1	Genetic interactions among ADAMTS metalloproteases and basement membrane
2	molecules in cell migration in Caenorhabditis elegans
3	
4	Short title:
5	Interaction among ADAMTS proteases and basement membrane proteins
6	
7	Ayaka Imanishi, Yuma Aoki, Masaki Kakehi, Shunsuke Mori, Tomomi Takano,
8	Yukihiko Kubota, Hon-Song Kim, Yukimasa Shibata, Kiyoji Nishiwaki*
9	Department of Bioscience, Kwansei Gakuin University, Sanda, Japan
10	

- ¹¹ *To whom correspondence should be addressed:
- 12 Kiyoji Nishiwaki
- 13 Department of Bioscience, Kwansei Gakuin University
- 14 **2-1** Gakuen, Sanda 669-1337, Japan
- 15 Phone: +81-79-565-7639
- 16 E-mail: nishiwaki@kwansei.ac.jp

18 Abstract

19	During development of the Caenorhabditis elegans gonad, the gonadal leader cells,
20	called distal tip cells (DTCs), migrate in a U-shaped pattern to form the U-shaped gonad
21	arms. The ADAMTS (<u>a disintegrin and metalloprotease with thrombospondin motifs</u>)
22	family metalloproteases MIG-17 and GON-1 are required for correct DTC migration.
23	Mutations in <i>mig-17</i> result in misshapen gonads due to the misdirected DTC migration,
24	and mutations in gon-1 result in shortened and swollen gonads due to the premature
25	termination of DTC migration. Although the phenotypes shown by mig-17 and gon-1
26	mutants are very different from one another, mutations that result in amino acid
27	substitutions in the same basement membrane protein genes, emb-9/collagen IV a1, let-
28	2/collagen IV a2 and fbl-1/fibulin-1, were identified as genetic suppressors of mig-17
29	and gon-1 mutants. To understand the roles shared by these two proteases, we examined
30	the effects of the <i>mig-17</i> suppressors on <i>gon-1</i> and the effects of the <i>gon-1</i> suppressors
31	and enhancers on <i>mig-17</i> gonadal defects. Some of the <i>emb-9</i> , <i>let-2</i> and <i>fbl-1</i> mutations
32	suppressed both <i>mig-17</i> and <i>gon-1</i> , whereas others acted only on <i>mig-17</i> or <i>gon-1</i> .
33	These results suggest that <i>mig-17</i> and <i>gon-1</i> have their specific functions as well as
34	functions commonly shared between them for gonad formation. The levels of collagen
35	IV accumulation in the DTC basement membrane were significantly higher in the gon-1

36	mutants as compared with wild type and were reduced to the wild-type levels when
37	combined with suppressor mutations, but not with enhancer mutations, suggesting that
38	the ability to reduce collagen IV levels is important for gon-1 suppression.
39	
40	Introduction
41	Members of the ADAMTS family of secreted zinc metalloproteases have important
42	roles in animal development. Most of these proteases degrade extracellular matrix
43	components such as proteoglycans or collagens [1]. Nineteen ADAMTS genes have
44	been identified in the human genome, and mutations in many of them result in
45	hereditary diseases that are related to disorders of the extracellular matrix [2, 3].
46	Multiple ADAMTS proteases often function in a common developmental process. For
47	example, the functions of ADAMTS-5, -9 and -20 are required for interdigital web
48	regression [4]. ADAMTS-9 and -20 are needed for closure of the palate and for
49	craniofacial morphogenesis and neural tube closure through their function in
50	ciliogenesis [4, 5]. ADAMTS-5 and -15 act in myoblast fusion [6]. These enzymes
51	appear to function in a partially overlapping manner. However, the roles shared by these
52	ADAMTS proteases in development still remain elusive.
53	Among five ADAMTS genes in C. elegans, gon-1 and mig-17 play essential roles

54	in the development of the somatic gonad [7, 8]. Both GON-1 and MIG-17 localize to
55	the gonadal basement membrane (BM) [9, 10]. In the mig-17 mutants, DTCs meander
56	and stray, resulting in an abnormal gonadal shape. In contrast, in the gon-1 mutants,
57	DTCs rarely migrate and the gonads remain small. We have isolated and analyzed the
58	genetic suppressors for DTC migration defects in mig-17 mutants. Dominant gain-of-
59	function mutations in the <i>fbl-1/fibulin-1</i> and <i>let-2/collagen IV</i> α 2 chain, which encode
60	BM molecules, have been frequently isolated as suppressors [11, 12]. The <i>fbl-1(gf)</i>
61	mutations are amino acid substitutions in the second epidermal growth factor-like motif
62	of FBL-1C, one of the two splicing isoforms, and FBL-1C protein is secreted by the
63	intestine to be released into the gonadal BM in a MIG-17 activity-dependent manner
64	[11]. Suppression of <i>mig-17</i> by <i>fbl-1(gf)</i> mutations is dependent on the BM molecule
65	NID-1/nidogen [12]. <i>let-2(gf)</i> mutations are associated with amino acid changes within
66	the triple helix domain or the C-terminal non-collagenous domain (NC)1 of collagen IV.
67	LET-2 protein is secreted from body wall muscle cells and DTCs and localized to the
68	gonadal BM in a MIG-17 activity-independent manner. Unlike the case of <i>fbl-1(gf)</i> ,
69	suppression of mig-17 by <i>let-2(gf)</i> mutations does not require NID-1 [12].
70	Genetic suppressor analysis of gon-1 mutants revealed that loss-of-function
71	(deletion) mutations in <i>fbl-1</i> can suppress the shortened-gonad phenotype of <i>gon-1</i>

 $\mathbf{5}$

72	mutants. Because <i>fbl-1</i> deletion mutants also exhibit the shortened-gonad phenotype,
73	GON-1 and FBL-1 act antagonistically to regulate gonad formation [13]. This genetic
74	interaction is mediated by the control of collagen IV accumulation in the gonadal BM:
75	GON-1 acts to reduce collagen IV levels, whereas FBL-1 acts to maintain collagen IV
76	levels [14].
77	Although <i>mig-17</i> and <i>gon-1</i> mutants are phenotypically very different, they are
78	both suppressed or enhanced by mutations in <i>let-2</i> and <i>fbl-1</i> . In this study, we isolated
79	novel suppressor mutations in <i>emb-9</i> for <i>mig-17</i> and in <i>let-2</i> for <i>gon-1</i> gonadal defects.
80	Together with the previously isolated suppressors and enhancers, we investigated the
81	consequences when suppressors for <i>mig-17</i> were combined with <i>gon-1</i> mutations, and
82	when gon-1 suppressors and enhancers were combined with mig-17 mutations. We
83	found that some of the emb-9, let-2 and fbl-1 mutations suppressed both mig-17 and
84	gon-1, whereas others suppressed only mig-17 or gon-1. These results suggest that mig-
85	17 and gon-1 have their specific functions as well as the functions commonly shared
86	between them for gonad formation.
87	
88	Materials and Methods

89 Strains and genetic analysis

90	Culture, handling and ethyl methanesulfonate (EMS) mutagenesis of C. elegans were
91	conducted as described [15]. The following mutations and transgenes were used in this
92	work: mig-17(k174), gon-1(e1254, g518), fbl-1(k201, tk45), let-2(g25, b246, k193,
93	<i>k196</i>), <i>emb-9(tk75</i> , <i>g34</i> , <i>g23cg46</i>) and <i>tkTi1[emb-9::mCherry]</i> [7, 8, 11, 12, 14, 16-18].
94	The suppressor mutations were genetically mapped with single-nucleotide
95	polymorphism mapping using <i>mig-17(k174)</i> and <i>gon-1(e1254)</i> mutant strains, which are
96	in the CB4856 background [19]. Among the 11 mig-17(k174) suppressors, k204 and
97	k207 were mapped to the center of linkage group (LG) III. Next-generation sequence
98	analysis identified missense mutations in emb-9 in these suppressors. Of the two gon-
99	1(e1254) suppressors, one was mapped to the right end of LG X and was identified by
100	next-generation sequence analysis as corresponding to a missense mutation in <i>let-2</i> . All
101	experiments were conducted at 20°C. The temperature-sensitive mutants $emb-9(g34)$
102	and <i>let-2(g25, b246)</i> , which arrest during embryogenesis or early larval stages at 25°C,
103	do proliferate at 20°C. Because gon-1(e1254, g518) and fbl-1(tk45) mutants were
104	sterile, we used the genetic balancer $nT1[qIs51]$ (IV; V) to maintain these mutants and to
105	generate double mutants containing these mutations.
106	

107 Microscopy

 $\mathbf{7}$

108	Gonad migration phenotypes were scored using a Nomarski microscope (Axioplan 2;
109	Zeiss). Analysis of gonadal phenotypes was performed at the young-adult stage as
110	described [20]. Although the gonadal phenotypes of some strains used are published,
111	we reevaluated them in this study. The levels of EMB-9-mCherry were quantified as
112	follows. For each sample, confocal images of a sagittal section of the DTCs were
113	obtained with a Zeiss Imager M2 microscope equipped with a spinning-disk confocal
114	scan head (CSU-X1; Yokogawa) and an ImageEM CCD camera (ImageEM;
115	Hamamatsu Photonics). Using ImageJ software, we measured the fluorescence
116	intensities along three drawn lines, each of which crossed the DTC BM; the average
117	background intensities inside the gonad were subtracted from the peak values of the
118	line scan, and the resulting corrected values were averaged.
119	
120	Transgenic analysis of suppressors
121	Germline transformation was carried out as described [21]. Plasmids containing emb-
122	9(k204), emb-9(k207) and let-2(tk101) were constructed by introducing these
123	mutations individually into their respective wild-type constructs [12, 14]. These
124	plasmids were injected into the <i>unc-119(e2498)</i> gonad at $1-2 \text{ ng/}\mu\text{l}$ with $10 \text{ ng/}\mu\text{l}$ <i>unc-</i>
125	119+ plasmid [22], 70 ng/µl <i>sur-5::gfp</i> plasmid [23] and 70 ng/µl pBSIIKS(–), and

126	the resulting extrachromosomal arrays were transferred to either mig-17(k174); unc-
127	119(e2498) or gon-1(e1254); unc-119(e2498) animals by mating.
128	
129	Homology modeling of NC1 domains
130	Homology modeling was conducted based on the crystal structures of bovine collagen
131	IV NC1 domains [24] using the SWISS-MODEL server. Ribbon diagrams were
132	created and edited with the Swiss-Pdb Viewer software.
133	
134	Results
135	Isolation of novel suppressors of <i>mig-17</i> and <i>gon-1</i> mutants
136	The C. elegans hermaphrodite gonad arms extend to the anterior-right and posterior-left
137	areas of the body cavity. The U shape of the gonad arms are generated by migration of
138	the gonadal leader cells, the DTCs, over the body wall during larval development (S1
139	Fig). gon-1 mutants exhibit shortened gonads due to the premature termination of DTC
140	migration and are sterile. In contrast, <i>mig-17</i> mutants show misshapen gonad arms due
141	to the misdirected migration of DTCs, but they are still fertile. Although both of these
142	genes encode ADAMTS family metalloproteases, the phenotypes shown by these
143	mutants are very different.
	9

144	The null allele <i>gon-1(q518)</i> exhibits a fully penetrant short gonad phenotype that
145	cannot be distinguished from that of the <i>mig-17(k174)</i> ; <i>gon-1(q518)</i> double null mutants
146	[8]. The phenotypic penetrance of <i>gon-1(e1254</i>), a partial loss-of-function allele that
147	results in a milder gonad phenotype as compared with $gon-1(q518)$, was enhanced in
148	combination with the <i>mig-17(k174)</i> null allele (Fig 1A; S2 Fig), indicating that <i>gon-1</i>
149	and <i>mig-17</i> function in partially overlapping pathways.
150	
151	Fig 1. DTC migration phenotypes of <i>mig-17</i> , <i>gon-1</i> and the suppressors. A.
152	Percentage of DTC migration defects in <i>mig-17(k174)</i> and <i>gon-1(e1254)</i> single mutants
153	and their double mutants. B. Percentage of DTC migration defects in <i>mig-17(k174)</i>
154	animals with the <i>emb-9(k204)</i> or <i>emb-9(k207)</i> mutation or with extrachromosomal
155	arrays carrying these mutant genes. C. Percentage of DTC migration defects in gon-
156	1(e1254) or gon- $1(q518)$ animals with a let- $2(tk101)$ mutation or with an
157	extrachromosomal array carrying the <i>let-2(tk101)</i> mutant gene.
158	
159	To identify genes interacting with <i>mig-17</i> and <i>gon-1</i> , we isolated novel
160	suppressor mutations for DTC migration defects of mig-17 and gon-1 mutants using
161	EMS mutagenesis. We isolated 11 suppressor mutants of <i>mig-17(k174)</i> , a null allele that

162	has a nonsense mutation in the pro-domain (S2 Fig). Two of these mutants, $k204$ and
163	k207, were genetically mapped near the center of LG III and acted as dominant
164	suppressors for <i>mig-17</i> (Fig 1B). Next-generation sequence analysis of $k204$ and $k207$
165	identified mutations in <i>emb-9</i> , which encodes the $\alpha 1$ subunit of collagen IV. Both
166	mutations were amino acid substitutions in the C-terminal NC domain. We generated
167	plasmids carrying these mutant alleles of <i>emb-9</i> and introduced them into <i>mig-17</i>
168	mutants. The extrachromosomal arrays containing these plasmids partially rescued the
169	gonadal phenotype of mig-17 mutants (Fig 1B), indicating that emb-9(k204) and emb-
170	9(k207) mutations are causative for mig-17 suppression.
171	We used EMS mutagenesis to isolate suppressors of gon-1(e1254), a strong loss-
172	of-function allele with a nonsense mutation in the C-terminal domain, which contains
173	thrombospondin type 1 motifs (S2 Fig). Although gon-1(e1254) homozygotes are
174	sterile, the transgenic strain gon-1(e1254); tkEx370[gon-1 fosmid, rol-6(su1006), sur-
175	5::GFPJ, which carries an extrachromosomal array that consists of multiple copies of
176	the wild-type gon-1 fosmid (WRM0622dB04), mutant rol-6(1006) plasmid and sur-
177	5::GFP plasmid, does proliferate as a homozygote. rol-6(su1006) and sur-5::GFP are
178	marker plasmids that result in the roller movement phenotype and GFP expression in all
179	somatic nuclei, respectively. We isolated non-roller and GFP ⁻ fertile animals from the

180	F_2 or F_3 generation of transgenic animals treated with EMS (S3 Fig). One of the two
181	gon-1 suppressors, tk101, acted as a dominant suppressor of gon-1(e1254) and was
182	genetically mapped to the right end of LG X. tk101was a recessive suppressor for the
183	gon- $1(q518)$ null allele (Fig 1C). Next-generation sequence analysis revealed an amino
184	acid substitution in the N-terminal region of the triple helical domain of <i>let-2</i> , which
185	encodes the $\alpha 2$ subunit of collagen IV. The extrachromosomal array containing this <i>let</i> -
186	2 mutant plasmid partially rescued the gonadal phenotype of gon-1(e1254) (Fig 1C),
187	indicating that <i>let-2(tk101)</i> is the causative mutation for <i>gon-1</i> suppression.
188	
189	Swapping experiments for <i>mig-17</i> and <i>gon-1</i> suppressors or enhancers
189 190	Swapping experiments for <i>mig-17</i> and <i>gon-1</i> suppressors or enhancers Thus far, our genetic screening had identified various mutant alleles in <i>let-2</i> and <i>fbl-1</i>
190	Thus far, our genetic screening had identified various mutant alleles in <i>let-2</i> and <i>fbl-1</i>
190 191	Thus far, our genetic screening had identified various mutant alleles in <i>let-2</i> and <i>fbl-1</i> that act as suppressors of <i>mig-17</i> [11, 12] and in <i>fbl-1</i> that act as a suppressor of <i>gon-1</i>
190 191 192	Thus far, our genetic screening had identified various mutant alleles in <i>let-2</i> and <i>fbl-1</i> that act as suppressors of <i>mig-17</i> [11, 12] and in <i>fbl-1</i> that act as a suppressor of <i>gon-1</i> [14], among which the suppressor mutant alleles differed between <i>mig-17</i> and <i>gon-1</i> .
190 191 192 193	Thus far, our genetic screening had identified various mutant alleles in <i>let-2</i> and <i>fbl-1</i> that act as suppressors of <i>mig-17</i> [11, 12] and in <i>fbl-1</i> that act as a suppressor of <i>gon-1</i> [14], among which the suppressor mutant alleles differed between <i>mig-17</i> and <i>gon-1</i> . We also previously showed that loss-of-function mutations <i>emb-9(g34</i> and <i>g23cg46)</i>
190 191 192 193 194	Thus far, our genetic screening had identified various mutant alleles in <i>let-2</i> and <i>fbl-1</i> that act as suppressors of <i>mig-17</i> [11, 12] and in <i>fbl-1</i> that act as a suppressor of <i>gon-1</i> [14], among which the suppressor mutant alleles differed between <i>mig-17</i> and <i>gon-1</i> . We also previously showed that loss-of-function mutations <i>emb-9(g34</i> and <i>g23cg46)</i> and <i>let-2(g25</i> and <i>b246)</i> act as suppressors of <i>mig-17</i> [12] and that <i>emb-9(tk75)</i> , which

198	results imply that MIG-17 and GON-1 ADAMTS proteases functionally interact with
199	the same BM proteins collagen IV $\alpha 1$ and $\alpha 2$ subunits and fibulin-1.
200	
201	Fig 2. Suppressor and enhancer mutations for <i>gon-1</i> and <i>mig-17</i> , and summary for
202	swapping experiments of suppressors and enhancers. A. fbl-1, emb-9 and let-2
203	alleles that suppress or enhance the gonadal defects of $gon-1(e1254)$ or $mig-17(k174)$.
204	B. Locations of mutations in FBL-1C, EMB-9A and LET-2A proteins. The mutation
205	sites are shown by arrowheads (amino acid substitutions) or bidirectional arrows
206	(deletions). Both <i>fbl-1(tk45)</i> and <i>emb-9(g23cg46)</i> deletions are potential null alleles, as
207	they are expected to introduce termination codons shortly after the deleted region [11,
208	17]. C. Summary of effects of <i>fbl-1</i> , <i>emb-9</i> and <i>let-2</i> alleles on <i>mig-17(k174)</i> and <i>gon-</i>
209	1(e1254) mutants. S and E represent suppression and enhancement, respectively.
210	
211	To understand the roles shared by these two proteases, we examined how the
212	suppressors of <i>mig-17</i> affect <i>gon-1</i> and how the suppressors and enhancers of <i>gon-1</i>
213	affect mig-17 gonadal defects. We examined all the combinations of double mutants.
214	The representative phenotypes exhibited by these double mutants are shown in Fig 3,
215	and their phenotypic penetrance scored at the young adult stage is shown in Fig 4 and

216	Fig 5. In <i>mig-17(k174)</i> animals and in double mutants containing <i>mig-17(k174)</i> ,
217	suppression was assessed by whether the U-shaped gonad was formed as in the wild
218	type. In gon-1(e1254) animals and in the double mutants containing gon-1(e1254),
219	suppression was assessed by whether the gonad arms reached the dorsal muscle.
220	
221	Fig 3. Representative Nomarski images of young adult hermaphrodite gonads of
222	wild-type, gon-1(e1254), mig-17(k174) and double-mutant animals analyzed in this
223	study. The gonad morphology is shown by dashed arrows. Anterior is to the left, dorsal
224	up. Arrowheads point to the vulva. Bar: 20 µm.
225	
226	Fig 4. Percentage of DTC migration defects in <i>mig-17(k174)</i> mutants in the
227	presence of <i>fbl-1</i> , <i>emb-9</i> and <i>let-2</i> alleles. <i>n</i> = 60 for each experiment. <i>P</i> -values from
228	Fisher's exact test comparing the double mutants with <i>mig-17(k174)</i> animals: ** $P <$
229	0.01; * <i>P</i> < 0.05; NS, not significant.
230	
231	Fig 5. Percentage of gonad arms that failed to reach the dorsal muscle of <i>gon</i> -
232	1(e1254) mutants in the presence of <i>fbl-1</i> , <i>emb-9</i> and <i>let-2</i> alleles. <i>n</i> = 60 for each
233	experiment. P-values from Fisher's exact test comparing the double mutants with gon-

l(e1254) animals: ***P* < 0.01; **P* < 0.05; NS, not significant.

236	For the <i>fbl-1</i> alleles, the <i>k201</i> mutation suppressed both <i>mig-17</i> and <i>gon-1</i> .	
237	Although <i>tk45</i> suppressed <i>gon-1</i> , it rather enhanced <i>mig-17</i> . For the <i>emb-9</i> alleles,	
238	although $g34$ and $g23cg46/+$ suppressed <i>mig-17</i> , they both enhanced <i>gon-1</i> . $k204$ and	
239	<i>k207</i> suppressed <i>mig-17</i> strongly, whereas they suppressed <i>gon-1</i> somewhat weakly.	
240	<i>tk75</i> acted as a strong enhancer for both <i>mig-17</i> and <i>gon-1</i> . For the <i>let-2</i> alleles,	
241	although g25 and b246 suppressed mig-17, they both enhanced gon-1. tk101, k196 and	
242	<i>k193</i> suppressed both <i>mig-17</i> and <i>gon-1</i> . These data are summarized in Fig 2C. Because	
243	gon-1 mutants are 100% sterile, we also analyzed fertility in the double mutants (S4	
244	Fig). We found that among <i>fbl-1</i> , <i>emb-9</i> and <i>let-2</i> , some alleles suppressed or enhanced	
245	both <i>mig-17</i> and <i>gon-1</i> , whereas others affected <i>mig-17</i> and <i>gon-1</i> differentially. In the	
246	latter case, the alleles that suppressed <i>mig-17</i> or <i>gon-1</i> rather enhanced <i>gon-1</i> or <i>mig-17</i> ,	
247	respectively. These results suggested that the former suppressor alleles suppress the	
248	common functional defects in <i>mig-17</i> and <i>gon-1</i> , whereas the latter alleles suppress	
249	gene-specific defects in either mig-17 or gon-1.	
250	Three mutations found in EMB-9 (k204, k207 and tk75) and one in LET-2 (k193)	
251	were localized to the C-terminal NC1 domain of these collagen IV molecules. Using	

252	SWISS-MODEL, we deduced the three-dimensional structures of the NC1 domains of
253	EMB-9 and LET-2 based on the crystal structures of bovine collagen IV NC1 domains
254	[24] (Fig 6). We found that three amino acid substitutions in EMB-9, which are
255	separated from one another in the primary sequence, were closely apposed in the three-
256	dimensional structure. In the type IV collagen meshwork, triple-helical collagen
257	molecules connect to one another through NC1-NC1 domain interactions. EMB-9(k207
258	and <i>tk75</i>) mutations were localized to the NC1-NC1 interface regions, and EMB-
259	9(k204) was close to these interface regions, suggesting that these amino acid
260	substitutions may affect physical interactions between two NC1 trimers. However,
261	because these mutants were able to proliferate as homozygotes, their mutant collagen
262	molecules were most likely successfully assembled into the functional network in the
263	BM. It is interesting that the amino acid substitutions EMB-9($k204$ and $k207$), which
264	strongly suppressed gon-1 and mig-17, and EMB-9(tk75), which strongly enhanced
265	gon-1 and mig-17, were closely localized in the three-dimensional structure.
266	
267	Fig 6. Predicted three-dimensional structures of NC1 domains of <i>C. elegans</i> type

IV collagen subunits EMB-9 and LET-2. The segments corresponding to the interface region of two NC1 trimers are shown in magenta. The mutated amino acids in the *k204*,

k207, tk75 and *k193* mutations are highlighted each one in a different color.

271

272	Collagen IV accumulation in the DTC BM
273	Based on an immunohistochemical analysis, we previously reported that the reduced
274	accumulation of collagen IV in the gonadal BM in animals with <i>fbl-1(tk45)</i> , a null
275	mutation, can be compensated by gon-1(e1254) [14]. To examine the amount of
276	collagen IV accumulation in the BM quantitatively, we used a functional emb-
277	9::mCherry fusion reporter [18]. Third larval stage animals in which their DTCs were at
278	or shortly beyond the first turn were selected, and the fluorescence intensity of the BM
279	surrounding the DTCs was measured (Fig 7A-C). Among the six single mutants
280	examined, we observed that the intensity was slightly higher in $fb-1(tk45)$, significantly
281	lower in <i>let-2(k196)</i> and significantly higher in <i>gon-1(e1254)</i> as compared with wild
282	type. When combined with <i>fbl-1(k201</i> and <i>tk45)</i> or <i>let-2(k196</i> and <i>g25)</i> mutations, the
283	level of EMB-9-mCherry accumulation in <i>mig-17</i> mutants was not affected except for
284	the case of <i>let-2(k196)</i> , in which a slightly lower accumulation was observed (Fig 7B).
285	Because the three mutations <i>fbl-1(k201)</i> , <i>let-2(k196)</i> and <i>let-2(g25)</i> suppressed <i>mig-17</i>
286	but <i>fbl-1(tk45)</i> did not, the levels of EMB-9-mCherry accumulation were not correlated
287	with <i>mig-17</i> suppression. We then combined <i>fbl-1(k201</i> and <i>tk45)</i> or <i>let-2(k196</i> and

288	g25) mutations with <i>gon-1</i> . We observed that the levels of EMB-9-mCherry
289	accumulation in <i>fbl-1(k201)</i> , <i>fbl-1(tk45)</i> and <i>let-2(k196)</i> , all of which suppress <i>gon-1</i> ,
290	were significantly lower than that of the gon-1 single mutants, whereas the level was not
291	affected in <i>let-2(g25)</i> , which enhances <i>gon-1</i> (Fig 7C). Thus, it is possible that the
292	reduction in EMB-9-mCherry accumulation is indicative of <i>gon-1</i> suppression.
293	
294	Fig 7. Accumulation of emb-9-mCherry in the BM. A. Representative images of
295	optical sections of the gonadal tip shortly after the first turn of the DTCs in wild-type,
296	mig-17(k174) and gon-1(e1254) animals expressing EMB-9-mCherry. Arrowheads
297	point to DTCs. The right panel illustrates the gonadal BM (brown). The fluorescence
298	intensity of the DTC BM was quantified by averaging the peak values along three lines
299	(green) that cross the DTC BM (see Materials and methods). B., C. Box-and-whisker
300	plot of the fluorescence intensity of EMB-9-mCherry in the DTC BM in animals with
301	wild-type and mutant <i>fbl-1</i> and <i>let-2</i> alleles and with those mutant alleles in
302	combination with <i>mig-17(k174)</i> (B) or <i>gon-1(e1254)</i> (C); $n = 20$. Boxplots indicate the
303	median and the interquartile range. Whiskers extend to the minimum and maximum
304	values within 1.5 times the interquartile range. Points indicate outliers. P-values from
305	Student's t-test are indicated: ** $P < 0.01$; * $P < 0.05$; NS, not significant.

306

307 **Discussion**

- 308 In the present study, we isolated novel suppressor mutations of gonadal defects related
- to *mig-17* and *gon-1* mutants. We identified alleles of *emb-9* as *mig-17* suppressors and
- an allele of *let-2* as a *gon-1* suppressor for the first time. We found that some of the
- 311 *emb-9 (collagen IV a1), let-2 (collagen IV a2)* and *fbl-1 (fibulin-1)* mutations
- suppressed both *gon-1* and *mig-17*, whereas others suppressed only *gon-1* or *mig-17*.

313 These results suggest that *gon-1* and *mig-17* have their specific functions as well as

- functions in common that relate to gonad formation. Probably, the loss of the gene-
- specific functions is the cause of the very different phenotypes of the *gon-1* and *mig-17*
- 316 mutants.
- 317 The *fbl-1(tk45)* null mutation suppressed *gon-1* but enhanced *mig-17*. The *gon-1*
- suppression is likely to be due to the reduction of collagen levels in the late larval stages
- that results from loss of *fbl-1* activity [14], although the collagen levels were not
- reduced in the mid-L3 stage when the DTCs make their first turn (Fig 7C). FBL-1C acts
- 321 downstream of MIG-17 to recruit NID-1/nidogen-1 to regulate directed DTC migration
- [12]. Thus, *mig-17* is enhanced probably because of the reduction of NID-1 in the DTC
- 323 BM. In mig-17 mutants, the DTCs do not migrate along their normal U-shaped route

324	because they often detach from the body wall (their normal migratory substratum) and
325	mis-attach to the intestine [8]. Therefore, NID-1 is likely to be required for appropriate
326	adhesiveness between the DTC and body wall BMs. The <i>fbl-1(k201)</i> gain-of-function
327	mutation suppressed both <i>mig-17</i> and <i>gon-1</i> . <i>fbl-1(k201)</i> suppressed the collagen
328	accumulation in gon-1, as did fbl-1(tk45), but fbl-1(k201) is fully fertile on its own,
329	unlike <i>fbl-1(tk45)</i> (S3 Fig). Therefore, it is possible that the <i>fbl-1(k201)</i> mutation may
330	partially compromise the ability of FBL-1C to maintain collagen IV without affecting
331	its ability to recruit NID-1.
332	The gain-of-function mutations of collagen IV emb-9(k204, k207) and let-
333	2(tk101, k196 and k193) were potent suppressors of mig-17 and gon-1. We found that
334	the BM collagen levels in <i>let-2(k196)</i> were significantly decreased and that <i>let-2(k196)</i>
335	suppressed the dramatic increase in collagen accumulation in gon-1 animals. Although
336	we did not examine the other gain-of-function collagen mutations, it is possible that the
337	levels of BM collagen are similarly affected. In contrast, the gain-of-function mutation
338	<i>emb-9(tk75)</i> enhanced both <i>mig-17</i> and <i>gon-1</i> . We previously showed that the levels of
339	BM collagen in animals expressing the mutant EMB-9($tk75$) α 1 subunit can be
340	maintained in the absence of FBL-1, which is otherwise required for the maintenance of
341	BM collagen levels [14]. Therefore, it is likely that too much accumulation of collagen

in the BM could be causative for both the *mig-17* and *gon-1* mutant phenotypes.

343	Although we could not detect	over-accumulation of	f collagen in	the <i>mig-17</i>	mutant, this
-----	------------------------------	----------------------	---------------	-------------------	--------------

- 344 could be because of the insufficient sensitivity of our assay condition.
- 345 This model is not, however, consistent with the fact that the loss-of-function
- mutations of collagen IV, *emb-9(g34* and g23cg46/+) and *let-2(g25* and *b246)*, which
- 347 conceivably reduce the levels of BM collagen, all acted as enhancers of *gon-1* even
- though they acted as suppressors of *mig-17*. The loss-of-function *emb-9(xd51)* mutation

also enhances *gon-1* in the presynaptic bouton overgrowth phenotype [25]. In contrast,

emb-9(g34) and emb-9(b189) can suppress the synaptic defect of gon-1 when emb-9;

- 351 gon-1 double mutants are shifted up from 16 to 25°C after completion of embryogenesis
- 352 [26]. In this case, it is possible that collagen IV containing the temperature-sensitive
- mutant proteins EMB-9(g34) and EMB-9(b189) form intracellular aggregates and thus
- are not secreted [16], and therefore the BM accumulation of collagen could be
- 355 considerably decreased. Our analysis using the EMB-9-mCherry reporter revealed that
- the collagen levels of *let-2(g25); gon-1* or *let-2(g25); mig-17* double mutants were not
- 357 lowered relative to the respective *gon-1* or *mig-17* single mutant (Fig 7B, C). It might be
- 358 possible that a subtle reduction in collagen accumulation is sufficient for amelioration
- of BM physiology in *mig-17* mutants but instead worsens that in *gon-1* mutants. The

slight collagen reduction may promote NID-1 accumulation in the BM and suppress the
 mig-17 gonadal defect.

362	Why is <i>gon-1</i> enhanced by collagen IV loss-of-function mutations? This	
363	seemingly contradictory phenomenon may be related to the dual function of GON-1. In	
364	addition to its predicted extracellular protease activity, GON-1 functions in the	
365	endoplasmic reticulum to transport secreted or membrane proteins from the	
366	endoplasmic reticulum to the Golgi. This transport activity is dependent on the C-	
367	terminal GON domain but is independent of protease activity [27]. For example, cell	
368	surface expression of the integrin receptors that are required for cell migration may be	
369	reduced and, therefore, the DTC migration activity in gon-1 mutants may be weakened.	
370	Because the remodeling of the BM is coupled with epithelial cell migration [28, 29],	
371	reduced migration of DTCs could also lead to downregulation of BM remodeling,	
372	resulting in thick accumulation of collagen, which can further block DTC migration.	
373	Remodeling of the BM is likely to be mediated by the GON-1 protease activity.	
374	We previously showed that a reduction in collagen IV lowers PAT-3/ β -integrin	
375	expression in DTCs [14]. At the early second larval stage, the fluorescence levels of	
376	EMB-9-mCherry in gon-1 mutants were closer to those in the wild type (K.N.,	
377	unpublished). Thus, it might be possible that when combined with loss-of-function	

378	collagen IV mutants, the reduced collagen levels may further impair integrin expression
379	in DTCs of gon-1 animals in the second larval or younger stages. This might be the
380	reason for the enhancement of the gon-1 phenotype in the presence of collagen IV loss-
381	of-function mutations.
382	It is unclear why the gain-of-function collagen IV mutation $let-2(k196)$ did not
383	enhance gon-1, as did let- $2(g25)$, even though let- $2(k196)$ also reduced collagen
384	accumulation. We speculate that GON-1 is the major enzyme responsible for turnover
385	of BM collagen IV and that the mutant $LET(k196)$ protein may confer the property by
386	which the collagen IV meshwork is turned over quickly as compared with the wild-type
387	meshwork even with the weakened activity of GON-1($e1254$) mutant enzyme. If this is
388	the case, the collagen meshwork containing EMB-9($tk75$) may have gained a slower
389	turnover rate.
390	Our observations suggest that both MIG-17 and GON-1 function to reduce
391	collagen IV in the BM. Although this is consistent with the idea that collagen IV is the
392	direct substrate of these enzymes, we still do not have evidence of this interaction.
393	Future biochemical analysis is thus needed to determine the substrates. In addition,
394	molecular structural analysis of interactions among these ADAMTS proteases and the
395	BM molecules should shed light on the detailed mechanism of BM remodeling during

396 organogenesis.

397

398 Acknowledgments

- 399 We thank Noriko Nakagawa and Nami Okahashi for technical assistance. Some
- 400 nematode strains used in this work were provided by the Caenorhabditis Genetics
- 401 Center, which is funded by the National Institutes of Health National Center for
- 402 Research Resources. This work was supported by a Grant-in-Aid for Scientific
- 403 Research on Innovative Areas by Ministry of Education, Culture, Sports, Science and
- 404 Technology to KN (22111005) and by the Naito Grant for the advancement of natural
- 405 science to KN.

406

407 **References**

Apte SS. A disintegrin-like and metalloprotease (reprolysin-type) with 408 1. 409 thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol 410 Chem. 2009;284(46):31493-7. doi: 10.1074/jbc.R109.052340. PubMed PMID: 19734141; 411 PubMed Central PMCID: PMCPMC2797218. 412Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol. 2018;71-2.72:225-39. doi: 10.1016/j.matbio.2018.06.002. PubMed PMID: 29885460; PubMed Central 413 414 PMCID: PMCPMC6146047. Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin 4153. 416 and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015;16:113. doi: 41710.1186/s13059-015-0676-3. PubMed PMID: 26025392; PubMed Central PMCID: 418 PMCPMC4448532. 419 4. McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, et al.

420 ADAMTS metalloproteases generate active versican fragments that regulate interdigital

421 web regression. Dev Cell. 2009;17(5):687-98. doi: 10.1016/j.devcel.2009.09.008. PubMed

422 PMID: 19922873; PubMed Central PMCID: PMCPMC2780442.

5. Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, et al. Secreted
metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle
growth during ciliogenesis. Nat Commun. 2019;10(1):953. doi: 10.1038/s41467-019-08520-7.
PubMed PMID: 30814516; PubMed Central PMCID: PMCPMC6393521.

427 6. Stupka N, Kintakas C, White JD, Fraser FW, Hanciu M, Aramaki-Hattori N, et al.
428 Versican processing by a disintegrin-like and metalloproteinase domain with

429 thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion. J Biol Chem.

430 2013;288(3):1907-17. doi: 10.1074/jbc.M112.429647. PubMed PMID: 23233679; PubMed

431 Central PMCID: PMCPMC3548499.

432 7. Blelloch R, Kimble J. Control of organ shape by a secreted metalloprotease in the
433 nematode *Caenorhabditis elegans*. Nature. 1999;399(6736):586-90. doi: 10.1038/21196.
434 PubMed PMID: 10376599.

8. Nishiwaki K, Hisamoto N, Matsumoto K. A metalloprotease disintegrin that
controls cell migration in *Caenorhabditis elegans*. Science. 2000;288(5474):2205-8. doi:
10.1126/science.288.5474.2205. PubMed PMID: 10864868.

438 9. Ihara S, Nishiwaki K. Prodomain-dependent tissue targeting of an ADAMTS
439 protease controls cell migration in *Caenorhabditis elegans*. EMBO J. 2007;26(11):2607-20.
440 doi: 10.1038/sj.emboj.7601718. PubMed PMID: 17491590; PubMed Central PMCID:
441 PMCPMC1888677.

442 10. Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, et al.

443 Comprehensive Endogenous Tagging of Basement Membrane Components Reveals

444 Dynamic Movement within the Matrix Scaffolding. Dev Cell. 2020;54(1):60-74 e7. doi:

445 10.1016/j.devcel.2020.05.022. PubMed PMID: 32585132; PubMed Central PMCID:

446 PMCPMC7394237.

447 11. Kubota Y, Kuroki R, Nishiwaki K. A fibulin-1 homolog interacts with an ADAM
448 protease that controls cell migration in *C. elegans*. Curr Biol. 2004;14(22):2011-8. doi:

449 10.1016/j.cub.2004.10.047. PubMed PMID: 15556863.

450 12. Kubota Y, Ohkura K, Tamai KK, Nagata K, Nishiwaki K. MIG-17/ADAMTS

451 controls cell migration by recruiting nidogen to the basement membrane in *C. elegans*. Proc

452 Natl Acad Sci U S A. 2008;105(52):20804-9. doi: 10.1073/pnas.0804055106. PubMed PMID:

453 19104038; PubMed Central PMCID: PMCPMC2634947.

- 454 13. Hesselson D, Newman C, Kim KW, Kimble J. GON-1 and fibulin have
- 455 antagonistic roles in control of organ shape. Curr Biol. 2004;14(22):2005-10. doi:

456 10.1016/j.cub.2004.11.006. PubMed PMID: 15556862.

457Kubota Y, Nagata K, Sugimoto A, Nishiwaki K. Tissue architecture in the 14. 458*Caenorhabditis elegans* gonad depends on interactions among fibulin-1, type IV collagen 459and the ADAMTS extracellular protease. Genetics. 2012;190(4):1379-88. doi: 460 10.1534/genetics.111.133173. PubMed PMID: 22298704; PubMed Central PMCID: 461PMCPMC3316650. 462 Brenner S. The genetics of *Caenorhabditis elegans*. Genetics. 1974;77(1):71-94. 15. 463PubMed PMID: 4366476; PubMed Central PMCID: PMCPMC1213120. 46416. Gupta MC, Graham PL, Kramer JM. Characterization of α1(IV) collagen 465mutations in *Caenorhabditis elegans* and the effects of alpha1 and $\alpha 2(IV)$ mutations on 466type IV collagen distribution. J Cell Biol. 1997;137(5):1185-96. doi: 10.1083/jcb.137.5.1185. 467 PubMed PMID: 9166417; PubMed Central PMCID: PMCPMC2136222. 468 17. Sibley MH, Graham PL, von Mende N, Kramer JM. Mutations in the alpha 2(IV) 469basement membrane collagen gene of *Caenorhabditis elegans* produce phenotypes of 470differing severities. EMBO J. 1994;13(14):3278-85. PubMed PMID: 8045258; PubMed 471Central PMCID: PMCPMC395224. 47218. Kim HS, Kitano Y, Mori M, Takano T, Harbaugh TE, Mizutani K, et al. The novel 473secreted factor MIG-18 acts with MIG-17/ADAMTS to control cell migration in 474Caenorhabditis elegans. Genetics. 2014;196(2):471-9. doi: 10.1534/genetics.113.157685. PubMed PMID: 24318535; PubMed Central PMCID: PMCPMC3914620. 475476 19. Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH. Rapid gene mapping in 477Caenorhabditis elegans using a high density polymorphism map. Nat Genet. 4782001;28(2):160-4. doi: 10.1038/88878. PubMed PMID: 11381264. 47920.Nishiwaki K. Mutations affecting symmetrical migration of distal tip cells in 480Caenorhabditis elegans. Genetics. 1999;152(3):985-97. PubMed PMID: 10388818; PubMed 481 Central PMCID: PMCPMC1460665. 48221.Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in 483 *C.elegans*: extrachromosomal maintenance and integration of transforming sequences. 484EMBO J. 1991;10(12):3959-70. PubMed PMID: 1935914; PubMed Central PMCID: PMCPMC453137. 485486 22.Maduro M, Pilgrim D. Identification and cloning of unc-119, a gene expressed in 487the Caenorhabditis elegans nervous system. Genetics. 1995;141(3):977-88. PubMed PMID: 488 8582641; PubMed Central PMCID: PMCPMC1206859. 48923.Yochem J, Gu T, Han M. A new marker for mosaic analysis in Caenorhabditis *elegans* indicates a fusion between hyp6 and hyp7, two major components of the 490491hypodermis. Genetics. 1998;149(3):1323-34. PubMed PMID: 9649523; PubMed Central

492 PMCID: PMCPMC1460238.

493	24.	Sundaramoorthy M, Meiyappan M, Todd P, Hudson BG. Crystal structure of NC1
494	domain	s. Structural basis for type IV collagen assembly in basement membranes. J Biol
495	Chem. 2	2002;277(34):31142-53. doi: 10.1074/jbc.M201740200. PubMed PMID: 11970952.
496	25.	Qin J, Liang J, Ding M. Perlecan antagonizes collagen IV and ADAMTS9/GON-1
497	in restr	icting the growth of presynaptic boutons. J Neurosci. 2014;34(31):10311-24. doi:
498	10.1523	JNEUROSCI.5128-13.2014. PubMed PMID: 25080592; PubMed Central PMCID:
499	PMCPN	IC6608278.
500	26.	Kurshan PT, Phan AQ, Wang GJ, Crane MM, Lu H, Shen K. Regulation of
501	synapti	c extracellular matrix composition is critical for proper synapse morphology. J
502	Neuros	ci. 2014;34(38):12678-89. doi: 10.1523/JNEUROSCI.1183-14.2014. PubMed PMID:
503	252321	06; PubMed Central PMCID: PMCPMC4166155.
504	27.	Yoshina S, Sakaki K, Yonezumi-Hayashi A, Gengyo-Ando K, Inoue H, Iino Y, et al.
505	Identifi	cation of a novel ADAMTS9/GON-1 function for protein transport from the ER to
506	the Gol	gi. Mol Biol Cell. 2012;23(9):1728-41. doi: 10.1091/mbc.E11-10-0857. PubMed PMID:
507	2241982	20; PubMed Central PMCID: PMCPMC3338439.
508	28.	Yamada KM, Collins JW, Cruz Walma DA, Doyle AD, Morales SG, Lu J, et al.
509	Extrace	llular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int J
510	Exp Pat	thol. 2019;100(3):144-52. doi: 10.1111/iep.12329. PubMed PMID: 31179622; PubMed
511	Central	PMCID: PMCPMC6658910.
512	29.	Morrissey MA, Sherwood DR. An active role for basement membrane assembly

and modification in tissue sculpting. J Cell Sci. 2015;128(9):1661-8. doi: 10.1242/jcs.168021.

514 PubMed PMID: 25717004; PubMed Central PMCID: PMCPMC4446735.

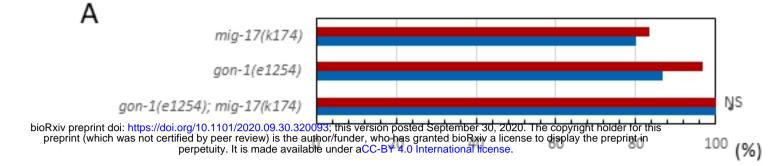
515

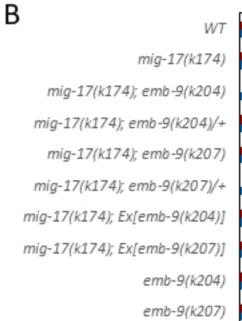
516 Supporting information

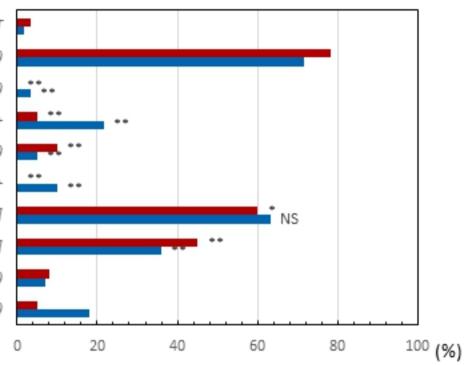
517 S1 Fig. Schematic presentation of gonad formation in the C. elegans

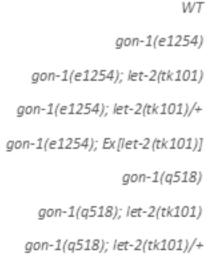
518 hermaphrodite. The hermaphrodite U-shaped gonad arms are generated by migration

of two DTCs. DTCs are generated at the anterior (A) and posterior (P) ends of the

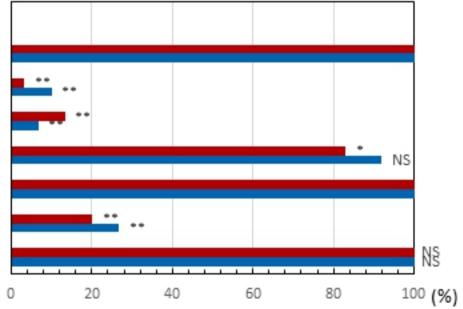

520 gonad primordium at the first larval stage (L1) and migrate along the anteroposterior

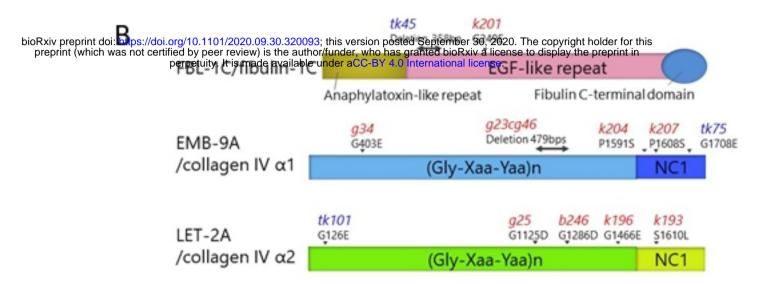

521 axis on the ventral (V) body wall muscle (L2–L3). The DTCs turn dorsally (D) and

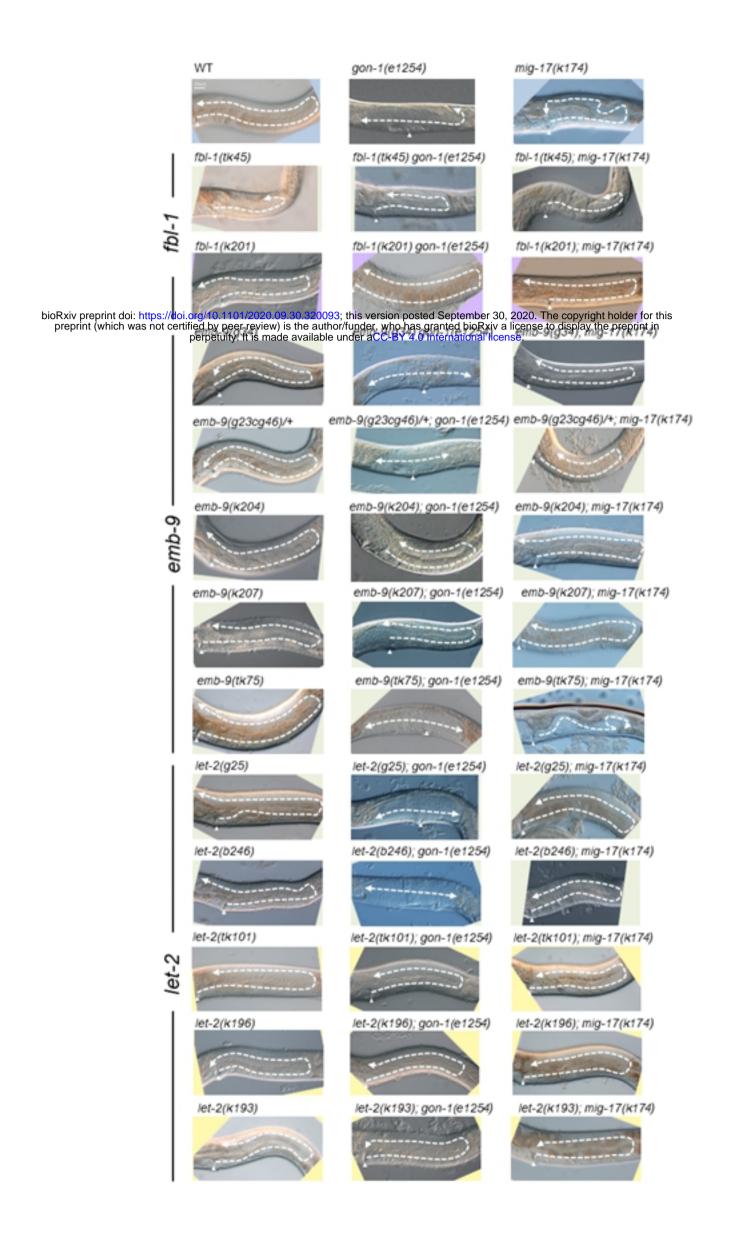

522	migrate along the lateral hypodermis (L3). Finally, the DTCs undergo a second turn and
523	migrate along the dorsal body wall muscle to form the symmetrical U-shaped arms
524	(L4).
525	
526	S2 Fig. Structure and mutation sites of GON-1 and MIG-17 proteins. Domain
527	organization is shown by colored boxes. Mutation sites for $gon-1(q518 \text{ and } e1254)$ and
528	mig-17(k174) are indicated.
529	
530	S3 Fig. Isolation of gon-1 suppressors. Gonad arms (arrows) of young adult
531	hermaphrodites are shown. A., B. Nomarski images of wild type (A) and gon-1(e1254)
532	(B). C., D. Nomarski (C) and fluorescence (D) images of a gon-1(e1254); tkEx370[gon-
533	1 fosmid, rol-6(su1006), sur-5::GFP] young adult hermaphrodite. E., F. Nomarski (E)
534	and fluorescence (F) images of a <i>let-2(k101); gon-1(e1254)</i> young adult hermaphrodite,
535	which lost the <i>tkEx370[gon-1 fosmid</i> , <i>rol-6(su1006)</i> , <i>sur-5::GFP]</i> extrachromosomal
536	array.
537	
538	S4 Fig. Percentage of fertile animals. For each strain, 20 first larval stage
539	hermaphrodites were grown at 20°C, and the number of animals that produced offspring


28

540 were counted. Green and red bars represent % fertile and % sterile animals, respectively.




С


А

	gon-1 suppressor or enhancer	mig-17 suppressor	
fbl-1	tk45	k201	
emb-9	tk75, g34, g23cg46 (enhancers)	g34, g23cg46, k204, k207	
let-2	tk101	g25, b246, k193, k196	

С

	Allele	mig-17	gon-1
fbl-1	tk45	E	S
	k201	S	S
emb-9	g34	S	E
	g23cg46/+	S	E
	k204	S	S
	k207	S	S
	tk75	E	E
let-2	g25	S	E
	b246	S	E
	tk101	S	S
	k196	S	S
	k193	S	S

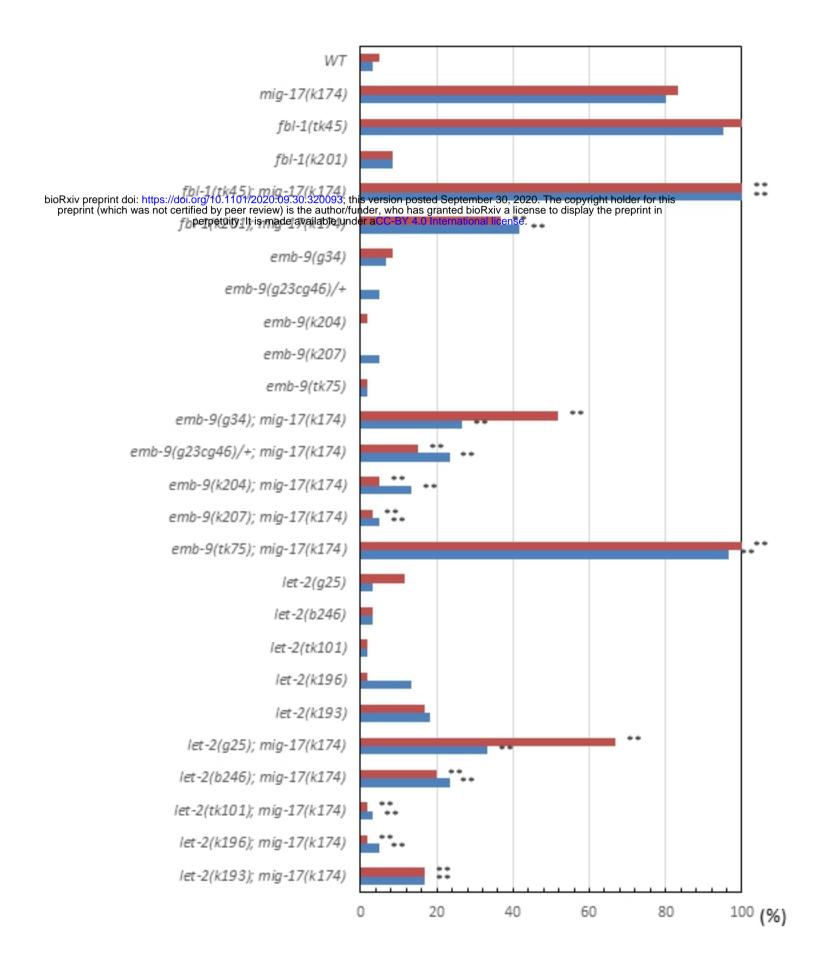
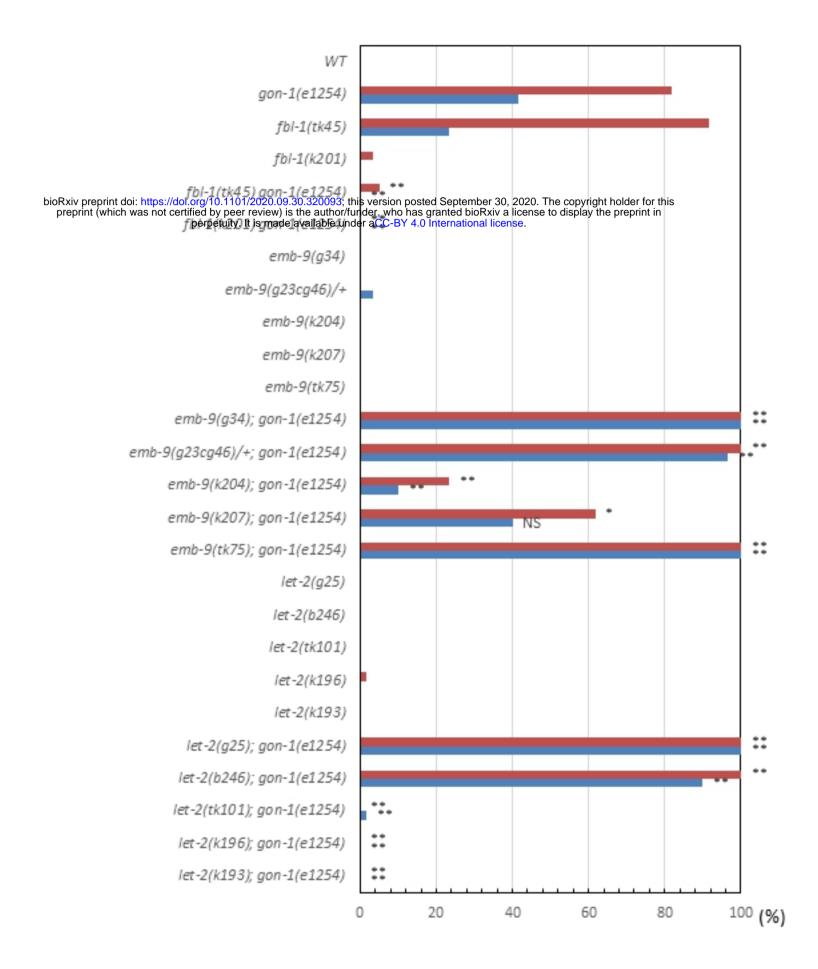
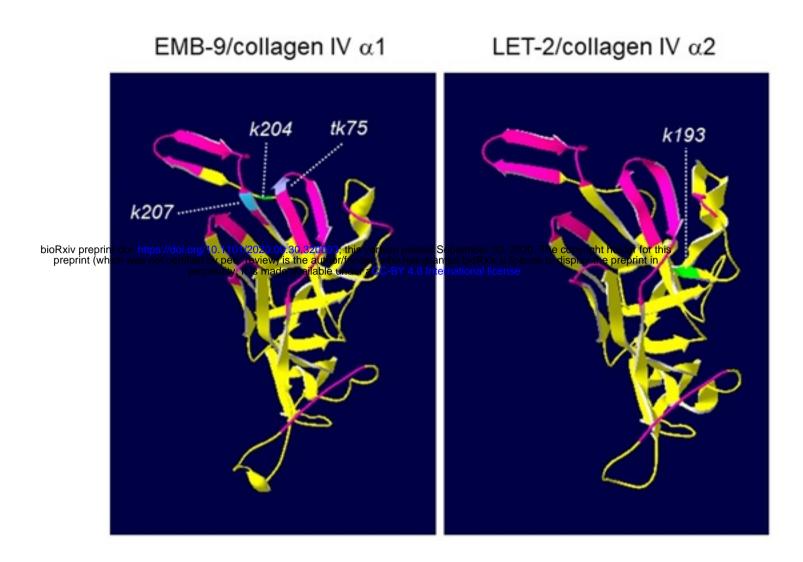
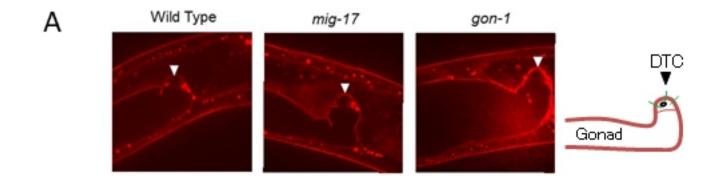
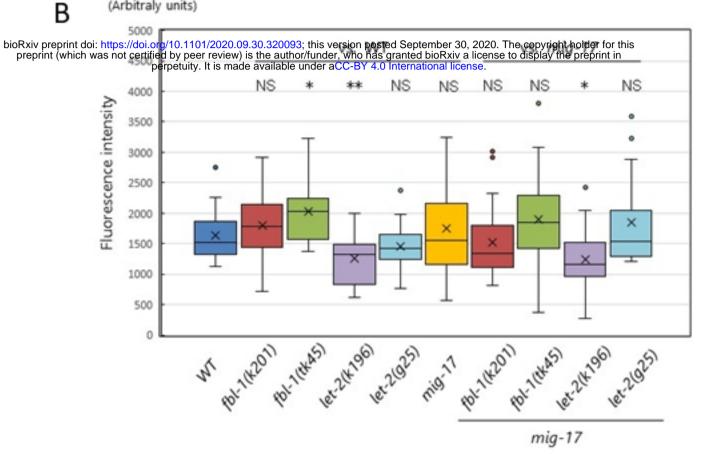


Fig 4


Fig 5

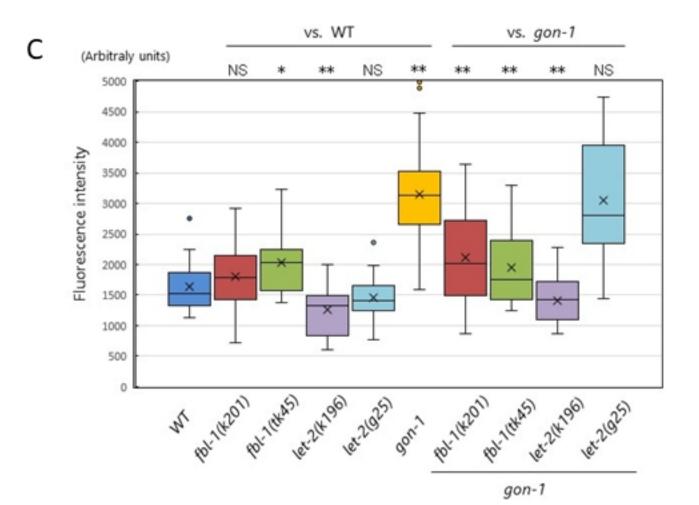


Fig 7

Fig 7