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24 Abstract

25 A growing number of computational tools have been developed to accurately and rapidly predict 

26 the impact of amino acid mutations on protein-protein relative binding affinities. Such tools have 

27 many applications, for example, designing new drugs and studying evolutionary mechanisms. In 

28 the search for accuracy, many of these methods employ expensive yet rigorous molecular 

29 dynamics simulations. By contrast, non-rigorous methods use less exhaustive statistical 

30 mechanics, allowing for more efficient calculations. However, it is unclear if such methods retain 

31 enough accuracy to replace rigorous methods in binding affinity calculations. This trade-off 

32 between accuracy and computational expense makes it difficult to determine the best method for 

33 a particular system or study. Here, eight non-rigorous computational methods were assessed using 

34 eight antibody-antigen and eight non-antibody-antigen complexes for their ability to accurately 

35 predict relative binding affinities (ΔΔG) for 654 single mutations. In addition to assessing 

36 accuracy, we analyzed the CPU cost and performance for each method using a variety of physico-

37 chemical structural features. This allowed us to posit scenarios in which each method may be best 

38 utilized. Most methods performed worse when applied to antibody-antigen complexes compared 

39 to non-antibody-antigen complexes. Rosetta-based JayZ and EasyE methods classified mutations 

40 as destabilizing (ΔΔG < -0.5 kcal/mol) with high (83-98%) accuracy and a relatively low 

41 computational cost for non-antibody-antigen complexes. Some of the most accurate results for 

42 antibody-antigen systems came from combining molecular dynamics with FoldX with a 

43 correlation coefficient (r) of 0.46, but this was also the most computationally expensive method. 

44 Overall, our results suggest these methods can be used to quickly and accurately predict stabilizing 

45 versus destabilizing mutations but are less accurate at predicting actual binding affinities. This 

46 study highlights the need for continued development of reliable, accessible, and reproducible 
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47 methods for predicting binding affinities in antibody-antigen proteins and provides a recipe for 

48 using current methods.
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70 Introduction

71 Protein-protein binding is an essential physiological event that governs a large number of 

72 biological processes in the cell [1]. Amino acid mutations of these proteins can introduce diversity 

73 into genomes, and disrupt or modulate protein-protein interactions by changing the underlying 

74 binding free energy (ΔG, i.e. binding affinity), the amount of energy required to form protein 

75 complexes [2]. The binding free energy associated with a protein-protein complex determines the 

76 stability of the complex formation and the conditions for protein-protein association. Accurate 

77 prediction of binding free energies allows us to understand how these affinities can be modified, 

78 and leads to a more comprehensive understanding of protein interactions in living organisms [3]. 

79

80 Experimental biophysical methods can quantitatively measure change in the protein-protein 

81 binding free energy due to a mutation (i.e. relative binding affinity, ΔΔG), but these methods are 

82 typically costly, laborious, and time-consuming since all mutant proteins must be expressed and 

83 purified. Many researchers have developed and utilized computational methods to predict ΔΔG 

84 values for single- or multiple-amino acid mutations (see e.g. [4-6]). Historically, the most 

85 promising in terms of accuracy are rigorous methods based on statistical mechanics that use 

86 molecular dynamics (MD) simulations and thus automatically address conformational flexibility 

87 and entropic effects [7, 8]. However, these methods are computationally expensive since they 

88 employ rigorous sampling and utilize classical mechanics [9] or quantum mechanics [10] 

89 approximations of intermolecular interactions, and require a large number of calculations per time-

90 step. Because of the expense, rigorous methods are not well-suited to studying large sets of 

91 mutations or large proteins thus necessitating less expensive, non-rigorous methods. 

92
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93 Non-rigorous high-throughput methods attempt to lower the computational cost, as compared to 

94 rigorous methods, while still providing accurate ΔΔG predictions. They accomplish this by 

95 including precalculated physico-chemical structural information in combination with predictive 

96 algorithms. The core mechanics that drive these methods fall under numerous classification 

97 umbrellas which have been covered by review articles [11, 12]. These review articles provide a 

98 broad overview but do not provide an unbiased, rigorous, comparative analysis outside of what the 

99 original developers provide. The developers of any given method tend to provide comparisons 

100 with other methods of the same general class to define where their method fits in the current 

101 landscape. BindProfX, for example, is available as a web server and standalone and utilizes 

102 structure-based interface profiles with pseudo counts. Upon release, it was most notably compared 

103 to FoldX (a semi-empirical trained method [13]) and DCOMPLEX (a physics-based method [14]) 

104 [15, 16]. iSEE, a statistically trained method based on 31 structure, evolution, and energy-based 

105 terms was tested against FoldX, BindProfX, and BeAtMuSiC (a machine learning-based approach 

106 [17]). Mutabind [18] and some other methods not explored in this work follow a similar testing 

107 methodology [19-21]. While these comparisons are beneficial in providing context for how a given 

108 model fits in the existing research landscape, they are not very robust, since only a narrow subset 

109 of methodologies are included. Conversely for folding stability, Kroncke et al. compared a large 

110 number of available software methods on a small dataset of transmembrane proteins providing a 

111 general overview of performance [6]. Despite the narrow dataset, this study provides a diverse, 

112 useful collection of evaluation metrics between multiple classes of methods. Our intent in this 

113 study is to provide a similar robust comparison of methods for non-rigorous binding affinity 

114 estimation.

115
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116 In this work, we evaluate the ability of eight non-rigorous methods to predict relative binding 

117 affinities due to single amino acid mutations. We restrict our study to cases where both an 

118 experimental structure of the complex, and experimentally determined binding affinity values are 

119 available. To investigate the trade-off between speed and accuracy, we chose 16 protein-protein 

120 test complexes with empirical ΔΔG values for observed mutations. We calculated the ΔΔG values 

121 for each mutation using all eight methods and compared the results against empirical ΔΔG values. 

122 The goal of this study was to determine whether software methods that use (most costly) energy 

123 functions with a wider variety of physico-chemical structural features would provide more 

124 accurate binding affinity and interface destabilization predictions compared to those that rely on a 

125 single descriptive (less costly) energy function. We have determined scenarios in which some of 

126 these methods may be better or worse than traditional computational methods in predicting ΔΔG 

127 values.

128
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139 Methods

140 Compilation of Experimental ΔΔG Values 

141 To assess the performance of a range of protein-protein binding affinity prediction methods, we 

142 first assembled a dataset containing single amino acid mutations with known experimental ΔΔG 

143 values. This list was assembled from Structural Kinetic and Energetic database of Mutant Protein 

144 Interaction (SKEMPI) version 2.0 [22]. While generating this list, we considered four aspects: (i) 

145 type of protein-protein complex; (ii) availability of quality 3-D structural information; (iii) range 

146 of experimental ΔΔG values; and (iv) the type of mutations at differing sites on the complex. Our 

147 final dataset contained 654 mutations from 16 protein-protein complexes and their respective 

148 experimental ΔΔG values. We further categorized these 16 complexes as either non-antibody-

149 antigen (non-Ab) or antibody-antigen (Ab). Table 1 shows the complexes in our dataset with their 

150 respective non-Ab and Ab categories and the number of mutations associated with each complex. 

151 The dataset contains a total of 401 non-Ab mutations and 253 Ab mutations.

Non-Ab Ab

PDB ID # Mutations # Residues PDB ID # Mutations # Residues

1a4y [23] 32 583 1bj1[24] 10 547

1brs [25] 30 199 1jrh [26] 42 540

1cbw [27] 31 299 1mlc [28] 11 561

1iar [29] 36 336 1vfb [30] 48 352

1jtg [31] 37 428 1yy9 [32] 16 1058

1lfd [33] 19 254 2jel [34] 43 520

1ppf [35] 190 274 3hfm [36] 71 558

2wpt [37] 26 220 4i77 [38] 12 549

152 Table 1. Dataset used in our study containing 16 protein complexes. For both non-Ab (left) 
153 and Ab (right) categories, columns show PDB IDs, total number of residues in a complex, and 
154 number of experimental mutants per complex.
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155

156 Selection of Protein-Protein Binding Affinity Methods 

157 Binding affinity prediction methods were chosen to have both a distinct approach to binding 

158 affinity calculation that utilized 3-D structural information and had functional standalone software 

159 in September 2020, available either online or upon request to the author. Table 2 summarizes the 

160 methods selected in this study, their approaches, and their type of scoring functions. For simplicity, 

161 we categorized scoring functions (mathematical functions to calculate ΔΔG values) as semi-

162 empirical, statistical, or physics-based. Semi-empirical methods replace as many calculations as 

163 possible with pre-calculated data and are trained using existing crystal structures and known 

164 binding affinity measurements for mutations [39]. Statistical methods use pre-calculated data and 

165 consider changes in coarse structural features such as the change in overall volume [40]. Physics-

166 based methods use molecular mechanics based-energy functions to estimate enthalpic binding 

167 contributions [14]. In general, statistical or semi-empirical scoring functions involve a training step 

168 where existing datasets are leveraged to determine the weight of input parameters. MD, JayZ, and 

169 EasyE were not developed by training the methods against experimental data designed to improve 

170 predictive power while all other methods utilized this step.

171
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Name Brief Description Scoring 
Function

Runtime (CPU 
hours)

BindProfX [15, 16] Interface profile score based on 
conservation of homologous 
interfaces

Semi-Empirical 1ppf = 0.57 CPUh
1yy9 = 0.73 CPUh

BindProfX(BPX)+FoldX v4 
[15, 16]

Profile score weighted and 
combined with FoldX energy 
potential

Semi-Empirical 1ppf = 0.62 CPUh
1yy9 = 0.71 CPUh

iSEE [41] Random forest model using 
structural, evolutionary, and 
energy-based features

Statistical 1ppf < 0.01 CPUh
1yy9 < 0.01 CPUh

DCOMPLEX v2 [14] Structural ideal-gas reference 
state potential

Physics-Based 1ppf = 0.013 CPUh
1yy9 = 0.001 CPUh

EasyE v1.0 [40, 42] GMEC-based method utilizing 
the Rosetta [43, 44] energy 
function

Statistical 1ppf = 0.48 CPUh
1yy9 = 0.09 CPUh

JayZ v1.0 [40, 42] Partition-function method 
utilizing Rosetta energy function

Statistical 1ppf = 0.14 CPUh
1yy9 = 0.21 CPUh

FoldX v4 [13, 39] Empirical energy score based on 
various energy parameters (e.g. 
van der Waals, solvation, 
electrostatics, hydrogen bonding)

Semi-Empirical 1ppf = 0.42 CPUh
1yy9 = 0.16 CPUh

MD+FoldX v4 [45-47] Molecular dynamics used to 
explore conformation space and 
generate snapshots; FoldX score 
calculated for each snapshot and 
averaged

Semi-Empirical 1ppf = 941 CPUh
1yy9 = 4093 CPUh

178 Table 2. Methods used for comparison in study with a short summary of their approach and 
179 scoring function. Columns (left to right) indicate the method, a brief description of the method, 
180 the type of scoring function used, and runtimes. Runtimes are the amount of CPU hours for 
181 estimating the ΔΔG for a representative protein complex for Ab (1yy9, 1058 residues) and Non-
182 Ab (1ppf, 274 residues) categories. Although 1yy9 is roughly four times bigger than 1ppf, the total 
183 runtime may or may not be affected depending on the method used.
184

185 Calculation and Comparison of Computational Speed 

186 The methods in Table 2 were used to predict ΔΔG values for each mutation on our experimental 

187 list shown in Table 1. Detailed protocols for predicting ΔΔG values using each selected method 

188 are provided in the Supplemental Information (see S1 File). Runtimes were determined by using a 

189 representative protein complex from each category: 1ppf, a non-Ab complex with 274 total amino 
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190 acids, and 1yy9, an Ab complex with 1058 total amino acids (see Table 2). These runtimes are 

191 estimates provided to give a point of comparison between the speeds of different methods. Specific 

192 runtimes will be determined by hardware specifications, method parameters, the number of 

193 mutations being computed, and overall protein size. For MD+FoldX, computational runtime was 

194 the length of time of the MD simulation plus the FoldX runtime for a single mutation. Reporting 

195 runtime in this fashion highlights the large CPUh requirement needed in order to add the sampling 

196 of MD into FoldX calculations. We note that, in contrast to the other methods tested here, the MD 

197 simulations that must be performed for MD+FoldX can be completed very quickly on modern 

198 GPUs, significantly offsetting the high initial cost of the MD+FoldX method. For all other 

199 methods, the algorithms rely either on various pre-calculated data or limited conformational 

200 sampling to calculate ΔΔG values rapidly. 

201

202 Comparing Experimental and Predicted ΔΔG Values 

203 To carry out statistical analysis of our results we built an in-house Python script (see S2 File) that 

204 uses a combination of libraries including matplotlib, numpy, pandas, statistics, scipy, and sklearn. 

205 Using this script, we compared predicted values to experimental ΔΔG values for each method.

206

207 To evaluate the predictive ability of each method tested, we compared the following correlation 

208 coefficients using our script: concordance (⍴c), Pearson (r), Kendall (τ), and Spearman (⍴) (see 

209 Table 3). We distinguish between methods that were trained to predict ΔΔG values from methods 

210 that compute metrics that are expected to linearly correlate with ΔΔG values. This distinction is 

211 important since for optimal performance we expect a regression line that passes through the 

212 coordinate origin and has a slope of 1, leading to a correlation coefficient equal to 1.
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213  

Correlation Brief Description Type

Concordance The concordance correlation coefficient (⍴c) measures the degree to which 
the predicted ΔΔG value equals the actual experimental value (0 indicates no 
agreement and 1 perfect agreement).

Linear

Pearson The Pearson correlation coefficient (r) measures the degree to which a 
uniform linear transformation of the predicted ΔΔG values (i.e., a shift and 
scale change) would yield the actual experimental values (0 indicates no 
agreement after transformation, 1 perfect agreement, and −1 perfect inverse 
agreement).

Linear

Kendall and 
Spearman

The rank correlation coefficient measures the degree to which the rank 
ordering of the predicted ΔΔG values matches the rank ordering of the actual 
experimental values (0 indicates no agreement after transformation, 1 perfect 
agreement, and −1 perfect inverse agreement). In a normal case, the Kendall 
correlation (τ) is considered more robust than the Spearman correlation (⍴) 
because of a smaller gross error sensitivity and more efficient due to a 
smaller asymptotic variance [48].

Rank

AUC and 
ROC

The receiver operating characteristic (ROC) curve tests several cutoff values 
for binning mutations as neutral or destabilizing between the most negative 
calculated ΔΔG value and the most positive calculated ΔΔG value, with true 
positive rates (sensitivity) calculated at each point. As the true positive rate is 
calculated, the classifier is moved to less extreme values; this yields the ROC 
curve. The area under curve (AUC) is a summary statistic that approximates 
how well the predictor actually discriminates between the two classifications.

N/A

214 Table 3. Statistical measures used to test the performance of each method in predicting ΔΔG 
215 values. 
216

217 To compare the discriminating power of the methods, we generated receiver operating 

218 characteristic (ROC) curves (see Table 3). These curves quantify the ability of a method to 

219 correctly classify point mutations as destabilizing (ΔΔG < −0.5 kcal/mol) or neutral/stabilizing 

220 (ΔΔG > −0.5 kcal/mol). ROC curves that are skewed toward a higher true positive rate (sensitivity) 

221 classify mutations more accurately, as quantified by area under curve (AUC, ranging between 1.0 

222 and 0.5 for perfect and chance classification, respectively).

223
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224 We also used our script to parse the results on the basis of several physico-chemical and structural 

225 features to allow us to evaluate the methods based on these characteristics: wild type amino acid 

226 type, mutant amino acid type, protein-protein interacting versus antibody-antigen, secondary 

227 structure classification of the mutation [49, 50], coordination number [51], Sneath index [52],  

228 mostly α-helical proteins versus mostly β-sheet proteins versus a mix of both α-helical and β-sheet 

229 proteins, percent exposure, location of the mutation, change in charge, change in polarity, change 

230 in volume, and whether or not the mutation location is predicted as an active or passive residue 

231 [53-55]. The script uses data from S3 File as an input and outputs scatter plots, correlation plots, 

232 receiver operating characteristic (ROC) curves, and box plots to visualize the data, as well as 

233 correlations and standard deviations for each method. All plots in this manuscript were generated 

234 using this script.

235
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247 Results

248 The purpose of our study was to assess the ability of eight different relative binding affinity 

249 calculation methods (see Table 2) to estimate ΔΔG values. We selected 16 different protein 

250 complexes (eight Ab, eight non-Ab, see Table 1) with a total of 654 single amino acid mutations. 

251 Each method was then used to estimate ΔΔG values of 654 mutations and a variety of statistical 

252 measures were employed to assess their predictive ability. We also examined the computational 

253 speed of each method in the context of accuracy to determine its efficiency. 

254

255 Non-Antibody-Antigen (non-Ab) Results

256 Our dataset of eight non-Ab test protein complexes contains 401 total mutations and are mainly 

257 classified as protein-protein systems formed by inhibitors and receptors that range from 199 to 583 

258 residues in size. The distribution and our classification of experimental ΔΔG values for all non-

259 Ab test complexes is as follows: 13% of point mutations resulted in ΔΔG values less than -0.5 

260 kcal/mol (classified as destabilizing); 31% between -0.5 and 0.5 kcal/mol (neutral); and 56% 

261 greater than 0.5 kcal/mol (stabilizing). 

262

263 Figures 1 (blue data points and values) and 2 show various performance metrics for each method 

264 to assess their ability to predict the non-Ab ΔΔG values. Overall, EasyE has the highest correlation 

265 coefficient, r = 0.62, and iSEE has the lowest, r  = 0.17 (see Figures 1 and 2). JayZ and EasyE, 

266 both of which utilize Rosetta’s conformational sampling algorithms, consistently have the best r 

267 values for non-Ab mutations.

268  

269
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270 Figure 1. Calculated ΔΔG values (x-axis) compared to experimental ΔΔG values (y-axis) for 
271 each method tested in this study. Black, red, and blue lines are simple linear regressions from 
272 which r are derived. The red points are a scatter for Ab complexes and the blue points are for non-
273 Ab complexes. The dashed line is the y = x line measuring perfect agreement between predicted 
274 and experimental ΔΔG values. The solid black, red, and blue lines indicate a linear relationship 
275 between calculated and experimental observations for all data points, Ab complexes, and non-Ab 
276 complexes respectively. The top values in black, red, and blue match the root-mean-square error 
277 and the bottom values indicate r for all values, Ab values, and non-Ab values respectively. 
278

279 Figure 2. Performance of each method for non-Ab complexes (401 total mutations) in 
280 predicting true ΔΔG values (⍴c), linearly correlated ΔΔG values (r), and rank order (⍴ and 
281 τ). The error for each method is reported under the correlation points.
282

283

284 Figure 3 shows the ROC plot for all the tested methods. These ROC plots highlight how well a 

285 method can discriminate between stabilizing and destabilizing mutations. JayZ (0.84), EasyE 

286 (0.83), DCOMPLEX (0.82), FoldX (0.79), and MD+FoldX (0.76) have the highest AUC. 

287 Combined with the results from Figures 1 and 2, for the systems studied here, JayZ and EasyE 

288 methods are the best overall performers in terms of accuracy, discriminating stabilizing mutations 

289 from destabilizing, and ranking mutations based on their experimental ΔΔG values. 

290

291 Figure 3. Receiver operating characteristic (ROC) curves for non-Ab complexes of the 
292 classification of variants as stabilizing (ΔΔG < -0.5 kcal/mol) or destabilizing (ΔΔG > 0.5 
293 kcal/mol). The values in the legend represent the area-under-curve (AUC). The higher the value, 
294 the better method is at discriminating between destabilizing and destabilizing mutations. 
295

296

297 Table 2 reports CPUh required (i.e. runtimes) for each method to calculate ΔΔG for the entire list 

298 of mutations for a representative non-Ab protein complex. BindProfX, BindProfX(BPX)+FoldX, 

299 JayZ, and EasyE allow users to specify a list of mutations that the method is then able to calculate 

300 in one setting. This list can be optimized based on the available hardware to achieve efficiency. 
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301 iSEE requires significant preparatory work (see File S1) prior to calculation, but once completed, 

302 it calculates the ΔΔG values for the entire list of mutations nearly instantly. DCOMPLEX is not 

303 as flexible out of the box but can handle large numbers of mutations through an automated script. 

304 For MD+FoldX, 1yy9 (roughly four times larger than 1ppf) requires considerably more CPUh to 

305 calculate. All other methods calculate 1yy9 in a shorter time frame than 1ppf. This may seem 

306 counterintuitive. However, MD must statistically sample the conformational energy of the entire 

307 complex, while all other methods use algorithms that are likely impacted more by the number of 

308 residues involved in the interaction rather than the protein size. Overall, DCOMPLEX has a much 

309 faster runtime compared to other methods, and if the goal is to determine stabilizing and 

310 destabilizing non-Ab mutations, it offers similar discriminating power to JayZ and EasyE, at a 

311 fraction of the computational cost. JayZ estimates ΔΔG value of one mutation in ~2.7 s, EasyE in 

312 ~9.1 s, but DCOMPLEX requires just ~0.25 s. Overall, EasyE appears to be the best option for 

313 balancing accuracy and speed and DCOMPLEX is recommended for discriminating between 

314 stability and destabilizing mutations.

315

316 A method might not be a good overall performer in predicting ΔΔG values but could still perform 

317 well for mutations with certain physico-chemical and structural features. Therefore, we calculated 

318 various statistical measures to assess each method on unique subsets of mutations (see Table 4 and 

319 SI Figs S1-4). This table shows eight different data subsets with two r per method. EasyE has the 

320 highest r for non-Ab for five out of eight subsets (wild type non-gly or non-pro, alpha helix, beta 

321 sheet, surface exposure, and large volume changes). Where this method did not have the highest 

322 r, it had either the second or third highest r. JayZ mirrors the performance of EasyE in all the same 

323 categories and performs better than Easy in the neutral charge subset. These results further 
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324 highlight the versatility of EasyE’s and JayZ’s performance in estimating the effects of non-Ab 

325 mutations compared to the other methods tested in this study. All methods apart from iSEE and 

326 BindProfX perform surprisingly well in the WT Gly or Pro subset. iSEE’s performance in this 

327 subset, while still mediocre compared to the other tested methods, is substantially better than in all 

328 other subsets.

329

Method WT Gly or 
Pro 

WT Non-Gly 
or Non-Pro 

Alpha Helix Beta Sheet Surface 
Exposure 

Neutral 
Charge 

Hydrophobic 
to Polar 

Large Vol 
Changes 

BindProfX Non-Ab: 0.11 
Ab: -0.03 

Non-Ab: 0.33 
Ab: 0.23 

Non-Ab: 0.29 
Ab: 0.16 

Non-Ab: 0.29 
Ab: 0.52 

Non-Ab: 0.22 
Ab: 0.09 

Non-Ab: 0.37 
Ab: 0.28 

Non-Ab: 0.33 
Ab: 0.17 

Non-Ab: 0.13 
Ab: 0.42 

BPX+FoldX Non-Ab: 0.81 
Ab: 0.09 

Non-Ab: 0.45 
Ab: 0.34 

Non-Ab: 0.43 
Ab: 0.39 

Non-Ab: 0.43 
Ab: 0.54 

Non-Ab: 0.32 
Ab: 0.21 

Non-Ab: 0.52 
Ab: 0.41 

Non-Ab: 0.41 
Ab: 0.26 

Non-Ab: 0.71 
Ab: 0.50 

FoldX Non-Ab: 0.85 
Ab: -0.11 

Non-Ab: 0.45 
Ab: 0.25 

Non-Ab: 0.39 
Ab: 0.25 

Non-Ab: 0.39 
Ab: 0.31 

Non-Ab: 0.50 
Ab: 0.26 

Non-Ab: 0.42 
Ab: 0.41 

Non-Ab: 0.41 
Ab: 0.11 

Non-Ab: 0.63 
Ab: -0.32 

MD+FoldX Non-Ab: 0.83 
Ab: 0.71 

Non-Ab: 0.49 
Ab: 0.42 

Non-Ab: 0.44 
Ab: 0.54 

Non-Ab: 0.44 
Ab: 0.49 

Non-Ab: 0.47 
Ab: 0.35 

Non-Ab: 0.46 
Ab: 0.46 

Non-Ab: 0.46 
Ab: 0.31 

Non-Ab: 0.71 
Ab: 0.35 

DCOMPLEX Non-Ab: 0.65 
Ab: 0.89 

Non-Ab: 0.34 
Ab: 0.37 

Non-Ab: 0.33 
Ab: 0.31 

Non-Ab: 0.33 
Ab: 0.30 

Non-Ab: 0.52 
Ab: 0.27 

Non-Ab: 0.36 
Ab: 0.56 

Non-Ab: 0.38 
Ab: 0.16 

Non-Ab: 0.62 
Ab: 0.28 

JayZ Non-Ab: 0.80 
Ab: 0.54 

Non-Ab: 0.49 
Ab: 0.24 

Non-Ab: 0.44 
Ab: -0.06 

Non-Ab: 0.44 
Ab: 0.16 

Non-Ab: 0.59 
Ab: 0.36 

Non-Ab: 0.62 
Ab: 0.26 

Non-Ab: 0.41 
Ab: 0.01 

Non-Ab: 0.83 
Ab: 0.19 

EasyE Non-Ab: 0.80 
Ab: 0.29 

Non-Ab: 0.51 
Ab: 0.22 

Non-Ab: 0.51 
Ab: 0.06 

Non-Ab: 0.51 
Ab: 0.03 

Non-Ab: 0.60 
Ab: 0.35 

Non-Ab: 0.61 
Ab: 0.23 

Non-Ab: 0.45 
Ab: 0.02 

Non-Ab: 0.84 
Ab: 0.18 

iSEE Non-Ab: 0.43 
Ab: -0.43 

Non-Ab: 0.28 
Ab: -0.16 

Non-Ab: 0.05 
Ab: -0.04 

Non-Ab: 0.05 
Ab: -0.24 

Non-Ab: 0.15 
Ab: 0.11 

Non-Ab: 0.15 
Ab: -0.11 

Non-Ab: 0.14 
Ab: -0.02 

Non-Ab: 0.24 
Ab: -0.44 

330 Table 4. All methods r with respect to certain subsets. “WT Gly or Pro” are wild type amino 
331 acids that are either glycine or proline. “WT Non-Gly or Non-Pro” are wild type amino acids that 
332 are neither glycine nor proline. “Alpha Helix” are mutations that occur in a helix structure. “Beta 
333 Sheet” are mutations that occur in a beta structure. “Surface Exposure” are mutations that occur in 
334 an amino acid that have relative solvent accessibility values between 0 and 10%. “Neutral Charge” 
335 is a neutrally charged wild type amino acid mutating to a neutrally charged mutant amino acid. 
336 “Hydrophobic to Polar” is a hydrophobic or polar wild type amino acid mutating to a polar or 
337 hydrophobic mutant amino acid, respectively. “Larger Vol Changes” is a mutant amino acid that 
338 is greater than 40% larger than the wild type amino acid. Values that are bolded are the highest r 
339 for each method and protein type. Values that are red or blue are the highest r for each subset, blue 
340 for non-Ab and red for Ab.
341

342 Antibody-Antigen (Ab) Results

343 Our dataset of eight Ab test protein complexes contains 253 mutations and the proteins range in 

344 size from 352 to 1058 residues. The distribution and our classification of experimental ΔΔG values 

345 for all Ab test complexes is as follows: 5% of point mutations resulted in ΔΔG values less than -
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346 0.5 kcal/mol (classified as destabilizing); 40% between -0.5 and 0.5 kcal/mol (neutral); and 55% 

347 greater than 0.5 kcal/mol (stabilizing). 

348

349 Figures 1 (data points and values in red), 4, and 5 show the performance of each method in 

350 predicting the ΔΔG values of Ab mutations. Overall, the highest correlation is for MD+FoldX with 

351 r = 0.39 and the lowest is iSEE with r = -0.09 (see Figures 1 and 4). An interesting trend is that 

352 the methods with the highest r values for non-Ab complexes do not have the highest r for Ab 

353 complexes. 

354

355 Figure 4. Performance of each evaluated method for Ab complexes (253 total mutations) in 
356 predicting true ΔΔG values (⍴c), linearly correlated ΔΔG values (r), and rank order (⍴ and 
357 τ). The error for each method is reported under the correlation points.
358

359 Figure 5. Receiver operating characteristic curves of the classification of variants that are 
360 more destabilized or less destabilized than 0.5 kcal/mol. The values in the legend represent the 
361 area-under-curve (AUC). The higher the value, the better the prediction capability of the method. 
362

363

364 Figure 5 shows the ROC plot for all the tested Ab methods. These ROC plots highlight how well 

365 a method is actually able to discriminate between stabilizing and destabilizing mutations. 

366 Compared to non-Ab complexes, all methods performed better for antibody-antigen complexes 

367 except for FoldX and DCOMPLEX which were marginally worse. JayZ (0.97), EasyE (0.98), 

368 FoldX (0.85), and MD+FoldX (0.82) had the highest AUC values. Combined with the results from 

369 Figures 1 and 4, at least for the systems studied here, it appears that the MD+FoldX method is the 

370 best overall performer in terms of accuracy, discriminating stabilizing mutations from 

371 destabilizing, and ranking mutations based on their experimental ΔΔG values.
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372

373 Compared to other methods, EasyE has a much faster runtime and is recommended if the goal is 

374 to discriminate between stabilizing and destabilizing (ΔΔG for one mutation takes ~21 s, see Table 

375 2). By comparison, MD+FoldX cost ~941 CPUh for one mutation of 1yy9. DCOMPLEX provides 

376 a slightly lower r (0.31) and computational cost (~0.35 s) for one mutation of 1yy9. Overall, 

377 MD+FoldX appears to be the best option for accuracy and EasyE or JayZ are the best options for 

378 discriminating between destabilizing and stabilizing mutations.

379

380 Table 4 summarizes the ability of each method to predict ΔΔG values for subsets of Ab mutations. 

381 Most methods had mediocre r values less than 0.60. The exceptions to this are MD+FoldX and 

382 DCOMPLEX within the WT Gly or Pro subset with r = 0.71 and 0.89, respectively. MD+FoldX 

383 has the highest r for Ab complexes for three of the eight subsets (WT nonGly or nonPro, alpha 

384 helix, and hydrophobic to polar). BPX+FoldX has the highest r in two of the eight subsets (beta 

385 sheet and large volume changes). For the beta sheet subset, BindProfX had the second highest r. 

386 DCOMPLEX had the highest r for two different subsets (WT Gly or Pro and neutral charge). In 

387 the surface exposure subset, JayZ and EasyE both had nearly identical r (0.36 and 0.35 

388 respectively), the highest for this subset, but substantially worse than they did for non-Ab 

389 complexes.

390

391

392

393

394
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395 Discussion

396 We assessed the performance of eight distinct protein-protein binding affinity calculation methods 

397 that use 3-D structural information. To test the performance of these methods, we selected 16 

398 different protein complexes (see Table 1) with a total of 654 single amino acid mutations: eight 

399 antigen-antibody complexes (Ab, 253 mutations) and eight non-antigen-antibody (Non-Ab, 401 

400 mutations) complexes. Each method was used to estimate ΔΔG values of the 654 mutations, a 

401 variety of statistical measures, CPU cost, and physico-chemical structural features to assess the 

402 performance. Our results suggest each method has both strengths and weaknesses depending on 

403 the properties of the protein system. Most methods did not perform well when applied to mutations 

404 in Ab complexes compared to non-Ab complexes. Rosetta-based JayZ and EasyE were able to 

405 classify mutations as destabilizing (ΔΔG < -0.5 kcal/mol) with high (83-98%) accuracy at 

406 relatively low computational cost. Some of the best results for Ab systems came from combining 

407 MD simulations with FoldX with a r coefficient of 0.39, but at the highest computational cost of 

408 all the tested methods.

409

410 Figure 1 summarizes the performance of each method in terms of its ability to estimate ΔΔG values 

411 for all (non-Ab + Ab) single mutations. None of the test methods show a very high r between 

412 experimental and predicted ΔΔG values. Two of the best performing methods, JayZ and EasyE, 

413 both have an r of 0.49 for all mutations, with a higher r of 0.61 and 0.62 respectively for non-Ab 

414 complexes. These results agree with published results from the authors of JayZ and EasyE. Our 

415 results agree moderately with published results from iSEE (they obtained r = 0.25, we obtained r 

416 = 0.17) and BindProfX (they used a much larger dataset). Published results for DCOMPLEX show 

417 a very good correlation of r = 0.87; much larger than what we obtained here. This difference is 
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418 very likely due to the dataset size and compilation; DCOMPLEX was originally tested against 69 

419 experimental data points, compared to the 654 values used here. MD+FoldX has an r of 0.39 for 

420 Ab complexes and appears to perform well for larger systems, which could indicate the importance 

421 of conformational sampling for antibody-antigen systems. Other methods used in this study have 

422 little to no conformational sampling which could explain their poor performance on Ab complexes. 

423 By contrast, these same methods perform well for non-Ab complexes, suggesting that 

424 conformational sampling is not the limiting factor to achieve accurate results for these protein 

425 complexes. For example, FoldX has a trained scoring function derived using a dataset of mostly 

426 non-Ab complexes and performs poorly for Ab complexes when using a single structure (see Table 

427 2). However, when used with snapshots from an MD simulation, this same method outperforms 

428 all other methods selected in this study. This highlights the need for conformational sampling for 

429 reliable and efficient predictions of binding affinity for some systems. In our previous study, we 

430 combined coarse-grained forcefield with umbrella sampling to calculate ΔΔG values for eight 

431 mutations of 3hfm Ab complex (one of the test systems in this study) and obtained better 

432 predictions than FoldX and MD+FoldX [56]. This study further emphasizes the need for better 

433 conformational strategies for some systems. 

434

435 Statistical measures used to analyze performance are listed and defined in Table 3. For Ab, 

436 BPX+FoldX, MD+FoldX, and DCOMPLEX have the highest r values of the methods in our study 

437 (see Figure 4). MD+FoldX appears to be the most accurate method for Ab complexes. BindProfX, 

438 FoldX, JayZ, EasyE, and iSEE have low r and ⍴c indicating that affinities estimated using these 

439 methods do not correlate well with experimental ΔΔG values using a linear transformation. Also, 
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440 the τ and ⍴ were lower compared to MD+FoldX, indicating these methods do poorly at calculating 

441 a rank order that matches experimental data. 

442

443 The ROC curves allow us to determine each method’s ability to classify mutations as either 

444 destabilizing or neutral/stabilizing (Figures 3 and 5). For non-Ab complexes, JayZ (0.84 AUC) 

445 and EasyE (0.83 AUC) have the best true positive rate followed by DCOMPLEX (0.82 AUC). For 

446 Ab complexes, JayZ (0.97 AUC) and EasyE (0.98 AUC) have better true positive rates than 

447 MD+FoldX, the method with the highest r value. If classification of destabilizing vs stabilizing is 

448 the primary need, then JayZ or EasyE are both recommended over the other methods tested here 

449 due to their high accuracy and fast runtime. 

450

451 While accuracy is generally the main reason for choosing a particular method, computational 

452 efficiency is also an important consideration, especially when predicting the effects of a large 

453 number of mutations. Here, we discuss the performance of each method in terms of its trade-off 

454 between speed and accuracy for predicting ΔΔG values. For all single mutations and our non-Ab 

455 subset, EasyE and JayZ performed well; JayZ is the faster method of the two with EasyE at a 

456 similar speed to FoldX. DCOMPLEX is more accurate than FoldX for all single mutations and has 

457 similar accuracy as FoldX for non-Ab mutations, but at much lower cost. MD+FoldX has similar 

458 accuracy to DCOMPLEX for all single mutations and has similar accuracy to FoldX in non-Ab 

459 mutations but is by far the most computationally expensive method we tested. Although a 

460 synergistic combination of BPX+FoldX implements several structural and physico-chemical 

461 interaction terms in its algorithm, computation time was longer than all but MD+FoldX without a 

462 concomitant improvement in r. We note that this method is perhaps the most accessible of those 
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463 tested, due to the easy-to-use online server interface and accuracy that is similar to FoldX for most 

464 systems. BindProfX utilizes the same scoring profile as BPX+FoldX without the FoldX 

465 calculations. In this case, accuracy decreased while calculation speed remained similar to 

466 BPX+FoldX. iSEE, the least correlating method, employs the widest variety of information to 

467 obtain relative binding affinity predictions and is the fastest of all methods (not including the non-

468 trivial preparation time). For Ab complexes, MD+FoldX, the slowest of all the methods, had the 

469 highest accuracy, followed by DCOMPLEX. iSEE is again the fastest of all methods but also the 

470 least accurate. BindProfX utilizes several pre-calculated physico-chemical structural data in its 

471 scoring function while, JayZ and EasyE each layer an additional predictive calculating feature on 

472 top of Rosetta’s backbone sampling, adding complexity to the predictive algorithms. However, all 

473 three have similar r yet they do not achieve the accuracy of MD+FoldX. Overall, for non-Ab 

474 complexes, EasyE and JayZ appear to have the best balance between speed and accuracy of the 

475 methods we tested. For Ab complexes, DCOMPLEX appears to have the best balance.

476

477 We have demonstrated that all the tested methods have specific strengths and weaknesses; some 

478 perform better in specific contexts (Table 4), and some have longer runtimes to obtain similar 

479 predictive power to comparably faster methods. This highlights the complexity of the physico-

480 chemical properties and structural features that drive, and limit, these predictive models. Our 

481 results can be used to make informed decisions for methods that may be preferable for a particular 

482 study or system. Table 4 suggests that if the goal is to estimate only the order of magnitude or sign 

483 of relative binding affinities, then the preferred method will likely be very different than if the goal 

484 is to obtain the best possible accuracy for antibody-antigen systems. To improve accessibility, we 

485 have generated an in-house Python script (provided in the supplement with the full dataset used in 
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486 this work) that can be used to parse any of the parameters used in this study and provide tailored 

487 information. This information in combination with the runtime and other details provided in this 

488 study can be used to inform users on methods that can provide the best accuracy and efficiency for 

489 a given protein-protein complex type, set of physico-chemical features or structural parameters, 

490 and set of mutations. Additionally, the script can be extended to other methods and feature-sets, 

491 potentially elucidating specific problems or areas of improvement to existing and future methods. 

492

493

494

495

496

497

498

499

500

501

502

503

504

505
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507 Conclusions

508 In this study, we have assessed the accuracy and efficiency of eight computational methods on 

509 predicting binding affinity changes due to single amino acid mutations. Methods were tested on 

510 16 different protein complexes: eight antigen-antibody (Ab) and eight non-antigen-antibody (Non-

511 Ab) complexes. While some methods perform consistently better than others, how well each 

512 performs depends on the physico-chemical and structural components of each complex. EasyE 

513 was the most accurate for non-Ab complexes, and MD+FoldX was most accurate for Ab 

514 complexes. JayZ and EasyE were better able to distinguish between destabilizing (ΔΔG > 0.5 

515 kcal/mol) and stabilizing (ΔΔG < -0.5 kcal/mol) as compared to any other method. Future work 

516 could include more systems or different methods, including those that are solely web server-based 

517 in order to expand and better refine our conclusions on their predictive capability.

518
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680 Supporting information captions
681
682 S1 File. A word document with detailed protocols for calculating ΔΔG values using each of 
683 the eight methods used in this study.
684
685 S2 File. An in-house Python script that can be used to parse any of the parameters used in 
686 this study and provide tailored information. 
687
688 S3 File. A CSV file with full dataset used in this work and predicted ΔΔG values for each 
689 mutation using eight methods.
690
691 S1 Figure. Performance of each evaluated method for Ab and non-Ab complexes in 
692 predicting true ΔΔG values (⍴c), linearly correlated ΔΔG values (r), and rank order (⍴ and τ) 
693 for a select subset of mutations that occur in beta sheet. The error for each method is reported 
694 under the correlation points.
695
696 S2 Figure. Performance of each evaluated method for Ab and non-Ab complexes in 
697 predicting true ΔΔG values (⍴c), linearly correlated ΔΔG values (r), and rank order (⍴ and τ) 
698 for a select subset of mutations that occur in alpha helix. The error for each method is reported 
699 under the correlation points.
700
701 S3 Figure. Performance of each evaluated method for Ab and non-Ab complexes in 
702 predicting true ΔΔG values (⍴c), linearly correlated ΔΔG values (r), and rank order (⍴ and τ) 
703 for a select subset of mutations with wild type amino acids that are either glycine or proline. 
704 The error for each method is reported under the correlation points.
705
706 S4 Figure. Performance of each evaluated method for Ab and non-Ab complexes in 
707 predicting true ΔΔG values (⍴c), linearly correlated ΔΔG values (r), and rank order (⍴ and τ) 
708 for a select subset of mutations with wild type amino acids that are neither glycine nor 
709 proline. The error for each method is reported under the correlation points.
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