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Abstract 8 

The two visual streams hypothesis is a robust framework that has inspired 9 

many studies in the past three decades. One of the well-studied claims of this 10 

hypothesis is the idea that the dorsal visual pathway is involved in visually 11 

guided motor behavior, and it is operating with a short memory. Conversely, this 12 

hypothesis claims that the ventral visual pathway is involved in object 13 

classification, and it works using a long-term memory. In this study, we tested 14 

these claims by training identical recurrent neural networks to either perform 15 

viewpoint-invariant object classification (a task attributed to dorsal stream) or 16 

orientation classification (a task attributed to dorsal stream) and measured how 17 

much they rely on their memory in each task. Using a modified leaky-integrator 18 

echo state recurrent network, we found that object classification requires a longer 19 

memory compared to orientation classification. However, when we used long-20 

short-term memory (LSTM) networks, we observed that object classification 21 

requires longer memory only in larger datasets. Accordingly, our results suggest 22 

that having a longer memory is advantageous in performing ventral stream’s 23 

tasks more than their dorsal counterparts, as was originally suggested by the 24 

two-streams hypothesis. 25 
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1 Introduction 29 

The hypothesis that primate vision might be composed of two distinct visual 30 

systems was first proposed in 1968 (Ettlinger, 1990; Schneider, 1969; Trevarthen, 31 

1968). In its initial form, this hypothesis suggested that a genicolustriate system 32 

is processes object recognition and a tectofugal system processes spatial 33 

information. Subsequently, using evidence from lesion studies, Ungerleider and 34 

Mishkin suggested that the dissociation between the two pathways also exists at 35 

the cortical level where both pathways are fed by axons originating from striate 36 

cortex (Mishkin & Ungerleider, 1982). Eventually, an extended two-streams 37 

hypothesis was proposed in a seminal paper by Goodale and Milner in 1992 38 

(Melvyn A. Goodale & Milner, 1992). According to their two-streams hypothesis, 39 

the ventral visual stream (from occipital to temporal cortex) is heavily involved 40 

in object recognition while the dorsal visual stream (occipital to parietal) is 41 

involved in visually guided motor behaviors. 42 

Using clinical and experimental evidence, Goodale and Milner argued for a 43 

double dissociation in the primate visual system and listed a series of major 44 

functional differences between the ventral and dorsal pathways. First, the ventral 45 

stream was more involved in conscious perception while dorsal pathway 46 

performance was unconscious. Secondly, the ventral stream had a slower 47 

processing speed and a longer memory, while the dorsal pathway maintains a 48 

faster processing speed and shorter memory (Milner & Goodale, 2008; Norman, 49 

2002). Accordingly, having these processing features was believed to benefit the 50 

functions of each pathway. 51 

Among the neuropsychological studies on the differences between dorsal and 52 

ventral stream, the differences between memory spans in the two pathways is 53 

particularly interesting. On the one hand, patients with damage to their parietal 54 

cortex (dorsal stream) were found to have lost their ability to correctly reach 55 

towards visual targets (optic ataxia) while they could still recognize the identity 56 

of objects due to their intact ventral stream. On the other hand, patient D.F. 57 

who had impaired connectivity between her V1 and inferior temporal cortex was 58 

found to be unable to recognize objects or faces, (visual form agnosia) while she 59 
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was able to perform reaching movements similar to healthy controls (M. A. 60 

Goodale et al., 1991; Milner et al., 1991). 61 

Interestingly, when optic ataxia patients were asked to point to a target 62 

location after a 5-second delay, their performance improved in a paradoxical 63 

manner while in healthy subjects, the same delay deteriorated their performance 64 

(Milner et al., 1999). This suggested that optic ataxia patients are not able to 65 

use their dorsal stream in no-delay trials, but they could retrieve some 66 

information from their intact ventral stream in delayed trials. In contrast, when 67 

patient D.F. was presented with two plaques of different widths, she could not 68 

report the width of plaques using her index finger and her thumb. However, when 69 

asked to reach for a specific plaque, her grip aperture (distance between index 70 

finger and thumb) was like healthy controls and correlated with the width of 71 

each plaque. Intriguingly, this patient was not able to perform this visuomotor 72 

reaching task after a 2-second delay as if she has ‘lost’ the information required 73 

to complete the task (M. A. Goodale et al., 1994). This suggested that after a 74 

delay, stored information in the ventral stream is used for reaching. Further 75 

studies by Hu and Goodale using healthy participants consolidated the idea that 76 

real time visuomotor control uses a short memory size estimation mechanism as 77 

compared to conscious size estimation or motor control after delay which uses 78 

long term memory and conscious task engagement (Hu et al., 1999; Hu & 79 

Goodale, 2000). These observations lend credit to the idea that the dorsal stream 80 

has a shorter memory and it is crucial for visually guided behavior while the 81 

ventral stream has a longer memory and it is crucial for object recognition. 82 

 83 

Accordingly, we sought to test these hypotheses in the current study. Specifically, 84 

we tested if there is a relationship between the tasks ascribed to each of the 85 

pathways and the length of optimal memory for each task. In other words, is 86 

short term memory beneficial for tasks that are attributed to dorsal stream (e.g., 87 

size or orientation classification) and ventral stream functions such as viewpoint-88 

invariant object classification need longer memory? 89 

To this end, we trained simple convolutional neural networks (CNNs) to either 90 

perform orientation classification or viewpoint-invariant object classification. 91 

Subsequently, we replaced the last layer of the trained CNNs with recurrent 92 
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networks and trained the new networks to recognize frames of rotating objects 93 

or frames of different objects with the same orientation or width. Our results 94 

suggest that a longer memory benefits viewpoint object classification, while a 95 

shorter memory is helpful for orientation classification tasks. 96 

 97 

2 methods 98 

2.1 datasets 99 

We created 16 synthetic objects and rotated each object around its vertical 100 

axis (yaw) to generate images from different viewpoints of each object. 101 

Subsequently, to create two tasks from the same set of objects, we derived a 102 

dataset for a viewpoint invariant object classification task and a dataset for width 103 

classification of objects. 104 

To create the viewpoint invariant object classification dataset, we defined 16 105 

object classes where each class had 22 pictures of the same object rotated along 106 

its vertical (yaw) axis (16.3 degrees increments in each frame). This dataset 107 

contained 352 images in total (16x22). 108 

To avoid the huge number of orientation classes that can be created when an 109 

object is rotated along all of its three axes, we decided to create a simplified 110 

orientation classification dataset in which we only changed the width of objects 111 

by moving them along their yaw axis. Accordingly, we defined six classes where 112 

each class contained 16 different objects with the same width. Due to the presence 113 

of different vertical orientations with the same width (e.g., 0 and 180 degrees), 114 

the same width of one object was repeated twice, and this resulted in 32 images 115 

per class and a dataset with 192 images in total (6x32). The width classes were 116 

as following: 117 

 118 

• Width class No. 1: All objects with an orientation of 0° and 180° 119 

• Width class No. 2: All objects with an orientation of 16° and 164°  120 

• Width class No. 3: All objects with an orientation of 33° and 147°  121 

• Width class No. 4: All objects with an orientation of 49° and 131°  122 
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• Width class No. 5: All objects with an orientation of 65° and 115°  123 

• Width class No. 6: All objects with an orientation of 82° and 98°  124 

 125 

 126 

 127 

 128 

 129 

Fig. 1. Structure of the synthetic objects’ dataset. Each row in this matrix forms 130 

an object class that was used for viewpoint invariant object classification task. The 131 

region indicated by blue is an example of an object class that was split into the 132 

training set (with a probability of 80%) and test set (with a probability of 20%). 133 

Conversely, the orange shaded line indicates images that were put into a width class 134 

(32 images) and further split into a training and test set with 80% and 20% 135 

probability, respectively. Note that only 6 width classes were derived from this 136 

dataset and therefore, some of the columns were not used in width classification task. 137 

See supplementary figure 1 for a detailed illustration of width classes.  138 

 139 
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To see if the results were specific to the synthetic dataset, we repeated our 140 

experiments using the Columbia Object Image Library (COIL-100) dataset (Nene 141 

et al., 1996). This dataset contains images of 100 natural objects, and there are 142 

72 images of the same object from different viewpoints in 5-degree increments in 143 

each object class. 144 

In COIL-100 dataset, we derived an orientation classification dataset instead 145 

of width classification dataset to see if our results will generalize to more 146 

naturalistic stimuli. The orientation classification dataset was derived according 147 

to the following procedure: first, 46 objects in the COIL-100 dataset that show 148 

ambiguous orientation as they are rotated (bottles, cans, cups) were removed 149 

and we only used the remaining 54 objects for both of our datasets.  150 

For orientation classification, we used four simplified orientation classes as 151 

following:  152 

• Class 1: All orientations between 0°±15° (5-degree increments) and 153 

their mirror orientations (180°±15°) regardless of the object identity. 154 

• Class 2: All orientations of 45°±15° (5-degree increments) and their 155 

mirror orientations (225°±15°) regardless of the object identity. 156 

• Class 3: All orientations between 90°±15° (5-degree increments) and 157 

their mirror orientations (270°±15°) regardless of the object identity. 158 

• Class 4: All orientations between 135°±15° (5-degree increments) and 159 

their mirror orientations (315°±15°) regardless of the object identity. 160 

 161 

This resulted in four classes, each with 756 images (a total of 3,024 images). 162 

which was used for training networks on orientation classification task. Each 163 

image was grayscaled and then downscaled to a 28 by 28 pixels resolution before 164 

being used in training.  165 

To make our object classification dataset consistent with the orientation 166 

classification, we only used the 54 object that have been used in our orientation 167 

classification task for object classification as well. In each of the 54 object classes 168 

we had 72 images of the same object from different viewpoints (a total of 3,888 169 

images) 170 

 171 
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 172 

Fig. 2. Example images from the COIL-100 dataset. COIL-100 contains 100 173 

object classes each with 72 images of the same object from different viewpoints (5-174 

degree increments). Objects are shown with 45-degree increments and rotating 175 

clockwise. The blue shade covering one row of the image array represents an object 176 

class while the light red shade covering an orientation with multiple objects represent 177 

central elements of an orientation class. An orientation class was defined as all object 178 

images with a central orientation (e.g. 45°), images with ±15° orientations around 179 

the central orientation plus all of their mirror orientations (e.g. 225°±15°) B. Some 180 

objects (e.g. the soda can) have an ambiguous orientation as they are moved along 181 

their vertical axis. These objects were excluded from the dataset. The resulting 182 

dataset after removing such objects contained 54 objects in total which was 183 

subsequently used for both tasks. 184 

2.2 Networks and training procedure 185 

Given that the convolutional neural networks (CNNs) show a reasonable 186 

similarity to primate visual system (Cadieu et al., 2014; Schrimpf et al., 2018; D. 187 
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L. Yamins et al., 2013; D. L. K. Yamins & DiCarlo, 2016) and the fact that both 188 

dorsal and ventral pathways receive information from primary visual areas 189 

(except for some subcortical inputs to the dorsal pathway), we used CNNs as 190 

simple approximations of early visual areas.  191 

To this end, we made two architecturally identical convolutional neural 192 

networks (details in figure 1) and trained one of them on the viewpoint invariant 193 

object classification dataset and the other one on the width classification dataset 194 

(orientation classification in COIL-100). The task of the networks at this stage 195 

was to recognize if one image belonged to a specific object class (in case of the 196 

object classifier network) or a width/orientation class (in case of 197 

width/orientation classifier network). At this stage, networks had to classify 198 

individual images. 199 

 200 

201 

Fig. 3. Network architecture. Our classifier network comprises 2 convolutional layers 202 

with max-pooling and 3 fully connected layers. Note that here, fully connected layer 203 

is referred to a layer is fully connected to all other nodes in its previous layer and it 204 

does not refer to any recurrence within the layer itself. This network was trained on 205 

either viewpoint invariant object classification (object classifier) or width/ 206 

orientation classification. Subsequently, it was modified by adding recurrent layers 207 

to perform sequence learning (see Fig. 4). 208 

 209 

 210 

Next, to see if temporal information (i.e., memory) in a sequence of images 211 

is important for the performance of the network, we froze the weights in the 212 

feedforward network and replaced the last layer in each of these two networks 213 

with either a leaky-integrator echo  state network (LiESN) (experiment 1) or a 214 

long-short term memory (LSTM) network (experiment 2). This was done based 215 
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on previous studies showing the effectiveness of transfer learning (Tan et al., 216 

2018). Accordingly, these new networks could learn sequences of stimuli. Hence, 217 

their task was to recognize images in a sequence of frames. For viewpoint 218 

invariant object recognition, the stimulus was a sequence of frames that 219 

contained different viewpoints of the same object. In each training epoch, the 220 

network was fed with this sequence to classify the object identity of the frames 221 

in the sequence. For width/orientation detection, the stimulus was a sequence of 222 

frames that contained different objects with the same width/orientation. 223 

Similarly, in each training epoch, the network was fed with a sequence of frames 224 

to classify the widths/orientations. 225 

 226 

 227 

In experiment 1.A, we replaced the last layer of classifiers by a leaky-228 

integrator echo state network and trained them on either viewpoint-invariant 229 

object classification or width/orientation classification. The last layer of the 230 

viewpoint-invariant object classifier was replaced with an LiESN and trained to 231 

recognize images of the same objects from different viewpoints. Similarly, the last 232 

layer of the width/orientation classifier network was replaced with an LiESN, 233 

and the resulting network was trained to recognize the width/orientation in a 234 

series of images containing different objects with similar widths/orientations.  235 

In a standard LiESN, the dynamics of the network with NU inputs and NR 236 

reservoir units were governed according to: 237 

 238 

𝑋(𝑡) = (1 − 𝑎)𝑿(𝑡 − 1) + 𝑎 tanh(𝑊𝑖𝑛𝑢(𝑡) + 𝜃 +𝑊𝑥(𝑡 − 1))       (1) 239 

 240 

Where 𝑋 is the state of reservoir with NR dimensions, 𝑡 is the time, 𝑢 is the 241 

input signal with NU dimensions, 𝑊𝑖𝑛 is the input weight matrix (NU by NR) 242 

and 𝑊𝑥 is the reservoir weight matrix (NR by NR). The 𝜃 is the bias term, 243 

and 𝑎 is the leaking rate (Gallicchio et al., 2017; Jaeger, n.d.; Schaetti et 244 

al., 2016). 245 

As seen in Equation 1, to ensure the stability of the outputs in the standard 246 

LiESN networks, the leaking rate specifies the dependence on past time steps 247 
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relative to dependence on the current input by the computation in each step. In 248 

other words, when leaking rate goes to zero, the network solely depends on its 249 

past state and ignores the current inputs, and when the leaking rate goes to 1, 250 

the network solely relies on current inputs and ignores the past states. 251 

To disentangle the role of past states on task performance from the 252 

importance of current inputs, we disjointed the memory dependence from current 253 

inputs by removing the effect of leaking rate on current inputs: 254 

 255 

𝑋(𝑡) = (1 − 𝑎)𝑿(𝑡 − 1) + tanh(𝑊𝑖𝑛𝑢(𝑡) + 𝜃 +𝑊𝑥(𝑡 − 1))       (2) 256 

 257 

As seen in Equation 2, the leaking rate 𝑎 does not affect the results of the 258 

tanh⁡() term of the equation. We will call the 𝑎 in this equation the forget 259 

rate from now on. In experiment 1.a, we observed changes in accuracy and 260 

forget rate as we trained the networks to either recognize objects or 261 

widths/orientations. We ran 18 training epochs and measured the test accuracy 262 

and forget rates after each training epoch. This simulation was repeated 30 times, 263 

and the average test accuracies with their corresponding forget rates were 264 

obtained for comparison.  265 

In experiment 1.b, we performed a parameter sweep of 50 equally spaced 266 

forget rates between 0 and 1 (0.02 steps) to see which task was harmed by larger 267 

forget rates. To control for the effect of network size on our results, we performed 268 

this parameter sweep on 6 different network sizes (n=20,40,80,160,320,640). The 269 

echo state networks were trained for 50 epochs, and their test accuracy was 270 

measured afterward. 271 

In experiment 2, we used LSTM networks instead of LiESN networks to see 272 

if our results were independent from the type of recurrent networks used in our 273 

experiments. LSTM network was implemented based on the original LSTM paper 274 

(Hochreiter & Schmidhuber, 1997). 275 

To measure how much of the past information (history, memory) is relevant 276 

to the classification performance in an LSTM network, we used the ratio of forget 277 

gate to input gate as an indicator of network reliance on the past information. 278 

Forget gate value in an LSTM network is a number between zero and 1, and it 279 
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is multiplied by the hidden state value to control the effect of the past 280 

information (hidden states) on the current output of the LSTM network. The 281 

input gate value in an LSTM network is also a number between 0 and 1, and it 282 

is multiplied by the current input of the LSTM network to indicate how much 283 

of the current input should affect the cell state of an LSTM network. Accordingly, 284 

the ratio of forget gate to input gate can show how much a given network is 285 

relying on its memory (hidden states) as compared to its current inputs to 286 

generate an output. The larger this ratio, the more reliance there is on the past 287 

information (memory) in the LSTM network. 288 

In experiment 2.a, to obtain these ratios with the synthetic dataset, we 289 

trained our LSTM network on each of the tasks. Subsequently, we fed the test 290 

data to the network and measured the logarithm of the ratio of ‘forget gate values 291 

to input gate values’ in the LSTM network as images were passing through the 292 

network. The average logarithm of (forget gate / input gate) for the entire test 293 

dataset was calculated for both width/orientation classification and object 294 

classification tasks. 295 

In experiment 2.b, we trained the LSTM network using the COIL-100 dataset 296 

to see if the small size of the synthetic dataset affected our results. To obtain 297 

these ratios in the COIL-100 dataset, we used the same procedure as experiment 298 

2.a. 299 

 300 

Like LiESN networks, to control for the effect of network size on our results, 301 

we ran all of the experiments on six different network sizes 302 

(n=20,40,80,160,320,640). Experiments were performed using PyTorch 303 

(Automatic Differentiation in PyTorch | OpenReview, n.d.) running on python 304 

3.6.  305 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.30.321299doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.321299
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 306 

Fig. 4. The architecture of the recurrent networks used in this study. Top right: 307 

schematic representation of an LSTM network (from (Zheng et al., 2017), under 308 

Creative Commons Attribution License). Top left: Schematic representation of an 309 

echo state network. Bottom: The last layer in the classifier was replaced with either 310 

an echo state network or an LSTM recurrent network. 311 

 312 

3 Results 313 

 314 

3.1 Feedforward convolutional networks (without recurrent 315 

networks)  316 

We trained the feedforward convolutional network (figure 3.) to either classify 317 

the object orientation or object identity in both datasets. After 200 epochs of 318 

training with a learning rate of 10-4, we tested the performance of the feedforward 319 

networks on the test dataset. Object and width classification accuracy in the 320 

synthetic dataset were 56% and 75%, respectively. When trained on COIL-100 321 

dataset, the networks achieved a similar object and orientation classification 322 

accuracy of 53% and 68%, respectively. See table 1 and figure 5 for graphical 323 

representation and details of the accuracies in each dataset. 324 

 325 

 326 
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  Synthetic Objects’ Dataset COIL-100 Dataset 

  Object Width Object Orientation 

Accuracy 56% 75% 53% 68% 

 327 

Table 1. Numerical values of classification accuracies in feedforward networks 328 

trained on the synthetic objects and the COIL-100 dataset. 329 

330 

Figure 5. Classification accuracies of the feedforward networks on the synthetic 331 

dataset and the COIL-100 dataset. The blue bars show object classification 332 

accuracy in the synthetic dataset (left) and the COIL-100 dataset (right). Light 333 

red shows accuracies for width classification in synthetic dataset and orientation 334 

classification in the COIL-100 dataset. 335 

3.2 Experiment 1.A: Forget rate learning: which task needs more 336 

memory? 337 

To see if adding recurrent networks would help the accuracy of the network 338 

(compared to purely feedforward networks) and to be able to compare the 339 

memory requirements for each task, we replaced the last layer of the feedforward 340 

network with an echo state recurrent network (size=200 neurons). The outputs 341 

of the echo state network were fed to a new linear layer to classify either objects 342 

or orientations (figure 4). Subsequently, we looked at the accuracy and forget 343 

rate of 30 networks with different random initializations as they learned to 344 

classify objects or orientations. We found that as the accuracy of the viewpoint-345 
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invariant object classification network increased, the forget rate dropped to lower 346 

values compared to the width classification network. These results were 347 

consistent regardless of the initial choice of forget rate value (figure 6). Moreover, 348 

object classification task required smaller forget rates (longer memory) regardless 349 

of the dataset type by showing the same trend in both synthetic objects and 350 

COIL-100 dataset. Adding recurrence to the classifiers benefited object 351 

classification more than orientation classification in the synthetic dataset but not 352 

COIL-100 dataset. Notably, when we looked at the networks initialized by a 353 

forget rate of 0.25, we observed that in the synthetic objects’ dataset, object 354 

classification accuracy increased from 56% to 92 (36% improvement) while the 355 

width classification increased from 75% to 94% (only improved by 19%). In the 356 

COIL-100 dataset, however, the object classification increased from 53% to 85% 357 

(32% improvement), and width classification also increased from 68% to 99% 358 

(31% improvement). 359 

Overall, results using this modification suggested that object classification needed 360 

smaller forget rate values and hence, a longer memory (figure 6). 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 
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 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

Fig. 6. Simultaneous changes of forget rate and accuracy in two networks as one 398 

learns to classify objects and the other learns to classify widths/orientations. Top 399 

left: object classification results are shown in blue, and width classification results 400 

are shown in red. Darker shades indicate the progression in the learning epochs (from 401 

epoch 1 to 18). Dashed lines show initial forget rates. Subpanel on the left: changes 402 

in leaky rate and accuracy in a network with initial leaky rate of 0.25. As the network 403 

learns the sequence, the accuracy of the network increases in both tasks and the 404 

forget rate goes down (longer memory) in both networks. However, the forget rate 405 

goes to smaller values (longer memory) in object classification networks. Middle and 406 

right subpanels showing the same with different initial values for the forget rate (0.5 407 

and 0.75). Each dot represents the mean forget rate and accuracy value of 30 network 408 

realizations. The top plots belong to values obtained from the synthetic dataset. Top 409 

right: final forget rate values, the error bars in here, and other figures in this paper 410 

are SEMs. The bottom plots show the same results obtained from the COIL100 411 

dataset.  412 
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3.3 Experiment 1.B: Parameter sweep in ESNs: which task needs 413 

more memory? 414 

 415 

Building on the results of experiment 1.A, we sought to test if our results 416 

(longer memory in object classification) depend on the network size. 417 

Additionally, we aimed to perform a parameter sweep for forget rates to see how 418 

network accuracies change if we fix the forget rates and only allow output weights 419 

change (weights from echo state network to linear classifying layer). To this end, 420 

we kept the forget rate constant and let the network train until it reaches a 421 

performance plateau after 50 training epochs for each of the 50 different forget 422 

rates between 0 and 1 with 0.02 intervals. This simulation repeated 30 times 423 

using 30 network realizations. Subsequently, average accuracies of these networks 424 

were taken for comparison. The results suggested that overall, parameter sweep 425 

does not effectively separate the forget rate requirements in object classification 426 

from the forget rate requirements in width classification. Specifically, we observed 427 

that in networks trained on the synthetic objects’ dataset, both tasks show 428 

similar changes in the accuracy as the forget rate changes (figure 7). The results 429 

obtained from the COIL-100 dataset were similar and did not show apparent 430 

dissociation between the two tasks (supplementary figure 2). 431 

 432 
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Figure 7. Performance of echo state networks in viewpoint-invariant object 433 

classification and width classification tasks with different forget rates. Each subpanel 434 

indicates the accuracy of both object classification (blue) and width classification 435 

networks (red) with different forget rates (0 to 1, 0.02 intervals) in each network size 436 

(20 to 640 neurons). The accuracy of the networks was measured after 50 training 437 

epochs so that networks reach a relative performance plateau. Results are the mean 438 

accuracy of 30 different network realizations, and shaded areas are standard error of 439 

the mean (SEM). 440 

3.4 Experiment 2.A: Which task requires more memory? LSTM 441 

networks trained on synthetic objects’ dataset 442 

In experiment 2.A, we used LSTM networks instead of echo state networks 443 

to measure memory dependence of each task in a different type of recurrent 444 

network. Similar to our echo state network experiments, when feedforward 445 
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networks were trained on each task, their weights were frozen, and their last 446 

layer was replaced by an LSTM network and a linear classifier. After training, 447 

we fed the network with sequences of test images again and extracted the 448 

logarithm of forget gate to input gate ratio as each single test image was passed 449 

through the network. We found that the average logarithm of forget to input 450 

gate ratio is higher in width classification compared to viewpoint invariant object 451 

classification. To investigate this effect more, we changed the learning rate from 452 

the initial value (10-3) to 10-4 to see if the accuracy and logarithm of ratios are 453 

sensitive to the learning rate. We observed that even though the logarithm of 454 

ratios changes, the overall trend stays the same, and width classification has 455 

higher input to forget rate ratio (longer memory) compared to object 456 

classification. An interesting trend was the reduction of the logarithm of forget 457 

to input gate ratio as network size increased which may point to an inverse 458 

relationship between network size and memory dependence. See figure 8 for more 459 

detail. 460 

 461 

 462 

 463 

 464 
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 465 

Fig. 8. Difference between the forget to input gate ratios (as measures of memory) 466 

in width and object classification tasks obtained from networks with different sizes 467 

trained on synthetic objects’ dataset. Top left: mean accuracy of networks in each 468 

task as the network size changes (20 to 640 neurons). Blue bars are accuracies in 469 

object classification tasks, and light red bars are accuracies in width classification 470 

tasks (learning speed=10
-3
), values are averaged across 30 network realizations. 471 

Bottom left: Bars show the average 𝒍𝒐𝒈(
𝐟𝐨𝐫𝐠𝐞𝐭⁡𝐠𝐚𝐭𝐞

𝐢𝐧𝐩𝐮𝐭⁡𝐠𝐚𝐭𝐞
) for 30 networks trained on either 472 

object classification (blue) or width classification (light red). Error bars show the 473 

standard error of the mean (SEM). Top right and bottom right show the same values 474 

for networks trained with a learning rate of 10
-4
.  475 

 476 

3.5 Experiments 2.B: Which task requires more memory? LSTM 477 

networks trained on COIL-100 dataset.  478 

All parameters in experiment 2.B were the same as experiment 2.A, but we 479 

used the COIL-100 dataset instead of our synthetic dataset to train the network. 480 

In contrast to the results we obtained from the synthetic dataset, the average 481 

logarithm of forget to input gate ratio is higher when the network is performing 482 

viewpoint invariant object classification compared to orientation classification. 483 
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Additionally, the object classification networks kept a higher forget to input gate 484 

ratio in all sizes. This trend remained the same regardless of the learning rate. 485 

See figure 9 for details. Interestingly, the overall forget to input gate ratios 486 

showed a decreasing trend as we increased the network size in here as well. See 487 

the discussion section for a possible explanation for this observation.  488 

 489 

 490 

 491 

 492 

 493 

 494 

Fig. 9. Difference between the forget to input gate ratios (as measures of memory) 495 

in orientation and object classification tasks in networks with different sizes trained 496 

on COIL-100 dataset. Top left: mean accuracy of networks in each task as the 497 

network size changes (20 to 640 neurons). Blue bars are accuracies in object 498 

classification tasks, and light red bars are accuracies in orientation classification tasks 499 

(learning speed=10
-3
); values are averaged across 30 network realizations. Bottom 500 

left: Bars show the average 𝒍𝒐𝒈(
𝐟𝐨𝐫𝐠𝐞𝐭⁡𝐠𝐚𝐭𝐞

𝐢𝐧𝐩𝐮𝐭⁡𝐠𝐚𝐭𝐞
) for 30 networks of the same size trained 501 

on either object classification (blue) or orientation classification (light red). Error 502 

bars show the standard error of the mean (SEM). Top right and bottom right show 503 

the same values for networks trained with a learning rate of 10
-4
. 504 
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4 Discussion  505 

In this study, we have shown that in echo state networks, learning to classify 506 

objects requires a longer memory compared to width/orientation classification. 507 

Additionally, our results indicated that in LSTM networks, object classification 508 

requires a longer memory only when the network is trained on larger datasets (3-509 

4 thousand images) and not in small datasets (200-400 images).  510 

 511 

One natural first response to these results would be to think that differences 512 

in memory lengths in these tasks are probably caused by the length of image 513 

sequences in each class of the dataset, i.e., object classification networks might 514 

have longer memory simply because they have been learning longer sequences of 515 

images. However, we deliberately used longer sequences in width/orientation 516 

classes of both datasets. Notably, there were 32 images in each width class of the 517 

synthetic objects’ dataset (compared to 22 in the object classes). In the COIL-518 

100 dataset, there were 756 images in each orientation class compared to 72 in 519 

each object class.  520 

The second concern with the results is the fact that the total number of 521 

images in each task is different. Therefore, the reliance on memory reflects the 522 

amount of information that has to be learned in each task. Specifically, in the 523 

synthetic objects’ dataset, there were 192 images in the orientation classification 524 

task, while there were 352 images in the viewpoint invariant object classification 525 

task. Similarly, in COIL-100 dataset, there were 3,888 images in the object 526 

classification task, while there were only 3,024 images in the orientation 527 

classification task. However, if this were the case, we would not see the width 528 

classification networks trained on synthetic objects’ dataset to have higher 529 

memory reliance compared to object classification networks (192 images 530 

compared to 352 images, see figure 7 for LSTM results). Moreover, if the number 531 

of images in each task was a primary factor in determining accuracy, orientation 532 

classification in networks trained on the synthetic objects’ dataset would become 533 

significantly better than the orientation classification of networks trained on the 534 

COIL-100 dataset (3,024 compared to 194 images). However, the orientation 535 

classification accuracies in both echo state networks and LSTMs trained on either 536 
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of the datasets are similar (figure 6 showing echo state networks, and figure 8 537 

and 9 showing LSTMs). 538 

One interesting effect that we observed in this study was the relationship 539 

between memory and size of the network. Both echo state networks and LSTMs 540 

indicated an inverse relationship between network size and their need for larger 541 

memory spans (figure 7, 8, and 9). While the relationship between network 542 

architecture and memory capacity in echo state networks has been explored 543 

elsewhere (Gallicchio et al., 2018), the exact relationship between network size 544 

and memory capacity deserves further investigation. 545 

 546 

From a broader perspective, our results were in line with clinical findings in 547 

patients and the two-streams hypothesis for primate vision. Meanwhile, It is 548 

noteworthy to mention that some studies called initial assumptions of the two-549 

streams hypothesis into question (Hesse & Schenk, 2014; Konen & Kastner, 2008; 550 

Rogers et al., 2009), (see (Schenk & Hesse, 2018) for a critical review). Thus, our 551 

results cannot generalize to the entire dorsal pathway. In particular, it is essential 552 

to note that according to Kravitz et al., the dorsal stream itself is composed of 553 

three different sub-pathways: the parieto-prefrontal, the parieto-medial temporal, 554 

and the parieto-premotor paths (Kravitz et al., 2011). Specifically, the parieto-555 

prefrontal path is involved in spatial working memory and eye movement control, 556 

the parieto-medial temporal pathway is critical for spatial navigation and spatial 557 

long term memory, and the parieto-premotor pathway is heavily involved in 558 

visually controlled movements such as reaching and grasping (Kravitz et al., 559 

2011). Due to the nature of the tasks we used here, our results are most relevant 560 

to the parieto-premotor pathway. 561 

The short-term nature of memory in the dorsal pathway has been extensively 562 

studied using both psychophysical and imaging studies and generated mixed 563 

results. For example, Cant et al. showed that while naming of objects can be 564 

primed, a grasping movement cannot be primed by previous grasping movements 565 

(Cant et al., 2005), supporting the short-term nature of the visuomotor control 566 

representations. Similarly, Jax and Rosenbaum reported that while priming in a 567 

visually guided obstacle avoidance task with short delays between the priming 568 

stimulus and actual task was possible, this effect went away with delays that 569 
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were longer than a second (Jax & Rosenbaum, 2007). Meanwhile, the idea that 570 

in delayed motor-controlled tasks, the source of information switches from dorsal 571 

to ventral pathway was challenged by some studies (Schenk & Hesse, 2018). For 572 

example in a study by Himmlbach et al., a bilateral optic ataxia patient (IG) 573 

showed strong activity in regions around his lesion in the dorsal pathway in both 574 

immediate and delayed reaching tasks (Himmelbach et al., 2009). Moreover, the 575 

famous patient D.F. showed that she could perform delayed visually guided 576 

movement as good as controls when the environmental cues (allocentric 577 

information) were not available (Hesse & Schenk, 2014). This study lent credit 578 

to the idea that the dorsal pathway can still keep information related to visually 579 

guided behavior for long delays (>2seconds), and it is the contextual information 580 

that becomes available after a delay. 581 

The short memory span of the dorsal stream could be understood from the 582 

perspective of its inputs as well. Magnocellular inputs mostly innervate the dorsal 583 

pathway whereas the ventral pathway is more innervated by parvocellular inputs 584 

(Merigan & Maunsell, 1993). The main difference between these two types of 585 

inputs is that the magnocellular cells are better at the classification of higher 586 

temporal frequencies, whereas parvocellular cells are more suitable for higher 587 

spatial frequencies. Additionally, magnocellular cells are 20 milliseconds faster in 588 

terms of their response latency to stimuli (Bullier & Nowak, 1995). The faster 589 

dynamics of the dorsal pathway is in line with what we found in our study.  590 

Since similar two-stream dissociation is suggested in other sensory modalities 591 

such as somatosensation (Dijkerman & de Haan, 2007; James & Kim, 2010) or 592 

audition (Hickok & Poeppel, 2007; Rauschecker, 2018), the relationship between 593 

short term memory and motor control tasks might even go beyond vision. 594 

However, our current datasets and tasks are limited to vision, and specific tasks 595 

for each modality would be required to find out if such a relationship holds for 596 

other sensory modalities as well. 597 

Another issue is the fact that the majority of the computational models of 598 

the visual cortex are based on the ventral stream (e.g., (Lotter et al., 2016, 599 

2020)), while models incorporating both ventral and dorsal pathways are less 600 

common (but see (O’Reilly et al., 2017, 2020) as an example incorporating both 601 

streams). We believe that newer models of the visual cortex should incorporate 602 
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the tasks relevant to both streams. This will demonstrate if different tasks (e.g. 603 

object recognition vs. motor control) require incompatible computational 604 

paradigms that need different circuitries. 605 

5 Limitations 606 

Our current study comes with several shortcomings. First, we could have 607 

added a motor control task to our width classification task to be able to make a 608 

direct comparison between our model and parietal-premotor pathway.  609 

Second, since the dorsal pathway receives information from subcortical 610 

sources such as superior colliculus and these sources are mostly innervated by 611 

magnocellular cells with higher sensitivity to lower spatial frequencies, we could 612 

have used larger sized kernels for convolutional layers that we used to 613 

approximate dorsal pathway. However, doing so would render comparison of 614 

recurrent networks a bit less straight forward. 615 

6 Conclusions 616 

In the present study, we have shown that there is a close relationship between 617 

length of memory in recurrent networks and how they perform in object 618 

classification or width/orientation classification tasks. While having a longer 619 

memory span benefits object classification performance (as a ventral stream task) 620 

in echo state networks, in LSTM networks, such effect is present only when the 621 

network is trained on larger dataset. 622 
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8 Supplementary Material 632 

8.1 Code 633 

 634 

The code used in this study is available at (https://github.com/Abolfazl-635 

Alipour). 636 

 637 

 638 
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8.2 Supplementary figures 639 

Supplementary Fig. 1. Width classes derived from the synthetic dataset. 640 

Each with class is shown by a different color.  641 
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 642 

 643 

Supplementary Fig. 2. Performance of echo state networks in viewpoint-invariant 644 

object classification and width classification tasks trained on COIL-100 dataset. Each 645 

subpanel indicates the accuracy of both object classification (blue), and orientation 646 

classification networks (red) with different forget rates (0 to 1, 0.02 intervals) in each 647 

network size (20 to 640 neurons). The accuracy of the networks was measured after 648 

50 training epochs so that networks reach a relative performance plateau. Results 649 

are the mean accuracy of 3 different network realizations, and shaded areas are 650 

standard error of the mean (SEM). 651 

 652 

 653 
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