C-terminal region of the phosphoprotein binds to both the large protein (Bruhn et al.,
2019; Abdella et al., 2020) and the nucleocapsid (Kingston et al., 2004; Habchi et al., 2011;
Communie et al., 2013b; Bloyet et al., 2016; Du Pont et al., 2019) and mediates their en-
gagement. The phosphoprotein is therefore essential (Curran et al., 1991) and is encoded
by all paramyxoviruses. P is the largest of the three P gene proteins. C-terminal regions
range from 229 aa (in PIV-5) to 386 aa (in CPIV-3).

2.2 V protein

The V protein regulates viral genome replication (Horikami et al., 1996; Witko et al., 2006;
Parks et al., 2006; Nishio et al., 2008; Sleeman et al., 2008; Yang et al., 2015) and interferes
with the innate immune response to viral infection (see reviews: Fontana et al. (2008b); Ra-
machandran and Horvath (2009)). The latter is linked to increased viral virulence (Devaux
et al., 2008; Alamares et al., 2010; Schaap-Nutt et al., 2010). V has been reported to bind a
multitude of proteins involved in activation of the type I interferon response, sometimes in
a genus specific fashion. These proteins include cytoplasmic pattern recognition receptors
RIGI, MDA5 (Motz et al., 2013), and LGP2 (Ramachandran and Horvath, 2010; Mand-
hana et al., 2018; Sanchez-Aparicio et al., 2018; Andrejeva et al., 2004; Childs et al., 2007;
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Rodriguez and Horvath, 2014), as well as TRIM25 (Sanchez-Aparicio et al., 2018), PP1
(Davis et al., 2014), MAVS (Sun et al., 2019), PLK1 (Ludlow et al., 2008), UBXN1 (Uchida
et al., 2018), DDB1 (Li et al., 2006a; Salladini et al., 2017), various interferon regulatory
factors (Takeuchi et al., 2003; Kitagawa et al., 2013; Palosaari et al., 2003; Lu et al., 2008),
NF-κB (Schuhmann et al., 2011), and the STAT proteins (Li et al., 2019; Didcock et al.,
1999; Parisien et al., 2002). It has also been reported to interact with interferon stimulated
gene products such as tetherin (Ohta et al., 2017, 2016) and other host proteins such as
PKB/AKT1 (Sun et al., 2008).

The unique C-terminal region of V contains a highly conserved cysteine-rich zinc fin-
ger domain, which binds two zinc ions (Li et al., 2006a; Motz et al., 2013). The functions
conferred by this unique C-terminal region are not always readily decoupled from the ac-
tivities of the common N-terminal region. For instance, both of these regions bind STAT
proteins (Li et al., 2019), and the structurally characterised interaction with DDB1 (Li et al.,
2006a) is mediated by sequences from both the common N-terminal region and the unique
C-terminal region of V.

V is the second largest of the P gene proteins: C-terminal regions range from 50 aa (in
NiV) to 188 aa (in CPIV-3). While V aids viral replication, it is non-essential and is encoded
by most but not all paramyxoviruses (Section 3.2).

2.3 W protein

A third protein may also be generated by contranscriptional editing. Unlike P and V, its
unique C-terminal sequence is not conserved across, or even within, paramyxoviral genera
and consequently this protein has been assigned many names (Fontana et al., 2008a) in-
cluding W (Vidal et al., 1990a), D (Pelet et al., 1991; Galinski et al., 1992), PD (Wells and
Malur, 2008), and I (Paterson and Lamb, 1990). For the purposes of this review, we use ‘W’
to denote the protein encoded by the reading frame that encodes neither P nor V. There is
evidence that W has evolved a function within some paramyxoviral genera, though this is
not always the case.

In Newcastle disease virus (NDV; genus: Orthoavulavirus), Hendra and Nipah virus
(HeV and NiV; genus: Henipavirus), and Human parainfluenza virus 3 (HPIV-3; genus:
Respirovirus), W accumulates in the nucleus (Karsunke et al., 2019; Yang et al., 2019; Shaw
et al., 2005; Lo et al., 2009; Wells and Malur, 2008). Nuclear localisation signals can be
identified in the unique region of the W protein (Shaw et al., 2005; Karsunke et al., 2019;
Audsley et al., 2016a; Wells and Malur, 2008; Smith et al., 2018).

NDV sits alone, and we could not detect a homologous C-terminal region in the W
protein of any other Orthoavulaviruses. A recent study showed that deleting the C-terminus
of the W protein impaired NDV replication in cultured cells, and this effect was relieved
when the full-length W protein was supplied in trans (Yang et al., 2019). However, no
detailed function has been assigned to this protein.

The Henipavirus W protein influences the course of disease in animal models (Satterfield
et al., 2015, 2016), and may play a direct role in subversion of the type I IFN response
(Ciancanelli et al., 2009; Shaw et al., 2005). This protein also modulates host gene expression
by interacting with the 14-3-3 family of regulatory proteins, an interaction that depends
upon phosphorylation of the penultimate serine residue (Edwards et al. (2020); Fig. 2).
However as with the V protein, it has proved difficult to experimentally decouple common
functions conferred by the N-terminal region, with unique functions conferred by the C-
terminal region.
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For HPIV-3, in an early study, joint interruption of the V and W open reading frames
attenuated viral replication (although individual interruptions had no effect; Durbin et al.
(1999)). In interpreting this result, it should be noted that the V protein of HPIV-3 is ab-
normal, and likely to be expressed in truncated form (Section 3.2). A more recent study also
suggests that the C-terminal region of the W protein promotes viral transcription and repli-
cation, and is potentially also involved in the downregulation of beta interferon expression
(Roth et al., 2013). The C-terminal regions of HPIV-3, bovine parainfluenza virus 3 (BPIV-
3; genus: Respirovirus), and caprine parainfluenza virus 3 (CPIV-3; genus: Respirovirus) W
proteins have strong sequence similarity which is itself suggestive of shared function (Figure
2).

For remaining paramyxoviruses, the unique region of W may not necessarily possess
any biological function at all, and is often very short (2 aa in SeV, 6 aa in MeV, 11 aa in
MuV; Chinnakannan et al. (2014); Horikami et al. (1996); Curran et al. (1991); Paterson and
Lamb (1990)). However the W protein could still potentially exert biological effects through
its shared N-terminal region, with synthesis of W potentially being more rapid than the
synthesis of either P or V.
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Figure 2: W protein C-terminal regions. For the displayed sequences there is experi-
mental data regarding the cellular localisation or function of the W protein, or a W protein
homolog in another virus. All numbering is relative to the start of the unique C-terminal
region. Sites are coloured by amino acid characteristic if the characteristic is 100% conserved
at the alignment position. Under the ClustalX colouring scheme hydrophobic residues are
blue, positively charged residues – red, negatively charged residues – magenta, polar residues
– green, cysteine – pink, glycine – orange, proline – yellow, and aromatic residues – cyan
(Larkin et al., 2007).
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3 Phylogeny of cotranscriptional editing

Let p(Gm) be the empirical probability of the viral transcription machinery inserting m
guanosines at the mRNA edit site. The most direct source of information on the nature
of this probability distribution (i.e. the relative abundances of the transcripts) comes from
sequencing the mRNA produced in virally infected cells. However, as Wignall-Fleming et al.
(2019) have highlighted, if mRNA preparations are contaminated with anti-genomic RNA,
the results may not faithfully reflect the actual abundance of mRNA, and the occurrence of
the unedited transcript could be overestimated. Furthermore, several studies have noted that
transcript abundance varies with time post-infection (Kulkarni et al., 2009; Qiu et al., 2016).
In both cases the proportion of V and W transcripts increased as the infection progressed,
though neither the mechanism nor functional implications are understood. Finally, it is
noted that while mRNA abundances are often assumed to be related to encoded protein
abundances, this may not hold in practice (Liu et al., 2016).

With these caveats noted, the experimentally derived probability distributions (or edit
patterns) for 26 paramyxoviruses are displayed in Figure 3. The maximum observed insert
size was G14 in NiV (Lo et al., 2009). Additional data on mRNA abundance, not displayed
in the figure, can be found in the following publications – SeV: Pelet et al. (1991); Kato et al.
(1997); NiV: Kulkarni et al. (2009); MeV: Liston and Briedis (1994); Millar et al. (2016);
Donohue et al. (2019); NDV: Mebatsion et al. (2001); Yang et al. (2019); BeiV: Audsley
et al. (2016b), TevPV: Johnson et al. (2019); Burroughs et al. (2015); HPIV-2: Ohgimoto
et al. (1990); MuV: Takeuchi et al. (1990); CeMV: Bolt et al. (1995); PPRV: Mahapatra
et al. (2003); PDV: Blixenkrone-Möller et al. (1992); PorPV: Berg et al. (1992).

Fundamental differences that exist between these systems reflect evolutionary events
which have occurred throughout the history of the family. The following events are minimally
required to explain the data: i) gain of the editing system, ii) loss of the editing system, iii)
evolution of the V protein zinc finger motif and gain of biological function, iv) loss of the
V protein zinc finger and associated function, v) switching of the edit mode and adaption
of the edit pattern, and vi) acquisition of unique function by the W protein. We estimated
the evolutionary history of the Paramyxoviridae and inferred the ancestral lineages where
these events occurred as follows: for each event we imputed the occurrence of the event onto
branches such that the number of events required to explain the states observed at the leaves
in the tree is minimised (Figure 4). This is the maximum parsimony model. A limitation
of this model is that it does not account for the full functional diversity of the V protein,
which has multiple biological activities (Section 2.2).
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Figure 3: Empirical probability distributions (edit patterns) describing guanosine
nucleotide insertion at the P gene edit site. The total proportion of transcripts which
encode the three functionally distinct mRNA species are indicated for each experiment. The
bulk of the experimental data was obtained by cDNA sequencing, for which the number of
sequenced transcripts n is specified. Experimental data for BPIV-3 was obtained by a
primer extension method acting directly on the mRNA population. Viral genera indicated
in bottom right, see Section 6 for virus names.
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3.1 The editing system and evolution of the V protein

This editing system has not been detected beyond the Paramyxoviridae (Hyndman et al.,
2012). Therefore, the P gene editing system likely came into existence only once – in the
lineage which led to the Paramyxoviridae. This event was coupled with the origin of the V
protein; the evolution of its unique zinc binding motif; and the gain of many of its conserved
functions (Figure 4). However the timing of these events cannot be resolved.

3.2 Partial or complete loss of the V protein

Under a maximum parsimony model, the V protein has been lost entirely on two independent
occasions, both associated with the loss of the editing system (Figure 4). The C-terminal
zinc binding domain has also been deleted, or significantly mutated, on two further occasions.

Loss of the V protein is associated with retirement of the cotranscriptional editing system.
This occurred in both the lineage which lead to Human parainfluenza virus 1 (HPIV-1; genus:
Respirovirus) and in the lineage which lead to Cedar virus (CedV; genus: Henipavirus). As
these viruses once employed the P G−→ V

G−→ W mode, loss of the editing system was
axiomatically coupled with loss of both V and W protein expression. It is possible that
loss of V protein activity preceded loss of the edit system, but this cannot be determined.
Retirement of the editing system appears impossible for viruses employing the V G−→W

G−→ P
edit mode because the P protein is essential for polymerase function.

In both HPIV-1 and CedV, the edit site is not identifiable using sequence analysis and
edited transcripts could not be detected experimentally (Matsuoka et al., 1991; Marsh et al.,
2012). In HPIV-1, the conserved V protein sequence is apparent in the genome however there
is no clear mechanism for protein production due to the presence of multiple stop codons in
the reading frame (Matsuoka et al. (1991); Figure 5). This suggests that loss of V occurred
quite recently in evolutionary history and there has been insufficient time for the sequences
to diverge, creating a pseudogene. For CedV, the V protein sequence is undetectable (Marsh
et al., 2012).

In the case of HPIV-3, the edit site is operational (Galinski et al., 1992) and the zinc
finger motif is detectable in the genome by sequence analysis (Figure 5). However, several
stop codons between the edit site and the zinc finger prohibit production of the full-length V
protein (unless further non-canonical transcriptional or translational mechanisms are invoked
(Galinski et al., 1992)). There are also two mutations in positions which are directly involved
in zinc coordination (Figure 5). This suggests the V protein zinc finger is a pseudogene,
similar to the situation in HPIV-1. In protein-based analysis of infected cells, the full V
protein was not detected but a truncated variant which lacks the conserved C-terminal
region was (Roth et al., 2013). Overall, current evidence suggests that the V protein of
HPIV-3 is expressed in a truncated form lacking the canonical zinc binding motif. Its
functional status is unclear.

Finally, in the case of the Jeilongviruses, the V protein C-terminal domain has been re-
tained, but with mutation of several critical residues involved in zinc coordination (Figure
5). The C-terminal region does not interact with STAT1 or STAT2 (Audsley et al., 2016b),
which is a conserved function of other paramyxoviral V proteins (Puri et al., 2009; Röth-
lisberger et al., 2010). Nonetheless, the Jeilongviral V protein has retained other functions,
such as the ability to interact with MDA5 (Audsley et al., 2016b). This finding in particular
highlights the multi-functional nature of the V protein, and the limitations of a nomenclature
in which its multiple functionalities are not fully explicated.
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V protein
C-terminal conserved region

✂ Zinc finger domain is deleted due to the presence of stop codons in the sequence 
◊ Zinc finger domain carries point mutations in critical zinc binding residues 
† Edit system has been lost, V protein sequence is a pseudogene 
‡ Edit system has been lost, no sequence homologous to the V protein is detected

Virus Site

APMV-7 175 G H R R E Y S F A W S A G T N K F I V S S W C N P T C - - A P I R P Y P T V E R - - - C R C G N C P K F C - - P G C Q

APMV-5 225 G H R R E Y S L F F S D G R C S I T - - E W C N P T C - - R P I T A I P S V Q R - - - C T C G E C P R R C - - S M C W

APMV-6 209 R H R R E F S I S W R H G Q C I L A - - E W C N P V C - - A P V T P E P R A F K - - - C T C G R C P R V C - - I N C R

APMV-11 227 G H R R E Y I L R S E G N Q Y I V E - - S W C N P K C - - A P I R A N P I R E Q - - - C R C G Y C P R A C - - T M C Y

APMV-8 186 G H R R E Y S F T T F H G T T R V I - - S W C N P Q C - - T P I R A R P I Y D E - - - C R C G E C P T T C - - I M C R

APMV-10 186 G H R R E Y S I I N E H G S T L V E - - S W C N P N C - - T P I R A Y P R R E K - - - C I C R R C P T T C - - I L C R

APMV-2 180 G H R R E Y S F A C R D G R L E V I - - S W C N P V C - - T P I R A E P R R E S - - - C K C G K C P V T C - - I L C C

APMV-12 186 G H R R E H S I S W E K E G I I S L - - G W C N P I C - - A P V T A E P R K F Q - - - C R C G E C P P T C - - R L C A

APMV-13 178 G H R R E H S I S W S T E G I V T T - - S W C N P D C - - A P I T S T P Q Q F A - - - C R C G K C P K L C - - R L C S

APMV-9 200 G H R R E H S M V W N A N G I V T I - - S W C N P V C - - S P V T Y E P R E F T - - - C S C G S C P T E C - - R L C A

NDV 176 G H R R E H S I S W T M G G V T T I - - S W C N P S C - - S P I K A E P R Q Y P - - - C I C G S C P A T C - - R L C A

APV-A 152 G H R R E F S I S W G T A G V T T T - - S W C N P A C - - T P V L Q Q P T L S E - - - C I C G C C P S V C - - R L C L

APV-B 154 G H R R E F S I C W G D C G I T T T - - S W C N P A C - - T P I T E L P T I S E - - - C I C G D C P N I C - - R L C L

APV-C 158 G H R R E H S I S W Q D G R I A S V - - S W C N P R C - - S P V T P M P A L H E - - - C S C G A C P S I C - - R L C L

APMV-3 164 G H R R E Y S I S W S P G S G T F Q T E T W C N P A C - - S P V T A F P K Q Y K - - - C A C R Q C P R F C - - D L C F

APMV-4 170 P H R R E M A I V T D K A T G D I E L V E W C N P G C - - T A I R A E P T R L D - - - C V C G H C P T I C - - S L C M

MenPV 165 G H R R E I A I D W I G G R P R V T - - E W C N P I C - - H P I S Q S T F R G N - - - C R C G N C P D I C - - S L C E

TevPV 163 G H R R E I A I S W A T G V P R V T - - E W C N P I C - - H P I S Q S T Y R G S - - - C R C G F C P D V C - - S L C E

TioPV 163 G H R R E I A I S W A T G T P R V T - - E W C N P I C - - H P I S Q F T Y R G T - - - C R C G C C P D V C - - S L C E

AchPV-2 175 R H R R E Y S F D W S T G S P R V V - - E W C N P S C - - V P I T N S G A R E P - - - C R C G N C P R T C - - S M C E

ThkPV-1 187 R H R R E F N F V W S G S R P V L I - - E W C N P I C - - T P I T P N P R R Q S - - - C R C G R C P S V C - - K L C E

AchPV-1 179 R H R R E F D L R W T G R R P H V S - - E W C N P I C - - A P I T P I P R R F T - - - C R C G D C P D V C - - P M C E

ThkPV-2 179 R H R R E F D I R W Y G N K P C V R - - E W C N P G C - - S P I R P T P M R Y T - - - C T C G E C P A V C - - S M C E

SosPV 177 G H R R E F D L V W G G G S F T M R - - E W C N P T C - - S P I T P I P R R H H - - - C R C G Q C P R V C - - K Q C E

ThkPV-3 179 G H R R E F D L V W G S G K F E V R - - E W C N P T C - - S P I T P I P R R Y Q - - - C R C G E C P R I C - - K Q C E

HPIV-4a 177 R H R R E Y S I S W V N G R T T I S - - E W C N P C C - - A P V K S T A S V E K - - - C T C G R C P K I C - - E L C I

HPIV-4b 177 R H R R E H S I S W V N G R T T I S - - E W C N P C C - - A P V K S I A S V E K - - - C T C G R C P K I C - - E L C I

MapV 167 G H R R E W S I G W V G S T V K V L - - E W C N P T C - - S P I T A T S R Y Y E - - - C V C G I C P K I C - - P R C V

PorPV 180 G H R R E Y S I G W V C G T V R V L - - E W C N P A C - - S P I S M E P R Y Y Q - - - C T C G T C P A K C - - P Q C A

MuV 169 G H R R E W S L S W V Q G E V R V F - - E W C N P I C - - S P I T A A A R F H S - - - C K C G N C P A K C - - D Q C E

PIV-5 170 F H R R E Y S I G W V G D E V K V T - - E W C N P S C - - S P I T A A A R R F E - - - C T C H Q C P V T C - - S E C E

HPIV-2 173 N H R R E W S I A W V G D Q V K V F - - E W C N P R C - - A P V T A S A R K F T - - - C T C G S C P S I C - - G E C E

SV-41 173 R H R R E W S I A W V G D E V K V Y - - E W C N P T C - - A P V T A T D R K F S - - - C T C G T C P D R C - - G E C E

AsaPV 327 G H R R E I C I Y T Y K G V I Y S E - - S W C N P Q C - - A P I R R T P Y R E V - - - C R C G G C P E E C - - P D C S

CPIV-3 377 E H R R E H S I Y R K G D Y I I T E - - S W C N P I C - - S K I R P I P R Q E N - - - C I C G E C P K Q C - - R Y C I

BPIV-3 347 G H R R E H S I Y R E G D Y I I T E - - S W C N P I C - - S K I R P V P R Q E S - - - C V C G E C P K Q C - - G Y C I

HPIV-3 353✂ G Y R R E Q S I Y R E G N Y S I A E - - S W C N P I Y - - I K I R F I S R Q T S - - - C M C S K C T K Q C - - R Y C I

PPIV-1 323 G H R R E Y L I Y R R G D Q I V S E - - S W C N P I C - - S R I Q P I P K R M P - - - C I C E T C P Q F C - - E L C R

HPIV-1 316† * R R N Q Q H I S * * D G Q A V S K - - S W C N E I T - - T * I * I I * E C K S - - - C I C * A H A K I C K L P R N D

SeV 317 G H R R E H I I Y E R D G Y I V N E - - S W C N P V C - - S R I R V I S R R E L - - - C V C K A C P K I C - - K L C R

AnaPV 169 G H R R E I S T S T I D G I F E V W - - E F C N P M C - - S R I T P D F K P K V - - - C I C G E C P R Y C - - P R C K

FdlV 169 G H R R E I S T S T I D G I F E V W - - E F C N P M C - - S R I T P D F K P K I - - - C V C G E C P R Y C - - P R C K

JPV 241◊ L Y R Q F W G E D L H P G V V Q S - - - P M C T H H C Y S Y P V K M Y M R R V P Q S V C K M Y Q R P D L R - - A K V A

BeiV 241◊ L H R H F W G T Y H Y P G V V Q S - - - P M C T P H C Y T N P K R M L M R R M P K A V C K M Y R R P G L L - - A K V T

TlmPV 241◊ L H R H F W G T Y N Y P G V V Q S - - - T M C T P H C Y S N P K R M L M R R M P K A V C K M Y Q R P G L L - - A K V T

TupPV 229 G H R R E Y S M V W S N D G V F I E - - S W C N P M C - - A R I R P L P I R E I - - - C V C G R C P L K C - - S K C L

MosPV 243 G H R R E Y N F V W T D S G F R V E - - A W C N P I C - - S R I R N L P R R E K - - - C R C G W C P K E C - - P E C A

NarPV 217 G H R R E Y S L T W T D C G F L V E - - S W C N P V C - - A R V T P L P R R E S - - - C K C G K C P V F C - - P E C V

FeMV 227 G H R R E I S L T W D G D Y I I R E - - E W C N P I C - - T P I Y S T C K R L Q - - - C R C K Q C P S T C - - P K C E

CeMV 231 G H R R E I S L I W D G D R V F I D - - R W C N P T C - - S R I K M G I V R V K - - - C T C G E C P P V C - - D E C R

CDV 231 G N R R E V S L T W N G D S C W I D - - K W C N P I C - - T Q V N W G I I R A K - - - C V C G E C P P T C - - N E C K

PDV 231 G H R R E V S L T W N D D R C W I D - - K W C N P I C - - T Q V N W G V I R A K - - - C I C G E C P P V C - - D D C K

PPRV 231 G H R R E L S L I W N G D R V F I D - - K W C N P N C - - A R V K M G V I R A K - - - C V C G E C P Q V C - - E E C K

MeV 231 G H R R E I S L I W N G D R V F I D - - R W C N P M C - - S K V T L G T I R A R - - - C T C G E C P R V C - - E Q C R

RPV 231 G H R R E I D L I W N D G R V F I D - - R W C N P T C - - S K V T V G T V R A K - - - C I C G E C P R V C - - E Q C I

SalPV 251 R H R R E Y S I I W D S E G I Q I E - - S W C N P V C - - S K V R S T P R R E K - - - C R C G K C P A R C - - S E C G

MojV 408 G H R R E Y S L C W D G S E I K V E - - E W C N P I C - - S K V K S E P S R E K - - - C T C K Q C P I M C Q D E H C T

GH-M74a 571 G H R R E F L M Y W D K G R L K T I - - E W C N P I C - - T K I Q I E P E T G E - - - C I C G E C P T W C - - D Q C T

CedV ‡ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

HeV 405 G H R R E V S I C W D G R R A W V E - - E W C N P A C - - S R I T P Q P R K Q E - - - C Y C G E C P T E C - - S Q C C

NiV 407 G H R R E I S I C W D G K R A W V E - - E W C N P A C - - S R I T P L P R R Q E - - - C Q C G E C P T E C - - F H C G

1 ↓ 10 20 ↓ ↓ 30 40 ↓ ↓ ↓50 ↓ ↓

Figure 5: Cysteine-rich C-terminal regions of the V protein. The first amino acid in
each aligned sequence is numbered, relative to the start of the V protein. The arrows at the
top of the alignment indicate residues whose side chains directly coordinate bound zinc ions,
according to a structural study on the PIV-5 V protein (Li et al., 2006a). Asterisks denote
stop codons. Sites are coloured by amino acid group if a group is at least 70% conserved at
the alignment position (colour scheme indicated in Figure 2). The tree is the same as that
in Figure 4.
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3.3 Switching of edit modes and adaption of edit patterns

P
G−→ V

G−→W was likely the edit mode of the last common ancestor of the Paramyxoviridae.
Under a maximum parsimony model, the editing system has switched to the V G−→

W
G−→ P mode four times during evolutionary history (Figure 4). These events occurred in

the lineages that lead to: 1) Avian paramyxovirus 11 (APMV-11; genus: Metaavulavirus),
2) the Rubulavirinae subfamily, 3) the Ferlaviruses, and 4) Salem virus (SalPV; genus:
Salemvirus). Edit patterns have been experimentally investigated for three of these four
clades: 10 rubulaviruses (Lau et al., 2010; Bowden et al., 2001; Chua et al., 2001; Southern
et al., 1990; Ohgimoto et al., 1990; Kawano et al., 1993; Thomas et al., 1988; Paterson and
Lamb, 1990; Takeuchi et al., 1990; Kondo et al., 1990), 2 Ferlaviruses (Woo et al., 2014;
Kurath et al., 2004), and SalPV (Renshaw et al., 2000).

In general the edit patterns of viruses that retain the ancestral P G−→ V
G−→W edit mode

(Figure 3, top panel) are quite different to those of viruses that have subsequently adopted
the V G−→W

G−→ P edit mode (Figure 3, bottom panel). In the former, G0 and G1 insertions
are most frequently observed, while in the latter, G0 andG2 insertions predominate. It seems
clear that edit patterns have co-evolved with edit modes to maintain adequate production
of P and V transcripts. In two clades (within the Respirovirus and Henipavirus genera), the
edit patterns are long-tailed, and a significant fraction of the transcripts have more than 2
guanosine nucleotides inserted.

The edit pattern of SalPV (Figure 3, bottom panel) appears to be an outlier (Renshaw
et al., 2000). The G0-centric distribution resembles those of viruses using the P G−→ V

G−→W
mode, and the relative abundance of P transcripts is very low. Given the taxonomic position
of SalPV, as the most immediate outgroup of the Morbilliviruses (Figure 4), it could be
that this is a virus that has switched edit mode but not yet adaptively evolved the edit
pattern.

3.4 Acquisition of unique function by the W protein

Under our model, the W protein has evolved a novel function associated with its unique
C-terminal region on 3 independent occasions (Figures 2 and 4): once for NDV (Yang
et al., 2019; Karsunke et al., 2019), once for the henipaviral clade comprised of HeV and NiV
(Shaw et al., 2005; Lo et al., 2009; Edwards et al., 2020), and once for the respiroviral clade
composed of BPIV-3, HPIV-3, and CPIV-3 (Durbin et al., 1999; Pelet et al., 1991). There
are varying levels of experimental evidence supporting the existence of a W protein function
in these three clades (see Section 2.3). For the remaining paramyxoviruses, W has no known
function. Rather, it is more likely that the expression of W is an inevitable byproduct of
the editing system; an evolutionary spandrel (Gould and Lewontin, 1979).

For the most part, W transcripts are produced quite rarely (Figure 3). However, this
does not appear to be the case for two clades where W has acquired function. Instead,
the edit pattern is long-tailed, and the probability of producing a W transcript

∑
k

p(G3k+2)

ranges from 21 to 24% in HeV, NiV, BPIV-3, and HPIV-3 (Lo et al., 2009; Pelet et al., 1991;
Galinski et al., 1992), and sometimes even higher in temporal analyses (Kulkarni et al.,
2009).

In contrast, production of W is not significantly elevated for NDV (Steward et al., 1993;
Mebatsion et al., 2001). The overall proportion of W transcript in NDV is estimated at
around 8-9% (Steward et al., 1993; Qiu et al., 2016; Yang et al., 2019) or as low as 2.4%
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(Mebatsion et al., 2001). However, experiments studying the effects of W protein knockout
on viral replication (Yang et al., 2019), suggest that these low transcript abundances are
optimal for fulfilling the unknown biological function of the NDV W protein (Section 2.3).

4 Molecular mechanism of cotranscriptional editing

In the Paramyxoviridae, cotranscriptional editing results from transcriptional slippage. This
same process facilitates overprinting in other viral families including the Filoviridae (Sanchez
et al., 1996; Shabman et al., 2014) and Potyviridae (Olspert et al., 2015), as well as various
prokaryotes (Larsen et al., 2000; Penno et al., 2015). Slippage sites can also rescue an
organism from deleterious frameshift mutations (Tamas et al., 2008).

Transcription has been extensively studied, recently at the single-molecule level for the
RdRP of bacteriophage φ6 (Dulin et al., 2015a,b) and DNA-dependent RNA polymerases
of prokaryotes, eukaryotes, and DNA viruses (Abbondanzieri et al., 2005; Shaevitz et al.,
2003; Dangkulwanich et al., 2013; Larson et al., 2012; Skinner et al., 2004; Douglas et al.,
2020). These studies have provided significant insights into the mechanisms underlying
transcription elongation.

In this final section, we discuss cotranscriptional editing in the Paramyxoviridae under
the framework presented in the single-molecule literature, noting some additional complex-
ities which arise from the viral genome being packaged within a nucleocapsid.

4.1 Transcription elongation by RNA polymerases and slippage

Under a simple Brownian ratchet model, transcription elongation can be modelled as a
cycle involving three canonical steps (Bar-Nahum et al. (2005); Abbondanzieri et al. (2005);
Figure 6, large arrows). First, RNA polymerase steps forward along the template from the
pretranslocated to the posttranslocated state, which frees the enzyme’s active site. Second,
a complementary nucleoside triphosphate (NTP) binds to the active site. Third, the bound
NTP is incorporated onto the 3′ end of the mRNA and pyrophosphate is released, thus
restoring the system to the pretranslocated state.

Through backtracking, where the polymerase translocates upstream along the template
(Komissarova and Kashlev, 1997; Abbondanzieri et al., 2005), and hypertranslocation, where
it translocates downstream (Yarnell and Roberts, 1999), the polymerase can arrive at a cat-
alytically inactive state (Figure 6). These processes can lead to transcriptional pausing
(Saba et al., 2018; Artsimovitch and Landick, 2000). In the case of paramyxoviruses, back-
tracking and hypertranslocation may be inhibited by the presence of genome-wrapped nucle-
oproteins acting as “roadblocks”, analogous to the role played by nucleosomes in eukaryotes
(Nudler, 2012).

Slippage involves the movement of one sequence in the product/template hybrid rela-
tive to the other, which can lead to imperfect basepairing. Slippage was hypothesised by
Streisinger et al. (1966) as one of the primary mechanisms of indel events. The mechanism
is thought to involve formation of a nucleotide bulge near the 3′ end of the mRNA (Garcia-
Diaz and Kunkel, 2006). If the bulge forms in the nascent strand, an insertion can result,
whereas a bulge in the template strand can lead to a deletion.

By applying varying forces to individual dsDNA molecules, Kühner et al. (2007) and Ne-
her and Gerland (2004) hypothesise that slippage occurs in three steps (Figure 6). First,
a bulge forms on one side of the hybrid. This initial reaction must overcome a large Gibbs
energy barrier. Second, the bulge diffuses along the hybrid. Diffusion is likely to be quite
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Figure 6: State diagrams of Brownian ratchet and slippage models. Plausible
stuttering pathways for SeV (accession: AB039658; genomic position: 2783) and MuV (ac-
cession: EU884413; genomic position: 2432) are shown, with a RNA/mRNA hybrid of
7 bp in length. A nucleoprotein protomer bound to the viral genome (top strand) is de-
picted by the coloured octagon. Large arrows indicate the canonical transcription elongation
pathway, double-ended triangular arrows denote equivalency between two connecting states,
and unlabelled arrows describe translocation reactions. While slippage initialises in the pre-
translocated state in this diagram, the actual state where this process initialises is unknown.
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rapid (Woodson and Crothers, 1987), and favoured if Watson-Crick basepairing is main-
tained in the bulged hybrid. Third, the bulge is absorbed at the other end of the hybrid.
During transcription, the next nucleotide could be incorporated before or after absorption,
if absorption even occurs (Tippin et al., 2004).

In principle, transcriptional slippage could be initialised from any one of the states avail-
able to the polymerase (backtracked, pretranslocated, posttranslocated, or hypertranslo-
cated), and it is not known if the the process of bulge formation is linked to the translocation
state.

4.2 Transcriptional slippage in paramyxoviruses

Through transcriptional slippage, a single templated nucleotide can be copied multiple times
(stuttering). Stuttering is the apparent mechanism of cotranscriptional editing in paramyx-
oviruses and can explain many of the edit patterns presented in Figure 3.

The two distinct modes of editing (i.e. P G−→ V
G−→ W and V G−→ W

G−→ P ) are encoded
by quite different sequences (Figure 7).

The edit sites among viruses which employ the P G−→ V
G−→W edit mode are conserved.

Using the PROSITE notation (Sigrist et al., 2002), this (genomic-sense) edit site motif can be
described by U(3,6)–C(2,6). In SeV, the edit site sequence is transcribed into AAAAAGgG,
where the lower-case g is the stutter site i.e. the site reiteratively transcribed from the
template (Hausmann et al., 1999b,a; Vidal et al., 1990b). Under the stuttering model,
inserts are added as follows (Figure 6, left hand side): 1) a bulge forms in the 3′ mRNA
of the RNA/mRNA hybrid. 2) The bulge is free to diffuse along the hybrid. Although the
bulge is thermodynamically disfavoured, it can occur because of U/A and non-canonical
U/G basepairing which are maintained throughout diffusion. 3) In no particular order, the
bulge is absorbed at the 5′ end and the lower-case g can be transcribed again. Each iteration
of these three steps is associated with a G1 insertion.

In contrast, the edit sites across the four clades of the V G−→ W
G−→ P group are quite

distinct from one another. SalPV is anomalous, and its edit site sequence resembles the
P

G−→ V
G−→W group (Renshaw et al., 2000). This could explain the relatively low amounts

of P transcript produced (Figure 3). The Ferlavirus edit site is distinct from all other known
edit sites (Woo et al., 2014; Kurath et al., 2004) and the mechanism of guanosine insertion is
not clear. Through convergent evolution, APMV-11 and the Rubulavirinae subfamily have
similar edit sites (PROSITE: A(3,4)–U(2)–C–U(1,2)–C(4,7); genomic-sense). In the case
of MuV, the edit site (transcribed into UUUAAGAGGG) has been well characterised (Vidal et al.,
1990b). Stuttering occurs in a similar fashion to SeV, however the edit sequence allows G2

inserts (encoding the P protein) to occur at a greater frequency than G1 inserts (encoding
the W protein) due to the formation of a 2 nucleotide bulge (Figure 6, right hand side).

Slight variation in the edit site sequence perturbs stuttering of the viral RdRP. For
instance, when the length of the poly(A) sequence at the SeV edit site was increased, from
A(3)–G(6) to A(8)–G(1), the average number of inserts increased dramatically (Hausmann
et al., 1999a). Similarly, when the SeV edit site sequence was mutated to resemble that of
BPIV-3, its edit pattern changed correspondingly (Hausmann et al., 1999b). While slippage
patterns can also be dependent on cellular environment (Donohue et al., 2019), these results
speak to the primary importance of the genome sequence in governing polymerase stuttering.

The roles that nucleoprotein displacement and the rule of six play during cotranscrip-
tional editing have been investigated (Iseni et al., 2002; Hausmann et al., 1996; Kolakofsky,
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2016). Changing the nucleoprotein phase around the edit site sequence (of SeV) resulted in
an apparent change in edit pattern (Iseni et al., 2002). We computed the expected nucleopro-
tein phase at the edit site of each virus under the rule of six model. Although nucleoprotein
displacement may play a role in editing, the nucleoprotein phase at the edit site does not
appear to be well conserved (Figure 7).

5 Conclusion

In this review, we compiled the genomic sequences of paramyxovirus edit sites (Figure
7) and, where available, their experimentally determined edit patterns (histograms of insert
sizes; Figure 3). We estimated the evolutionary history of editing in the family (Figure 4).
This analysis suggests that, among the characterised paramyxoviruses, the editing system
has independently switched from the P G−→ V

G−→ W to the V G−→ W
G−→ P edit mode

four times; the V protein zinc finger domain was deleted or significantly mutated twice,
the W protein has evolved a known function in its unique region three times; and the
cotranscriptional editing system has been lost entirely twice, leading to complete loss of
both V and W expression. Although transcriptional slippage provides the mechanism for
non-templated base insertion, it is currently unclear how this process is coordinated with
either canonical or non-canonical steps of the elongation pathway.

6 Virus abbreviations
AchPV 1-2 Achimota viruses 1-2 AnaPV Anaconda paramyxovirus
APMV 2-13 Avian paramyxoviruses 2-13 APV A-C Antarctic penguin viruses A-C
AsaPV Atlantic salmon paramyxovirus GH-M74a Ghanaian bat henipavirus
BeiV Beilong virus BPIV-3 Bovine parainfluenza virus 3
CDV Canine distemper virus CedV Cedar virus
CeMV Cetacean morbillivirus CPIV-3 Caprine parainfluenza virus 3
FdlV Fer de Lance virus FeMV Feline morbillivirus
HeV Hendra virus HPIV 1-4 Human parainfluenza viruses 1-4
JPV J-virus MenPV Menangle virus
MeV Measles virus MojV Mojiang virus
MosPV Mossman virus MapV Mapuera virus
MuV Mumps virus NarPV Nariva virus
NDV Newcastle disease virus NiV Nipah virus
PDV Phocine distemper virus PIV-5 Parainfluenza virus 5
PorPV Porcine rubulavirus PPIV-1 Porcine parainfluenza virus 1
PPRV Peste-des-petits-ruminants virus RPV Rinderpest virus
SalPV Salem virus SeV Sendai virus
SosPV Sosuga virus SunCV Sunshine coast virus
SV-41 Simian virus 41 TevPV Teviot virus
ThkPV 1-3 Tuhoko viruses 1-3 TioPV Tioman virus
TlmPV Tailam virus TupPV Tupaia virus
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P gene edit sites

    † No edit site

Virus Site Mode

APMV-7 2150 P A A U U U U U U C C C A A U C A

APMV-5 2359 P A A U U U U U U C C C G G G U C

APMV-6 2146 P A G U U U U U U C C C C U U U C

APMV-11 2334 V A A A U U C U U C C C C C A G C

APMV-8 2095 P U A A U U U U U C C C G G G A G

APMV-10 2095 P G A A U U U U U C C C G U G A C

APMV-2 2083 P C A A U U U U U C C C C U U C C

APMV-12 2325 P G A U U U U U U C C C U A G U A

APMV-13 2319 P G A U U U U U U C C C G U C U A

APMV-9 2319 P G A U U U U U U C C C G A G U U

NDV 2277 P C G A U U U U U C C C G G G U A

APV-A 2105 P A A U U U U U U C C C C A G U U

APV-B 2116 P A A U U U U U U C C C C A G U U

APV-C 2154 P A A U U U U U U C C C A G U C U

APMV-3 2076 P A A A A A U U U C C C C C G G G

APMV-4 2052 P G A A A A U U U C C C C C C G G

MenPV 2426 V U A A A U U C U C C C C C U U U

TevPV 2467 V U A A A U U C U C C C C C C U A

TioPV 2467 V U A A A U U C U C C C C C U C A

AchPV-2 2402 V A A A A U U C U C C C C C U C U

ThkPV-1 2564 V G A A A U U C U C C C C G U A U

AchPV-1 2438 V U A A A U U C U C C C C C C A A

ThkPV-2 2414 V A A A A U U C U C C C C C A G A

SosPV 2378 V G A A A U U C U C C C C C G A C

ThkPV-3 2378 V G A A A U U C U C C C C C G C U

HPIV-4a 2487 V U A A A U U C U C C C C C C U U

HPIV-4b 2487 V U A A A U U C U C C C C C C U U

MapV 2383 V C A A A U U C U C C C C C C G U

PorPV 2418 V A A A A U U C U C C C C C C G G

MuV 2431 V U A A A U U C U C C C C C C G G

PIV-5 2329 V A A A A U U C U C C C C G U C C

HPIV-2 2469 V G A A A U U C U C C C C C C C U

SV-41 2449 V G A A A U U C U C C C C C C C U

AsaPV 3505 P C A U U U U U U C C G U A U C U

CPIV-3 2496 P A A U U U U U U C C C U U C U C

BPIV-3 2496 P A A U U U U U U C C C C A A C C

HPIV-3 2496 P A A U U U U U U C C C C C U U U

PPIV-1 2808 P C A U U U U U U C C G U G U C U

HPIV-1 † - - - - - - - - - - - - - - - -

SeV 2783 P U G U U U U U U C C C G U A U C

AnaPV 2707 V G C C U C A U U C C C C C C G A

FdlV 2707 V U C C U U A U U C C C C C C G A

JPV 2524 P A A U U U U U U C C G U A G C U

BeiV 2542 P A A U U U U U U C C G U G G C U

TlmPV 2536 P A A U U U U U U C C G U G U C U

TupPV 2812 P A A U U U U U U C C G U A G C C

MosPV 2618 P C U G A U U U U C C C C G U A U

NarPV 2390 P A U G A U U U U C C C C G U A U

FeMV 2448 P G U A A U U U U C C C C G G U G

CeMV 2482 P U A A U U U U U C C C G U G U C

CDV 2482 P U A A U U U U U C C C U U G U C

PDV 2482 P U A A U U U U U C C C G U G U C

PPRV 2487 P U A A U U U U U C C C C G U G U

MeV 2488 P U A A U U U U U C C C G U G U C

RPV 2488 P U A A U U U U U C C C G U G U C

SalPV 2617 V U A A U U U U U C C C C A G A G

MojV 3401 P A A U U U U U U C C G U A G C U

GH-M74a 3753 P U U G A U U U U C C C C G U A U

CedV † - - - - - - - - - - - - - - - -

HeV 3591 P U A A U U U U U C C C G U G U C

NiV 3615 P U A A U U U U U C C C G U G U C

1 10

Figure 7: Edit site sequences in the paramyxoviruses. The sequences of the negative-
sense (genomic) RNA are displayed. The numbers indicate the genomic position of the first
displayed nucleotide. P

G−→ V
G−→ W and V

G−→ W
G−→ P edit modes are abbreviated to

P and V respectively. Nucleoprotein phases are displayed; the first nucleotide within each
nucleoprotein protomer is highlighted in black. This tree is the same as that in Figure 4.
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7 Algorithms and data availability

Sequences were aligned by M-Coffee (Wallace, 2006) and treated with subsequent manual
adjustment using AliView (Larsson, 2014). Phylogenetic tree built with BEAST 2 (Bouck-
aert et al., 2019) from an alignment of the L protein, and a relaxed clock model Drummond
et al. (2006). P/V/W sequences, L alignment, and BEAST 2 input/output files are available
at
https://github.com/jordandouglas/ParamyxovirusSlippageEvolution.
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