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Abstract

Context by distorting values of options with respect to the distribution of available
alternatives, remarkably affects learning behavior. Providing an explicit counterfactual
component, outcome of unchosen option alongside with the chosen one (Complete
feedback), would increase the contextual effect by inducing comparison-based strategy
during learning. But It is not clear in the conditions where the context consists only of
the juxtaposition of a series of options, and there is no such explicit counterfactual
component (Partial feedback), whether and how the relativity will be emerged. Here for
investigating whether and how implicit and explicit counterfactual components can
affect reinforcement learning, we used two Partial and Complete feedback paradigms, in
which options were associated with some reward distributions. Our modeling analysis
illustrates that the model which uses the outcome of chosen option for updating values
of both chosen and unchosen options, which is in line with diffusive function of
dopamine on the striatum, can better account for the behavioral data. We also observed
that size of this bias depends on the involved systems in the brain, such that this effect
is larger in the transfer phase where subcortical systems are more involved, and is
smaller in the deliberative value estimation phase where cortical system is more needed.
Furthermore, our data shows that contextual effect is not only limited to probabilistic
reward but also it extends to reward with amplitude. These results show that by
extending counterfactual concept, we can better account for why there is contextual
effect in a condition where there is no extra information of unchosen outcome.

Introduction 1

In everyday life, we frequently decide between options. Value of an option is usually 2

learned via trial and error [1], and it is represented in multiple cortical and subcortical 3

areas of the brain. Values of competing options interact with each other and 4

consequently the context in which options are located can affect the representations [2]. 5

Although the early studies on the contextual effects have been designed in the 6

decision-making paradigm [3–8], a new trend has been formed recently to show that 7
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some of the behavioral biases come from contextual effects during value learning [9–11]. 8

They showed that, in particular, in the paradigm in which the counterfactual outcomes 9

pertaining to the chosen option were available (Complete feedback), subjects were 10

strongly affected by the context, and this is mostly because they were induced to use a 11

relative strategy. Although, it has been shown that there is a weaker contextual effect in 12

the Partial version [9, 11], yet there is no global consensus about whether and how this 13

effect happens. 14

Reinforcement learning is an incremental procedure that updates the option value 15

via its prediction error [1]. This procedure is happening in the striatum where encodes 16

action values [12–17], and is modulated by dopamine which encodes prediction 17

errors [18]. Dopamine has opposing exciting and inhibiting effects on two distinct 18

populations of striatal neurons called D1-SPNs and D2-SPNs (spiny projection neurons) 19

respectively [19,20]. Some reinforcement learning studies have shown opposing activities 20

with similar strength in these two clusters during learning [21,22]. Recent optical 21

evidence suggests a model for Basal Ganglia that, it is the relative activity of these two 22

clusters that represents an internal decision variable during decision making and 23

learning [23–25]. For a good review on this issue, see [26]. Inspired by the opposing role 24

of dopamine on D1- and D2-SPNs, while they encode two competing options’ values, we 25

proposed a simple reinforcement learning model called Opposing Learning model, in 26

which the chosen prediction error in addition to updating the chosen option value 27

(classic standard Q-learning), updates the unchosen option value, though in an opposing 28

manner. This mechanism is consistent with diffusive nature of dopamine release and 29

enables the model to endogenously encode the chosen and unchosen options’ values 30

relative to each other and consequently suggests having a contextual effect in the 31

Partial feedback conditions too. 32

In the Complete feedback paradigm in which there are some exogenous factors that 33

impose relativity on value learning procedure, the value learning strategy can be 34

complex [9–11]. In these conditions, the main strategy might be to compare two 35

presented outcomes and this would generate the regret and relief emotions. It has been 36

shown that people tend to optimize their outcome difference, outcomefactual - 37

outcomecounterfactual (i.e. minimize their regret and maximize their relief) [27–29]. In 38

the Partial feedback paradigm, due to absence of regret and relief emotions, the main 39

value learning strategy assumes to be the standard maximizing expected rewards. 40

Interestingly, recent studies have illustrated that people are neither fully 41

expected-reward optimizer nor fully outcome-difference optimizer, rather they are 42

hybrid optimizers [9, 30], who use both of these strategies with different weights. The 43

individual differences among people would depend on how much a person weighs each of 44

these strategies. By adding a hybrid component to the basic OL model, we could extend 45

the OL model for the Complete version too. 46

In this paper, we went beyond the standard definition of a counterfactual outcome, 47

and focused on an uncommon subtle aspect of counterfactual role in value learning. 48

This role is important in particular in the situations where there is no forgone outcome 49

to trigger the comparison-based strategy explicitly. We used two types of feedback 50

paradigms, with and without forgone outcomes. By using the chosen outcome as a 51

counterfactual outcome for unchosen option we introduced a novel reinforcement 52

learning model that could account for the contextual effect of the behavioral data better 53

than previous related models. To see how contextual effect is different in two types of 54

cortical and subcortical dominant behavior, we evaluated participants’ behavior in two 55

post-learning transfer phase and value estimation phase. We observed that participants 56

behaved strongly biased in the transfer phase, while this bias was very weak in the 57

estimation phase. This suggests that these two systems have different sensitivities to 58

the contextual effect, such that subcortical system is more sensitive than cortical one. 59
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To better dissociate the cortical and subcortical behavioral difference, we used reward 60

amplitude rather the reward probability, because we assumed that complexity of reward 61

amplitude can better engage the cortical parts of the brain in the estimation phase. 62

Thus we could show that there is contextual effect also for reward amplitude. 63

Results 64

1 Results 65

Behavioral task 66

Two groups of participants performed two different versions of the instrumental learning 67

tasks, the Partial feedback version, in which the factual outcomes were only provided, 68

and the Complete feedback version, in which both factual and counterfactual outcomes 69

were provided. Subjects were instructed to gain the most possible rewards during the 70

task. Rewards were random independent numbers drawn from particular normal 71

distributions. They observed two pairs of options (A1, B) and (A2, C), where A1 and 72

A2 were associated with rewards from the same distribution of N (64, 13) and B and C 73

were associated with rewards from two different distributions of N (54, 13) and N (44, 13) 74

respectively. To conceal the task structure from the participants, although their 75

associated values were equal, the images assigned to A1 and A2 were different. After 76

the learning phase, they unexpectedly entered the post-learning transfer phase, in which 77

all possible binary combinations of options (6 pairs) were presented to them (each 78

combination 4 times), and they were asked to choose the option that was associated 79

with the highest expected rewards in the preceding learning phase. With this design, if 80

there is a bias in preferring A2 over A1, this transfer phase can reveal it. Similar designs 81

were used in the context-dependent learning studies as well [9–11]. In order not to 82

interfere with their previous learning, no feedbacks were provided in the transfer 83

phase [9–11,31,32]. After each choice, they were asked to report their choice confidence 84

on a scaled bar from 0 to 100. Finally, in the value estimation phase we asked the 85

subjects to report their estimated expected value of each stimulus on a scaled bar 86

ranging from 0 to 100. 87

Performance 88

To see whether the participants learned the options values during the task, at first, we 89

calculated their performance in the learning phase which is the percentage in which they 90

chose the advantageous option (the option with higher expected rewards). We observed 91

that in both versions, the participants’ performances were higher than 0.5. (Partial: 92

performance = 0.7613± 0.1130; Complete: performance = 0.8823± 0.0853; Figure 3b). 93

Consistent with the previous studies [9–11], we found that in the Complete version, the 94

performance of the learning phase was significantly higher than that of the Partial 95

version (p = 4.5603e− 07, tstat = 5.3522, df = 75, one-tailed ttest), which means 96

providing counterfactual outcomes facilitate learning. In addition to the learning phase, 97

we also observed that subjects had higher performance in the transfer phase, such that 98

participants significantly preferred the option with higher expected rewards in each 99

combination (Partial: p = 1.0577e− 73, tstat = 23.4715, df = 348; Complete: 100

p = 4.3483e− 84, tstat = 24.7863, df = 418; ttest). Additionally, the reported 101

confidences for the most advantageous options were significantly higher than those with 102

non-advantageous options (Partial: p = 1.5970e− 06, tstat = 4.9705, df = 173; 103

Complete: p = 3.7111e− 09, tstat = 6.1597, df = 208; ttest). For these and all the 104

following analyses, unanswered trials of the learning phase were excluded. 105
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Fig 1. Behavioral Design. Time-lines of the Partial and Complete feedback versions.
Subjects were instructed with written instructions and trained through 20 trials before
beginning the main task. They learned two pairs of options in the Learning phase with
trial and error. They transferred to the transfer phase after at least 100 and at most
300 trials, in which they were supposed to choose the most advantageous option
between the two presented options, and report their choice confidence. In this phase, all
possible binary combinations of options were presented.

Contextual effect 106

When through performance analysis, we made sure that participants learned the 107

options’ values during the learning phase, we turned to the transfer phase to see 108

whether there is any contextual effect. Considering the first iterations of the 109

participants’ choices in the transfer phase, we found that participants’ preferences 110

between A1 and A2 have been significantly modulated by their distance from their 111

paired options, such that despite having equal absolute values, participants preferred A2 112

over A1 (transfer bias) in both versions (Partial: p = 0.04, ratio = 0.65; Complete: 113

p = 0.01, ratio = 0.66; binomial test) (Figure 3a). This trend remained when we 114

consider all the four iterations of A1 and A2 though it loses significance (Partial: 115

p = 0.08, ratio = 0.63; Complete: p = 0.053, ratio = 0.64; binomial test). This loss of 116

significance might be due to strategy of balanced choice in subjects to reduce the risk 117

for all four choices of no feedback. 118

To assure that the observed bias in the transfer phase belongs to the 119

context-dependent value learning, and not to some other confounding factors, we probed 120

which other factors could have affected the subjects’ preference toward A2. The 121

observed bias might have occurred due to the fact that in the learning phase A2 has 122

been chosen more frequently than A1. To test this possibility, we ran a logistic 123

regression analysis to see whether the preference of A2 over A1 in the first (A1, A2) 124

iteration of the transfer phase was due to the difference between the choice frequency of 125

A2 over A1 in the learning phase. This analysis showed that the effect of choice 126

frequency of A2 over A1 on the transfer bias is not significant for complete version and 127

near significant for partial version (Partial: p = 0.054, tstat = 1.92; Complete: p = 0.12, 128
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tstat = 1.54). Significant intercept of the regression confirms the transfer effect, even 129

when choice frequency is controlled (Intercept, Partial: p = 0.03, tstat = 2.15; Complete: 130

p = 0.02, tstat = 2.20). 131

Furthermore, we ran another logistic regression analysis to assess whether the 132

different choice frequencies of options in the last trials of the learning phase (last 20 133

trials) have made the observed bias in the transfer phase. We again found no significant 134

effect of late choice frequency on the transfer bias (Partial: p = 0.56, tstat = −0.57; 135

Complete: p = 0.29, tstat = 1.0473) while intercepts remained near significant (Partial: 136

p = 0.06, tstat = 1.83; Complete: p = 0.03, tstat = 2.13). The other alternative for 137

transfer bias justification might be the amount of very small or very large rewards 138

(rewards from the top or bottom of the reward distributions) that affected the transfer 139

bias. Again, using logistic regression analysis, we separately tested whether sum of the 140

observed rewards greater than µ+ 2.5σ and less than µ− 2.5σ (µ and σ are the mean 141

and standard deviation of the observed rewards, respectively) could affect the transfer 142

bias. We found no significant effect of large and small rewards in either of the versions 143

(large rewards: [Partial: p = 0.40, tstat = 0.82; Complete: p = 0.62, tstat = 0.48], Small 144

rewards: [Partial: p = 0.54, tstat = 0.60; Complete: p = 0.47, tstat = −0.71]). 145

Fig 2. Transfer effect. In the transfer phase of both feedback versions, participants
significantly preferred the option with higher relative value (A2, dark green) between
the two options with equal absolute values.

Value estimation 146

Considering the participants’ first estimation in the average estimation phase, we found 147

that participants almost precisely estimated the expected rewards of the most 148

advantageous option based on their mean rewards, but the other non-advantageous 149

options have been significantly underestimated (Figure 3c). This illustrates that when 150

an option is chosen frequently, subjects could either track precisely the mean of its 151

rewards or calculate its value at the moment of estimation. This result was also 152

observed when we considered the participants’ total estimation (the average of the four 153

repetitions for each stimuli). 154

To test whether the observed contextual bias in the transfer phase, would also be 155
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Fig 3. Behavioral results in the learning, transfer and estimation phases. a.
The learning curves of two pairs of options in the learning phases of both versions show
that participants learned to choose the advantageous options (A1 in A1B pair and A2 in
A2C pair). The learning curve of the OL models in both versions also shows similar
results. Each bin in the x-axis is the mean of the choices in 10 trials. The Partial
version is green, and the Complete version is brown. Solid lines show the behavioral
effect, and dashed lines show the model effect. b. The subjects’ preferences in all 6
combinations (top), and corresponding confidences (down), with OL predictions (black
dots). c.The value estimations of the subjects (colored bars) are very close to the real
expected rewards of A1, and A2 options (colored lines). Partial version is green and
Complete version is brown. Shadings are SD and error bars are SEM.

observed in the estimation phase, we ran a paired-ttest analysis on the estimated values. 156

There was no significant difference between subjects’ average estimation of A1 and A2 157

in both versions, yet there was a trend in overestimating A2 compared to A1 (Partial: 158

p = 0.25, tstats = −1.14, df = 34; Complete: p = 0.28, tstats = −1.08, df = 41; 159

paired-ttest). These results support the dual value-based system hypothesis, in which 160

the subcortical system (BG) is responsible for stimulus-response association (the 161

behavior that dominated in the transfer phase), and the cortical system (Frontal 162

Cortex) is responsible for average reward computation (the behavior that dominated in 163

the estimation phase) [33–37]. 164

Comparison effect 165

When we observe the consequences of our decision, we compare the outcome of our 166

decision with those alternative decisions we could have made. This comparison would 167

trigger feelings of regret and relief if the outcome of our decision is either better or 168

worse than those of other alternatives respectively. People naturally tend to avoid regret 169

(approach the relief), and when one experiences regret (relief), she will likely switch to 170

the other option (stay in the previous choice) [28,29]. 171

To test whether the outcomes difference of the previous trial of the same condition 172

has influenced the switching behavior of the current trial in the learning phase, we used 173
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a hierarchical logistic regression analysis. In this analysis, we modeled the switching 174

behavior of the subjects (1 if subject has switched, and 0 if subject has stayed on her 175

previous choice), as a function of the outcomes difference the subject has experienced in 176

the previous trial of the same condition, and also the difference of the expected values of 177

the options in the current trial. The outcome difference in each trial was defined as the 178

difference of the factual outcome and counterfactual outcome {rFC − rCF } in the 179

Complete version, and the difference of the factual outcome and the counterfactual 180

value (expected rewards) {rFC − VCF } in the Partial version. All regressors have been 181

z-scored. While this analysis showed that there was a significant comparison effect in 182

the Complete version, it showed no significance in the Partial version (Table 1). This 183

means subjects tend to switch to other alternatives after experiencing regret and stay 184

on their previous choice after experiencing relief, and this tendency is stronger in the 185

Complete version compared to the Partial one. To investigate this effect more 186

thoroughly, we performed a similar analysis on the logarithm of reaction times 187

(logarithm). We observed again that, in the Complete version and not the Partial 188

version, reaction times in each trial were significantly modulated by the outcome 189

difference in the previous trial of the same condition, in a way that whenever the 190

difference is smaller, the reaction time is slower, and vice versa (Table 1). This result is 191

consistent with the post-error slowing phenomena that have been reported frequently in 192

the decision-making literature [38,39]. 193

Table 1. Comparison effect of the subjects’ switch behavior and reaction times.
Switch

partial complete
Name Estimate SE tStat pValue Estimate SE tStat pValue

(Intercept) -1.5528097 0.10551335 -14.716713 2.69E-48 -2.724902 0.17598005 -15.484153 2.28E-53
outcome difference -0.0879529 0.0567055 -1.5510467 1.21E-01 -0.5462195 0.06292942 -8.6798744 4.68E-18
value difference -1.123403 0.08767908 -12.812668 3.67E-37 -0.9158512 0.06505058 -14.079062 1.57E-44

condition 0.25688705 0.08761796 2.93189954 0.00337999 0.25104619 0.12809207 1.95988856 0.05004073

Reaction Time
partial complete

Name Estimate SE tStat pValue Estimate SE tStat pValue
(Intercept) -0.1164283 0.03073684 -3.7879077 0.00015321 -0.1211333 0.03585658 -3.3782727 0.00073263

outcome difference 0.01123051 0.00651389 1.72408744 0.08473669 -0.0164905 0.00526292 -3.1333433 0.00173402
value difference -0.0699353 0.0101347 -6.9005836 5.64E-12 -0.0698999 0.01654412 -4.2250579 2.41E-05

condition 0.04191482 0.02390541 1.75336139 0.07958424 0.03658956 0.02364193 1.54765513 0.12174177
The hierarchical logistic regression and hierarchical simple regression analysis were performed on switch behavior and logarithms of reaction times of
the subjects respectively. Along with the outcome difference as the main regressor, the current value differences between the two paired options and
the condition type (A1B,A2C) were also included as a control regressor. The results illustrate that both current participants’ choices and current
reaction times were significantly influenced by the outcome differences of their previous choices in the Complete but not Partial version.

Opposing Learning model (OL) 194

Here, we introduce a novel reinforcement learning model, called OL model, adopted 195

from the standard Q-learning model and inspired by the striatal mechanism. At first, 196

we introduce the basic model for the Partial version, and then we extend this model for 197

the Complete version. 198

Model description 199

This model is chosen-option centered in a way that value updating is done based on the 200

prediction error of chosen option. Following the choice, the chosen prediction error 201

simultaneously updates the chosen and unchosen values in an opposing manner 202

(increasing and decreasing respectively). This mechanism is inspired by the opposing 203

effect of dopamine on D1-SPNs and D2-SPNs neurons in the striatum, where they 204

September 26, 2020 7/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.30.320135doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.320135
http://creativecommons.org/licenses/by/4.0/


encode chosen and unchosen options respectively. The main reason to apply a single 205

prediction error for updating of both options is that dopamine release is diffusive and so 206

it is non-selective during release, thus, it will affect both D1 and D2-SPN neurons 207

simultaneously. 208

Qch = Qch + α1δch

Qun = Qun − α2δch

where ch referred to chosen option, un referred to unchosen option, and 209

δch = rch −Qch. Generally, when we refer to the OL model, we mean the OL model 210

with two different learning rates, but in this paper, when we want to compare the two 211

different versions of the OL model, α1 = α2, and α1 6= α2, we call them OL1, and OL2 212

respectively. When the subject compares the options’ values for making the choice, the 213

decision is made by the softmax rule, p(c) = 1
1+eβ(Qun−Qch) , where β is the inverse of the 214

temperature parameter. The OL behavior is strongly dependent on the amount of α2 215

relative to α1. Based on α2 in either of these three intervals: 0 ≤ α2 < α1, α2 = α1, or 216

α1 < α2 < 1, the model generates a particular behavior. 217

OL contextual effect 218

In the OL model, the chosen and unchosen values are coupled, therefore their coding is 219

not independent of each other, rather they are negatively correlated. Our simulation 220

shows that the correlation between two paired options is proportionate to the following 221

formula: 222

Corr(Q1, Q2) ≈ −
α2

α1

According to this formula, the amount of the correlation between Q1 and Q2 223

depends on the amount of unchosen learning rate. When α2 changes from 0, where Q1 224

and Q2 are almost orthogonal (corr ≈ 0), to α1, where Q1 and Q2 are almost fully 225

correlated (corr ≈ −1), the encoding will change from almost fully absolute to almost 226

fully relative (Figure 5a,b). Via simulating the experiment with typical agents of α2 = 0, 227

0 < α2 < α1, and α2 = α1, we showed that we will have zero, moderate and large 228

amount of contextual effect with never, temporary and permanent contextual effect, 229

respectively (Figure 5c). 230

According to this formula, the amount of correlation between Q1 and Q2 depends on 231

the amount of the unchosen learning rate. When α2 changes from 0, where Q1 and Q2 232

are almost orthogonal (corr ≈ 0), to α1, where Q1 and Q2 are almost fully correlated 233

corr ≈ −1), the encoding will change from almost fully absolute to almost fully relative 234

(Figure 5a,b). Through simulating the experiment with typical agents of α2 = 0, 235

0 < α2 < α1, and α2 = α1, we showed that we will have zero, moderate and large 236

amount of contextual effect with never, temporary and permanent contextual effect 237

durations, respectively (Figure 5c, in the red box there is no contextual effect, in the 238

yellow and green box there is a temporary moderate amount of contextual effect, and in 239

the blue box there is a permanent large amount of contextual effect). 240

OL optimality 241

The inhibition role of the chosen prediction error on unchosen value would lead to an 242

increase in the contrast between the competing options’ values, and it leads to an 243

increase in the performance, especially in an environment within a reasonable noise 244

range (Figure 6a). To illustrate the performance change in the OL model, we did a 245

simulation with a wide range of task settings, µ2 − µ1 ∈ [1, 10], σ = 1, and a wide range 246
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Fig 4. The schematic of the OL model and its extension. a. The comparison
of the competing outcomes is a common strategy in the value learning strategy,
particularly in situations where counterfactual outcomes are also provided along with
factual outcomes. This comparison triggers the people’s regret (relief) emotion which
subsequently drives the avoidance (approach) action behavior. This tendency to
minimize regret (and maximize relief) along with the tendency to maximize the
expected rewards as a hybrid strategy that can account for the behavioral data is better
than either of these strategies. The weights assigned to each strategy, absolute and
relative, determine the amount of its effect on behavior. b. The idea behind the OL
model comes from the opposing role of dopamine on two distinct populations of D1-SPN
and D2-SPN neurons, which have been proposed to encode the chosen and unchosen
options’ values, by promoting the latter and inhibiting the former. Correspondingly, in
the inspired model, chosen prediction error has an opposing role in updating the chosen
and unchosen options’ values, by strengthening the latter and weakening the former.

of parameters, α1 ∈ [0, 1], α2 ∈ [0, α1], and β ∈ [0, 1] (for the full setting see the 247

Methods). For the sake of simplicity, we performed all the simulation with the scaled 248

Q-values (directly) and scaled β (inversely) so that σ was 1. By this scaling, the 249

dynamics of the values will remain unchanged. Each of these simulations has been 250

repeated 100 times and later averaged. 251

Our simulation analysis in the first step showed that the OL model as a 252

reinforcement learning model has a better performance when the difference between 253

competing options’ values increases (Figure 1). This analysis also showed that when 254

noise is in a reasonable range, with α2, increasing, the performance will increase as well 255

(relative to the SQL model, Figure 6a,b), and it means by embedding the α2, inhibition 256

mechanism in the model, we can have a more optimal learning behavior. 257
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Fig 5. Correlation between two competing options’ values estimated by the
OL model. a. When α2 = 0, two estimated values are equal to their absolute values
and they are orthogonal. But whenever α2 gets closer to α1, the estimated values in
each pair become more correlated and each of them represents a stronger combination
of the two absolute values. And when α2 = α1, estimated values are approximately fully
correlated (corr ≈ −1). b. The correlation between two paired options’ values as a
function of −α2/α1. c. The difference in the estimated values of A1 and A2 (contextual
bias) emerges with increasing α2. The q-values and their differences are in top and
bottom parts of the figure respectively. The simulation has been done on two different
pairs of options [N (7, 1),N (5, 1)], and [N (7, 1),N (3, 1)], with β = 0.1, α1 = 0.2, and
four different α2 = 0, 0.1, 0.18, 0.2.

OL extension 258

The basic OL model introduced above, suggests the endogenous relative encoding in the 259

Partial version. The main idea is the non-selective and diffusive behavior of 260

dopaminergic signals on D1- and D2-SPN neurons. But in the Complete version there is 261

another relativity inducing factor and that is to what extent factual outcomes are better 262

or worse than the counterfactual outcomes. It has been shown that dopaminergic 263

signals in the presence of counterfactual outcome differs from the standard prediction 264

error, and it is the integration of reward and counterfactual prediction errors [30]. 265

Furthermore, some studies have shown that by adding the outcome difference strategy 266

to the learning procedure, the model can better account for the behavioral [9] or 267

physiological [27] data. Therefore, we inserted the outcome difference component into 268

the OL model to extend it for the Complete version (Figure 4b). It is worth mentioning 269

that the outcome difference factor had a significant effect on the participants’ switching 270

behavior in the Complete version and not in the Partial version. 271

rabs = rFC
272

rrlt = rFC − rCF
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Fig 6. Performance comparison between OL and SQL model. a. As α2/α1

goes from 0 (SQL) to 1 (the OL1) the peak of the performance shifts to the left, where
the value of β is smaller, and also is more reasonable. In this β range. For higher α2/α1

the peak of performance has been reached in higher β that there is high variance in
behavior. The performance has been obtained by averaging performance across all task
settings and different ranges of α2/α1. b. This heat-map shows that by increasing
α2/α1, performance will increase. This result comes from the task setting
[N (10, 1),N (7, 1)], and β = 0.1.

273

rhyb = wrabs + (1− w)rrlt
274

δch = rhyb −Qch

Qch = Qch + α1δch

Qun = Qun − α2δch

where w is the weight of absolute strategy. If the means of reward distributions of 275

paired options are µ1, and µ2, and then their difference is µ1 − µ2, the means of the 276

new reward distributions and their difference would be: 277

µ′
1 = µ1 + (1− w)µ2

278

µ′
2 = µ2 + (1− w)µ1

279

µ′
1 − µ′

2 = w(µ1 − µ2)

Using rhyb in the prediction error formula seems as if we have two options with two 280

new reward distributions, in a way that that their means get closer to each other, 281

relative to when we use rFC . Thus, this modification does not change the key OL 282

behavior, and the extended-OL model still preserves all the above-mentioned properties. 283

Therefore, by designing a proper prediction error, the OL model will have a good ability 284

to be extended easily to a wide range of conditions. 285
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Model comparison 286

Model fitting and model validation 287

In this part of the analysis, we compared the novel OL model with the related 288

previously introduced models, in two ways: model-fitting and model-validation. We 289

included the standard Q-learning model (SQL) as a benchmark, and the reference-point 290

model (RP) [11], difference model [10], and hybrid model [9] as rivals in the model 291

space. Almost all of the models had Partial and Complete versions. The OL model has 292

two different versions, OL1 where the chosen and unchosen options have the same 293

learning rates, and OL2 where they have different learning rates. 294

We did the fitting procedure for the learning phase of each subject and each model, 295

and calculated their Bayesian exceedance probabilities. For the transfer phase, the 296

negative log-likelihood were obtained by the likelihood that the model chooses the 297

options that the subject has chosen in the transfer phase on its first iteration. Through 298

model comparison, we found that the OL models especially OL1 (for the Partial and 299

Complete versions), had a better fitting criterion in the learning phase and also a better 300

prediction criterion in the transfer phase (table 2). 301

In addition to model fitting analysis, we used model-validation analysis to test 302

whether the OL model can generate the observed behavior. The simulation for each 303

participant in each model was conducted by her best-fitted parameters, 100 times, and 304

then were averaged. As expected, in the learning phase of both versions, agents’ 305

performances were higher than 0.5 (Partial: performance = 0.6637± 0.0627; Complete: 306

performance = 0.8857± 0.0639; Figure 3b), and consistent with the behavioral results, 307

the performance in the learning phase of the Complete version was significantly higher 308

than that in the Partial version (p = 4.4086e− 25, tstat = 15.3079, df = 75, one-tailed 309

ttest). In addition to the learning phase, we also observed that the performance of the 310

subjects was high in the transfer phase, such that participants significantly preferred 311

the option with higher expected values (Partial: p = 5.4079e− 105, 312

tstat = 31.8008,df = 348; Complete: p = 3.1818e− 177, tstat = 49.5978, df = 418; 313

binomial test). We could also replicate the transfer effect (Figure 3a), in a way that 314

agents preferred A2 over A1 in both feedback versions (Partial: p = 0.04096, 315

ratio = 0.65714; Complete: p = 6.8771e− 05, ratio = 0.78571; binomial test). This 316

simulation analysis showed that the OL model could generate all key signatures of the 317

behavioral data (Figure 3a,b). 318

Parameter recovery 319

To validate our model fitting, we probed the correlation between fitted and recovered 320

parameters. For each best-fitted parameter, we performed parameter recovery for 100 321

distinct simulations and then averaged it. We found strong correlations between fitted 322

and recovered parameters, (corr ≥ 0.9) (Figure 7). 323

Discussion 324

The investigations of contextual effect on value learning have mostly focused on the 325

putative role of counterfactual components in the Complete version. In this study, we 326

showed that counterfactual components play an important role also in the Partial 327

version where only factual outcomes are provided, and the counterfactual component 328

here is the effect of chosen outcome on unchosen value. Inspired by the opposing role of 329

dopamine on competing options’ values in the striatum, we introduced a novel Opposing 330

Learning model, in which the chosen prediction error, updates the competing options’ 331

values in an opposing manner. Unchosen value updating with chosen prediction error 332
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Table 2. Model comparison: model fitting and model prediction.

Fitting (Learning Phase)
SQL RPA Hyb OL1 OL2

Partial
xp 2e− 05 0 0 0.99998 0
pxp 2.0047e− 05 4.7129e− 08 4.7129e− 08 0.99998 4.7129e− 08

Complete
xp 0.001594 0 0.16604 0.000685 0.66409 1e− 06
pxp 0.0024225 0.00083783 0.16591 0.0015188 0.66104 0.00083883

Prediction (Transfer Phase)
SQL RPA Dif Hyb OL1 OL2

Partial
A1A2 0.69± 0.05 0.7± 0.06 0.72± 0.05 0.59± 0.04 0.64± 0.04
all 2.26± 0.14 2.24± 0.14 2.29± 0.13 2.27± 0.19 2.3± 0.19

Complete
A1A2 0.8± 0.07 1.12± 0.22 0.95± 0.18 1± 0.17 0.86± 0.12 0.86± 0.12
all 3.21± 0.51 3.41± 0.57 3.07± 0.52 3.41± 0.52 2.97± 0.54 2.99± 0.5

Fitting. Bayesian exceedance probability (xp) [40], and protected exceedance probability (pxp) [41] of the learning phase.
Prediction. negative log likelihood (nll) of A1A2 and all 6 combinations of the transfer phase separately. Mean± SEM .

Table 3. Estimated parameters.

parameter constraint SQL RPA Dif Hyb OL1 OL2

Partial
β 0 ≤ β < inf 0.07± 0.03 0.12± 0.08 0.06± 0.04 0.02± 0.02 0.03± 0.02
α1 0 ≤ α1 ≤ 1 0.25± 0.26 0.26± 0.27 0.37± 0.29 0.26± 0.2 0.32± 0.23
α2 0 < α2 ≤ α1 0.34± 0.3 0.21± 0.18
w 0 ≤ w ≤ 1 0.55± 0.37

Complete
β 0 ≤ β < inf 0.12± 0.09 0.37± 0.24 0.37± 0.23 0.2± 0.15 0.11± 0.12 0.1± 0.1
α1 0 ≤ α1 ≤ 1 0.14± 0.16 0.1± 0.12 0.09± 0.08 0.21± 0.15 0.22± 0.15 0.26± 0.14
α2 0 < α2 ≤ α1 0.11± 0.13 0.19± 0.16
α3 0 ≤ α3 ≤ 1 0.35± 0.3
w 0 ≤ w ≤ 1 0.28± 0.23 0.28± 0.17 0.32± 0.19

The estimated parameters for each model. Mean± SD.

will make the competing options’ values correlated to each other which leads to the 333

emergence of the contextual effect during learning. On the other hand, due to the 334

inhibiting role of the prediction error in unchosen values, the contrast between options’ 335

values compared to the standard Q-learning model will increase, and this leads to higher 336

performance in a reasonable exploration rate and more optimal learning than the 337

standard way. This model could show the behavioral characteristics of the data and also 338

by comparing it with the previous related models, it could better account for the data. 339

The majority of studies on instrumental learning paradigm used discrete rewards of 1 340

and 0 as gain and loss and subjects were supposed to estimate the probability of 341

rewards for each option to maximize their payoffs [10, 11,31]. But in the real world, we 342

often experience continuous outcomes of our choices and are supposed to estimate their 343

expected outcomes. Our secondary aim in this study was then to investigate the 344
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Fig 7. The correlations between fitted and recovered parameters. The OL1

(top) and OL2 (down) model for the Partial (left, green), and Complete (right, brown)
versions. The recovery for each fitted parameter has been done 100 times and then
averaged.

contextual effect in the paradigm with continuous reward amplitudes. We adopted 345

previous instrumental learning tasks with novel reward designs, in which the stimuli 346

were associated with some rewards drawn from specific normal distributions. With 347

these complementary results, we could show that the contextual effect is not limited to 348

probabilistic reward, but it extends to reward with amplitude. 349

Learning and decision making are two intermingled processes, and studying either of 350

them cannot be separated from the other, as the recent evidence showed that some 351

decision-making biases come from value learning that happens in a specific 352

context [9–11]. The main neural underpinnings of these two processes are in the striatal 353

circuitry in the subcortical part of the brain [42,43]. A wide range of studies have 354

shown a correspondence between the well-known reinforcement learning model, and 355

striatum function [24,26]. Dopamine is proposed to encode reward prediction 356

errors [18,44] and it reinforces the representations in the striatum [45], the region that 357

has been proposed to encode options’ values [12–17]. The main assumption in this 358

model is that the chosen prediction error only affects the chosen value. But it has been 359

proposed that the underlying function in the striatum relies on the opposing role of 360

dopamine on two segregated populations of neurons which encode the competing 361

options’ values separately [21,22,25,46]. This encouraged us to attempt to modify the 362

standard Q-learning model to have a model more consistent with physiological evidence. 363

There are two direct and indirect pathways in the Basal Ganglia which have shown 364

to have opposing roles; direct pathway promotes and indirect pathway inhibits 365

options [24,26]. These pathways originate from two distinct populations of neurons in 366

the striatum, D1-SPNs, and D2-SPNs respectively, in which dopamine has an opposing 367

September 26, 2020 14/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.30.320135doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.320135
http://creativecommons.org/licenses/by/4.0/


influence on them, by stimulating D1-SPNs, and inhibiting D2-SPNs neurons [19,20]. In 368

associative learning studies, it has been shown that D1-SPNs and D2-SPNs neurons 369

encode two opposing options’ values of competing options in a two-forced choice operant 370

learning task [21,22,25,31,46–48], in which D1-SPNs encodes the ongoing (chosen) 371

option and D2-SPNs encodes its competing option. Being inspired by this evidence, we 372

introduced a novel model in which chosen-related prediction error updates the chosen 373

and unchosen value concurrently, but in an opposing manner by updating the latter and 374

former in an increasing and decreasing manner respectively. The OpAL model have 375

been previously introduced by Collins et al with a similar idea [48]. The main difference 376

between OpAL and OL models is that OpAL uses reference-point mechanism explicitly, 377

but in the OL model without explicit using of reference-point, it emerges during 378

learning implicitly, and without adding complexity of reference point calculations, OL 379

model predicts the behavior in a better manner. 380

The OL model having two concurrent associative learning for opposing actions has a 381

good potential to explain the recent neural evidence. Several studies in different ways 382

have shown that stimulation of D1-SPNs increases the approach behavior and decreases 383

the avoid behavior, and stimulation of D2-SPNs increases avoid behavior and decreases 384

approach behavior for the ongoing action. This evidence has also been shown by 385

increasing and decreasing the amount of dopamine in the striatum [49], stimulating and 386

inhibiting D1-SPNs and D2-SPNs by light [50], and removing the D1-SPNs and 387

D2-SPNs activity by ablation experiment [51]. The relative activation of these two 388

pathways encodes the internal variable of the underlying decision-making procedure [25], 389

that can play the role of likelihood computation in the softmax rule [25] and make a 390

bias towards the option with higher value [52, 53]. The specificity in these two pathways 391

is similar and the amount and pattern of their activations are anti-correlated [23, 54, 55]. 392

Similar kinds of reported evidence in decision-making paradigms have also been 393

reported in the learning paradigms [50,56,57]. The opposing synaptic plasticity in these 394

two pathways was also reported [58]. As has been shown in the Results Section, the OL 395

model can potentially account for this evidence. 396

Due to being concurrently affected by chosen-related prediction error, competing 397

options’ values are encoded depending on each other. Indeed, this dependency appears 398

as a correlation that is proportioned to −α2/α1. Whenever α2 gets closer to α1, their 399

(absolute) correlation increases, such that when α2 ≈ 0, the correlation is the least 400

(corr ≈ 0), and when α2 = α1 the correlation is the most (corr ≈ −1). This correlation 401

is also consistent with the physiological evidence which has shown that D1-SPNs and 402

D2-SPNs neurons in the instrumental learning tasks have opposite activity with similar 403

strength [21,22]. Since in this model the competing options’ values are anti-correlated, 404

the OL estimated values depend on their paired options, and then this model generates 405

the contextual effect. The amount of this contextual effect is proportioned to α2/α1. 406

When α2 = 0, there is no contextual effect at all, when 0 < α2 < α1, there is a moderate 407

amount of contextual effect that is temporary and disappears over time (but in a long 408

run). And when α2 = α1, there is the largest contextual effect that is permanent. 409

We showed that the OL model compared to its counterpart, the standard Q-learning 410

model, has an advantage of being more optimal by having higher performance. 411

Whenever α2 gets closer to α1, the performance in the environments with a reasonable 412

amount of noise will increase, in a way that the more relative the model is, the higher is 413

the performance. Improvement of performance is because of boosting the contrast 414

between the options’ values which leads to detect the superior options. Analogous to 415

the OL model, there is also this kind of optimal behavior in the confirmation bias model. 416

In this model, it is the asymmetric updating of positive and negative prediction errors 417

for chosen and unchosen options’ values that boosts the contrast between options’ 418

values [59]. 419
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It has been shown that people are not only affected by their factual rewards but also 420

by their relative rewards that are the difference between the factual and counterfactual 421

outcomes [27–29]. These relative outcomes are also encoded in the brain by 422

dopamine [30,60]. In particular, in conditions in which this comparison is available to 423

participants, this effect is stronger and participants use the hybrid of absolute and 424

relative strategies to learn and choose [9,27]. In our behavioral analysis, we showed that 425

the comparison effect is stronger in the Complete version than in the Partial one. This 426

exogenous relativity is a different component compared to the endogenous relativity 427

introduced by the OL model, then by inserting this factor into the model, we can expect 428

to have better accounting for the behavioral data. As this model can be extended to 429

any other well-defined prediction errors and preserve all its characteristics, we extend 430

the OL model for the Complete version by inserting the outcome comparison part to it. 431

This embedding could better explain the Complete version. 432

Substantial evidence demonstrates that two separate and parallel systems are 433

involved in decision-making and learning, the Basal Ganglia and Frontal cortex, in 434

which the Basal Ganglia plays a critical role for habitual behavior and the Frontal 435

cortex plays a critical role in the goal directed behavior [61]. It is the weighted 436

combination of these two systems that are involved in people’s behavior. It has been 437

shown that several factors modulate these weights [62–72]. Different amount of 438

contextual effect in the learning, transfer and estimation phases are in line with this 439

hypothesis. In each phase of the task, participants have different needs. In the learning 440

phase, to gain more rewards, they need to know how much an option is better than its 441

competing option. We expect to see that the learning phase strategy is reflected in the 442

transfer phase, where they are supposed to continue to choose between pairs of options. 443

Finally, in the estimation phase, in contrast to previous phases, they need to know the 444

exact absolute values. According to these needs, we expect to have the most BG, the 445

least FC weights in the learning phase, the modest BG, and FC weights in the transfer 446

phase, and the least BG, the most FC weight in the estimation phase [73]. 447

Taken together, in this paper we could show that we are affected by the context by 448

the fine interaction of counterfactual outcomes. In the two-option learning tasks, we 449

learn the value of each option relative to its alternative, even when we don’t explicitly 450

use the comparison strategy. On the other hand, although this contextual effect results 451

in suboptimal decision-making outside the original context, it leads to an ecological 452

advantage by gaining more rewards within the original context. Furthermore, and not 453

surprisingly, people can access to both relative and absolute estimations of their options’ 454

values, and to use which of them depends on their needs and conditions. Like other 455

contextual biases and irrationalities in the human behavior, this bias seems to have an 456

advantage for people to use. Investigating the mechanism of these irrationalities helps 457

us find a solution in conditions where advantages change into disadvantages, and it will 458

be more critical when they change to disorder. 459

Materials and methods 460

Participants 461

Two groups of 41 and 47 subjects have participated for the Partial and Complete 462

versions of our task respectively. We excluded 6 subjects from the Partial version and 5 463

subjects from the Complete version (2 and 3 subjects because they didn’t learn the 464

associations, and 4 and 2 subjects because their expected rewards for A1, and A2 were 465

more than one, in Partial and Complete versions respectively, see below). After 466

exclusion N = 35 subjects (age: 26± 6 (mean± SD), female: n = 16) and N = 42 467

subjects (age: 23± 5 (mean± SD), female: n = 12) remained for analysis in the Partial 468
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and Complete versions respectively. They were received their monetary rewards after 469

they completed the task, according to their performances. They were all healthy 470

volunteers that gave a written consent before starting the task. The study was approved 471

by the local ethics committee. 472

Behavioral task 473

Two different cohorts of participants performed two different versions of instrumental 474

learning tasks, which were adopted from previous studies [9–11]. The main structure of 475

these two tasks was almost the same and included two consecutive phases of learning 476

and post-learning transfer. The only difference was in the way feedbacks were provided 477

to the subjects. In the Partial version, only the factual outcomes for chosen option were 478

provided to the subjects, and in the Complete version, both the factual and 479

counterfactual outcomes for chosen and unchosen options, respectively, were provided. 480

Before the main task, subjects performed a short training session (20 trials) to be 481

familiarized with the learning phase. The stimuli and the reward statistics of the 482

training session were different from those of the main session. The stimuli were selected 483

from the Japanese Hiragana alphabet. 484

The learning phase was made up of one session in which, in each trial two stimuli 485

were presented on the screen, and participants were instructed to choose the option with 486

higher expected rewards. This instrumental learning paradigm made participants to 487

learn gradually by trial and error to choose the most advantageous option in each trial. 488

The cues were shown to the subjects from two pairs of stimuli {A1B,A2C}, which 489

means in each pair each stimulus was always presented with a similar stimulus. Each 490

pair thus established a fixed context. These two contexts were pseudo-randomly 491

interleaved across trials. The rewards of A1 and A2 stimuli were drawn from the same 492

normal distribution of N (64, 13) and the rewards of B and C stimuli were drawn from a 493

different normal distributions of N (54, 13) and N (44, 13), respectively. To control some 494

confounding factors, rewards samples were drawn from the truncated distribution, 495

which was in the [µ− 3σ, µ+ 3σ] ([0, 100]) interval. The parameters of the distributions 496

were unknown to the subjects, and they were supposed to learn them. Although the 497

reward statistics of A1 and A2 were the same, the images associated with them were 498

different to conceal the task structure from the subjects. 499

The side of each stimulus on the screen, whether the right of the fixation point or 500

the left, was also pseudo-randomized during the task, such that for the total number of 501

trials for each context, in half of the trials a particular stimulus was presented on the 502

right and in the other half, on the left. The subjects were asked to select their choices 503

within a 4000 ms, otherwise, they missed that trial’s reward, and the ’No Response’ 504

message was shown on the screen. Within each trial, the subjects chose their choice by 505

pressing the left and right arrow keys for the left and right options respectively. 506

Following the choice, the chosen option was surrounded with a blue square and the 507

related outcomes were presented simultaneously on the screen. In the Partial version, 508

the factual outcome was shown below the chosen option for 500 ms and in the Complete 509

version, both the factual and counterfactual outcomes were shown below the chosen and 510

unchosen options respectively for 1000 ms. In the Complete version, the information 511

that subjects should process was two times the Partial version and in our pilot study, 512

we found that having only 500 ms for observing the outcomes was not sufficient to 513

process two continuous outcomes and so decreased the subjects’ performance compared 514

to the Partial version, therefore we doubled this time to 1000 ms. The next trial started 515

after 1000 ms fixation screen. Each context was presented to the subjects at least in 50 516

trials and then two contexts consist of, at least 100 trials. After at least 100 trials, the 517

task continued for each subject until the experienced mean of A1 became almost equal 518

to the experienced mean of A2, (their difference became less than 1). If this condition 519
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was not met up in the 300th trial then the learning phase was stopped and this subject 520

was excluded from the data. By this design, the number of trials always falls into the 521

range of [100,300] and this number might be different for each subject. 522

Seamlessly after the learning phase, participants entered the post-learning transfer 523

phase. They were not aware of the transfer phase until they completed the learning 524

phase, in order not to use any memorizing strategy in the learning phase. In the 525

transfer phase, all possible binary combinations of the stimuli (6 combinations) were 526

presented to the participants and they were asked to choose the option with higher 527

expected rewards. They were told that they will not only see the previously paired 528

options in the learning phase but even the binary options which weren’t paired in the 529

preceding phase. Each combination was presented four times, giving a total 6 ∗ 4 = 24 530

trials that were presented in a pseudo-randomized order. This phase in contrast to the 531

learning phase was self-paced (they were not force to choose in a limited time) and also 532

no feedback was provided to the subjects, in order not to interfere with their learned 533

values [9–11,31,32]. Following each choice, they had to report the confidence of their 534

choice by using a scaled bar from 0 to 100 in which the leftmost side of the axis shows 535

complete uncertain and the rightmost side shows complete certain. The confidence part 536

was done by the mouse. After the transfer phase, subjects completed the estimation 537

phase. In the estimation phase, stimuli were presented to the subjects one by one and 538

they were asked to estimate its mean of rewards, using a scaled bar from 0 to 100. Each 539

stimulus was repeated four times giving a total of 4 ∗ 4 = 16 trials which were presented 540

pseudo-randomly. These trials were also self-paced and no feedback were provided to 541

the subjects. The subjects were told their payoffs are based on the sum of rewards they 542

would gain during the learning task. In the Complete version, subjects were notified 543

that their total rewards are only based on the rewards of their choices. Although they 544

were not paid in the transfer phase, they were encouraged to do as best as they can to 545

answer correctly as if they would be paid. At the end of the task, their total rewards 546

were shown on the screen. 547

Computational models 548

The Standard Q-Learning (SQL) Model 549

It is a common approach to compare the context-dependent learning models with the 550

standard Q-learning model as a benchmark that plays the role of absolute learning 551

model. In this model, the value of each option is only related to its own observed 552

outcomes and not to other alternative outcomes. 553

δch = rch −Qch

Qch = Qch + αδch

In the simplest form, it is only the chosen option which is updated following its 554

outcomes observation, while in its extended form the unchosen options are also updated, 555

but again with their own observed outcomes: 556

δch = rch −Qch

Qch = Qch + α1δch

δun = run −Qun

Qun = Qun + α2δun

Which their learning rates can be the same or different (α1 = α2 or α1 6= α2). 557
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The Reference-Point (RP) Model 558

The idea of the reference-point (RP) model comes from the reference point phenomenon 559

which is reported by behavioral and economic studies [74,75]. According to this model, 560

there is a distinct reference-point for each context that is obtained by its expected 561

outcomes. Then, the relative outcome of each option is calculated in comparison to this 562

reference-point. We implemented several forms of RP models considering the several 563

forms of context reward [11]. The RPD, RPA, and RPM, when the contextual rewards, 564

rx, are considered to be direct rch, average of (rch +Qun)/2, and max(rch, Qun) 565

respectively in the Partial version, and rch, (rch + run)/2, and max(rch, run) in the 566

Complete version. 567

δx = rx − Vx
Vx = Vx + α1δx

δch = (rch − Vx)−Qch

Qch = Qch + α1δch

where Vx is the value of the context, and Qch is the value of the chosen option. For 568

the Complete version, we also update the unchosen options as below, 569

δun = (run − Vx)−Qun

Qun = Qun + α2δun

In the Complete version, we used different versions for RP. One which only updates 570

the chosen value, and one which updates both options with the same and different 571

learning rates. 572

The Difference (Dif) Model 573

Learning in a specific context in which a participant is supposed to maximize her 574

rewards needs using a strategy in order to find a better option as soon as possible. The 575

difference model is one of the models which gives a fast detection of the advantageous 576

option by learning the relative value. In this model, the participants learn how much 577

the superior option is better than the inferior one [10]. 578

rrlt = rFC − rCF

δ = rrlt −Qch

Qch = Qch + αδ

This model was only applied for the Complete version. 579

The Hybrid (Hyb) Model 580

It has been shown that people are not fully absolute or fully relative learners, rather 581

they are hybrid learners in which their behaviors depend on how much they weigh either 582

of these strategies [9]. 583

rabs = rFC , rrlt = rFC − rCF

rhyb = wrabs + (1− w)rrlt
δ = rhyb −Qch

Qch = Qch + αδ

For the Partial version, we used the Qun instead of rCF . 584
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The Opposing Learning (OL) Model 585

The OL model has been inspired by the opposing role of dopamine as prediction error 586

on the chosen and unchosen options. In this model, the unchosen option is updated 587

simultaneously with the chosen option and proportional to the chosen prediction error, 588

but in an opposite manner. 589

δch = rch −Qch

Qch = Qch + α1δch

Qun = Qun − α2δch

In this model, the α2 parameter controls the amount of contextual effect on the 590

value learning procedures. For the Complete version, this model was extended to a 591

version in which the counterfactual outcomes were considered in a hybrid manner. 592

rabs = rFC , rrlt = rFC − rCF

rhyb = wrabs + (1− w)rrlt
δ = rhyb −Qch

Qch = Qch + α1δ

Qun = Qun − α2δ

Pure simulation procedure 593

The OL behavior has been examined in a wide range of task and parameter settings. 594

Without loss of generality, we did the simulation with normalized settings such that we 595

had σ = 1 in reward distributions. As an example, the normalized version of the setting 596

of task N (µ = 64, σ = 10), parameters of β = 0.01, and any α1, α2, changes to its 597

normalized version of N (µ = 6.4, σ = 1) (divide by 10), and parameters of β = 0.1 598

(multiply by 10), and the same α1, α2. The tasks settings covered 10 different pairs of 599

options in which their relative values were covered {1, 2, ..., 10} 600

([µ1, µ2] ∈ {[10, 9], [10, 8], ..., [10, 0]}, and σ = 1). The parameters settings covered a wide 601

range of β: {0, 0.025, 0.05, 0.075, 0.1, 0.1025, ..., 0.4} ∪ {0.5, 0.6, ..., 1}, α1: {0.1, 0.2, ..., 1}, 602

and α2/α1: {0, 0.5, 0.75, 0.875, 0.93, 0.96, 0.980.992, 0.996, 0.998, 0.999, 1}. 603

Fitting and simulation procedure 604

The data fitting was implemented by fmincon function of Matlab software (the 605

MathWorks Inc., Natick, MA). The fittings have been done with several initial points to 606

have higher probability in order to find a global optimum, rather than getting stuck on 607

a local optimum. For obtaining the exceedance probabilities (xp) [40], and protected 608

exceedance probabilities(pxp) [41] for the model-comparison part, and estimating 609

parameters, we optimized maximum a posteriori (MAP) using weakly informative priors 610

of β(1.2, 1.2) for each parameter. It is worth noting that the range of options’ values is 611

in scale of 100, and so range of the β parameter will be in scale of much less than one, 612

thus, the β(1.2, 1.2) would be a proper prior in model fitting. The exceedance 613

probability and protected exceedance probability have calculated based on [40,41]. The 614

simulation for each subject was done on its best fitted parameters for 100 repetitions, 615

and then the representative behavior of this agent was obtained by averaging across its 616

repetitions. 617
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Supporting information

S1 Table. Model comparison with BIC.

Partial
nll BIC

learning learning learning + transfer(A1A2)) learning + transfer(all))
SQL 88.18± 5.49 186.82± 11.05 188.21± 11.05 191.37± 11.03
RPD 87.17± 5.49 190.04± 11.11 191.48± 11.1 194.69± 11.1
RPA 87.69± 5.47 191.07± 11.06 192.51± 11.07 195.62± 11.06
RPM 87.18± 5.49 190.05± 11.11 191.48± 11.1 194.69± 11.1
Hyb 86.68± 5.48 189.05± 11.07 190.5± 11.08 193.7± 11.06
OL1 84.7± 5.49 179.86± 11.06 181.05± 11.06 184.45± 10.99
OL2 83.66± 5.37 183.01± 10.86 184.3± 10.86 187.73± 10.8

Complete
nll BIC

learning learning learning + transfer(A1A2)) learning + transfer(all))
SQL 54.34± 4.98 119.24± 9.99 120.84± 10.01 125.72± 9.95
QL21 51.71± 4.99 113.98± 10.01 116.19± 9.98 121.69± 9.95
QL22 50.11± 5.01 116.05± 10.08 118.4± 10.03 124.06± 10
RPA1 51.71± 4.99 119.25± 10.03 121.18± 9.98 125.53± 9.9
RPA2 48.45± 4.99 118± 10.05 120.26± 9.98 124.96± 9.87
RPM1 51.71± 4.99 119.25± 10.03 120.84± 10 125.55± 9.92
RPM2 47.81± 5 116.73± 10.07 118.59± 10.03 124.54± 9.86
Dif 51.71± 4.99 113.98± 10.01 115.89± 9.95 120.18± 9.87
Hyb 48.94± 5 113.72± 10.05 115.73± 10.02 120.63± 9.91
OL1 47.98± 5 111.79± 10.05 113.52± 10.02 117.83± 9.93
OL2 47.53± 4.96 116.17± 9.99 117.9± 9.97 122.27± 9.88

BIC of three different parts, learning phase, learning and (A1A2) of the transfer phase, and learning and all 6 combinations of
the transfer phase for model-space.
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S1 Fig. An OL agent has higher performance when the distance between
options values are higher.

The function of the performance changes with β as a variable. The conditions were
covered 10 different pairs of options in which their relative values were covered
{1, 2, ..., 10} ([µ1, µ2] ∈ {[10, 9], [10, 8], ..., [10, 0]}, and δ = 1). Performances were
obtained with averaging across different α1 and α2.
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