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ABSTRACT

Unsupervised cell clustering is important in discovering cell diversity and subpopulations. Single-
cell clustering using gene expression profiles is known to show different results depending on
the method of expression quantification; nevertheless, most single-cell clustering methods do not
consider the method.
In this article, we propose a robust and highly accurate clustering method using joint non-negative
matrix factorization (joint NMF) based on multiple gene expression profiles quantified using
different methods. Matrix factorization is an excellent method for dimension reduction and feature
extraction of data. In particular, NMF approximates the data matrix as the product of two matrices
in which all factors are non-negative. Our joint NMF can extract common factors among multiple
gene expression profiles by applying each NMF to them under the constraint that one of the
factorized matrices is shared among the multiple NMFs. The joint NMF determines more robust
and accurate cell clustering results by leveraging multiple quantification methods compared to the
conventional clustering methods, which uses only a single quantification method. In conclusion, our
study showed that our clustering method using multiple gene expression profiles is more accurate
than other popular methods.

1 Introduction

Single-cell gene expression analysis measures gene expression on a cell-by-cell basis and analyses the functions and
properties of the cell using this information. The gene expression levels measured for each cell are recorded as a
matrix called the "gene expression profile". Unsupervised cell clustering using gene expression profiles is one of the
fundamental single-cell gene expression analyses. It is a useful method for the classification and identification of
unknown cell groups and for discovering the diversity and subpopulation of known cell types.
One of the objectives of single-cell analysis is to identify cell types by applying clustering and to extract a group of
characteristic genes for a specific cell type as marker genes. However, single-cell analysis involves some differences
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(e.g., different gene expression values derived from different phases in the cell cycle and errors in measurement such
as missing values) among cells, even if those cells were the same cell type. Therefore, conventional cell clustering is
unsuitable for single-cell analysis. Additionally, the gene expression profile matrix often has a large number of rows
and columns (cells and genes); thus, cell clustering requires feature selection or dimension reduction of the data. For
these reasons, we need a robust and data-driven clustering method for features that reflect individual cell biases.
SC3 ([1]) and Seurat ([2]) are useful data-driven analysis tools for single cells. SC3 is a clustering method using an
ensemble of multiple analysis results by PCA and k-means. Seurat is a method to analyze single cells, and Louvain
clustering is used in the cell clustering. Matrix factorization, as a method of unsupervised learning, is another efficient
method for cell clustering and is excellent in data dimension reduction or the extraction of latent features. In particular,
non-negative matrix factorization (NMF) ([3]) is a suitable method for the dimension reduction to extract the features
of gene expression profiles because NMF interprets the data as a superposition of the gene functions and cell character-
istics. NMF factorizes a matrix into multiple matrices (basis and coefficients) under the constraint that all elements are
non-negative, the product of those matrices constructs an approximate matrix of the input matrix. NMF is applied to
various real data because of its non-negative feature and has been adapted to microarray data for clustering or feature
extraction ([4]; [5]; [6]; [7]; [8]). We can analyse more details of genes and cells (e.g., finding marker genes and
performing unsupervised cell clustering) with the feature matrices extracted by performing NMF.
Single-cell analysis is a series of procedures that consists of a number of methods. Multivariate analysis such as clus-
tering needs quantification of gene expression, which converts the output of the sequencer into gene expression counts.
Quantification is a critical factor for the subsequent analysis. Different quantification methods make the different quan-
tified gene expression counts even when the same RNA-Seq reads are used. The greatest difference in quantification
methods is whether the method is based on the genome references or transcriptome indices. For example, in methods
based on the references, RNA-Seq reads are mapped to a reference genome using genome mapping tools such as
Bowtie2 ([9]) and STAR([10]). Then, the gene expression counts are obtained from the results using expression esti-
mation tools such as RSEM([11]) and Cufflinks([12]). In contrast, alignment-free quantification tools such as Salmon
and kallisto quantify gene expression counts from RNA-Seq reads without mapping to a genome reference. To date,
many methods for quantifying gene expression from RNA-Seq reads have been proposed; however, a consensus has
not yet been reached on the best quantification method for all data ([13]; [14]). Moreover, since each quantification
method has different measurable genes, the conventional analysis methods for cell clustering using gene expression
quantified by only one method are strongly biased.
We usually observe that different quantification pipelines produce similar but different gene expression profiles even
when we apply them to the same RNA-Seq reads. Since the cells included in the data are exactly the same, it is de-
sirable to decompose the features with biases depend on each quantification method and the common factors for cell
clustering. Our technical challenge is that how we can integrate the different quantification method. In this article, we
propose SC-JNMF, a novel unsupervised clustering method using NMF to consider the differences of quantification
methods and extract the common factors over multiple gene expression profiles. Our method achieved highly accurate
cell clustering compared to other popular methods and showed usefulness for finding marker genes.

2 Methods

2.1 Outline of SC-JNMF

Gene expression profiles generated with different methods have different genes and expression values due to the bi-
ases of the methods, even if the profiles are generated from the same RNA-Seq reads. However, the information about
genes and cells common to these profiles should be the same because of the shared origin. Furthermore, the results of
cell clustering using these gene expression profiles should be the same. That is, in gene expression profiles generated
from the same RNA-Seq reads by different methods, different features derived from the difference in methods and
shared features derived from the original RNA-Seq reads should be extracted.
We proposed SC-JNMF, a method that extracts latent features from different gene expression profiles at the same time
by using joint NMF, which can express matrix data as the product of lower-dimensional matrices, one of which is
shared. SC-JNMF extracts the latent features in different gene expression profiles by a similar approach to NMF and
uses them for cell clustering and gene analysis.
We show the outline of our method in Fig 1. We created two different gene expression profiles by different quantifica-
tion methods from the same RNA-Seq reads. Then, we extracted the common factor using jointed NMF and extended
it to perform multiple NMFs in parallel with two different basis factors W1,W2(derived from the different methods)
and shared factors H (derived from the original RNA-Seq reads). Finally, we perform cell clustering by using these
extracted features and any appropriate clustering methods, such as hierarchical clustering.
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2.2 Joint non-negative matrix factorization

We consider the given data as a non-negative matrix D ∈ R
N×M
+ . Non-negative matrix factorization finds the basis

matrix W ∈ R
N×k
+ and coefficient matrix H ∈ R

k×M
+ , where all the elements are non-negative, so that these matrix

product approximate the input data matrix.

D ≈ WH (1)

NMF minimizes the distance between matrix D and matrix WH . Here, we consider the distance as the Euclidean
norm. Thus, the objective function that NMF minimizes is as follows:

min
W ,H≥0

L := ‖D −WH‖2F (2)

Here, we consider a simultaneous matrix factorization of two matrices using NMF. Given the two input data as non-
negative matrices D1 ∈ R

N1×M
+ and D2 ∈ R

N2×k
+ , joint NMF finds the basis matrices W1 ∈ R

N1×M
+ ,W2 ∈

R
N2×k
+ corresponding to each approximated input matrix and the common coefficient matrix H ∈ R

k×M
+ , minimizing

the distances between the given matrices and the approximated matrices. In our proposed method, we add the L1
norm constraint to this objective function so that the factorized matrix is sparse. Thus, SC-JNMF finds the matrix
W1,W2,H that minimizes the following objective function

min
W1,W2,H,λi≥0

L :=‖D1 −W1H‖2F + λ1‖D2 −W2H‖2F
+ λ2‖W1‖+ λ3‖W2‖+ λ4‖H‖

(3)

where, λi(i = 1, ..., 4) are regularization parameters.
By applying Jensen’s inequalities to the first and second terms of the objective function, the function to be minimized
can be rewritten as follows.

min
A,Hi,P,λj≥0

L :=
∑

i,j

(

|Di,j
1 |2 − 2Di,j

1

∑

k

W
i,k
1 Hk,j +

∑

k

(W i,k
1 )2(Hk,j)2

ci,j,k1

)

+ λ1

∑

i,j

(

|Di,j
2 |2 − 2Di,j

2

∑

k

W
i,k
2 Hk,j +

∑

k

(W i,k
2 )2(Hk,j)2

ci,j,k2

)

+ λ2‖W1‖+ λ3‖W2‖+ λ4‖H‖

(4)

where,

ci,j,k1 =
W

i,k
1

H
k,j

∑
k′ W

i,k′

1
Hk′,j

(5)

ci,j,k2 =
W

i,k
2

H
k,j

∑
k′ W

i,k′

2
Hk′,j

(6)

We find the each element of W1,W2 andH that minimizes the objective function by performing partial differentiation
for them. Thus, the variable updates become

W1 = W1

D1H − λ2/2

HW1H + λ2W1

(7)

W2 = W2

λ1D2H − λ3/2

λ1HW2H + λ3W2

(8)

H = H
D1W1 + λ1D2W2 − λ4/2

W1W1H + λ1W2W2H + λ4H
(9)

2.3 Applications

2.3.1 Cell clustering

The extracted matrices can be used to perform highly accurate clustering. In our proposed method, we used hierarchical
clustering (Ward’s method), which is one of the typical unsupervised clustering methods used for cell clustering. In
this study, the adjusted Rand index (ARI) is used to evaluate the performance of clustering.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.319921doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319921


A PREPRINT - SEPTEMBER 30, 2020

Given an n object set S = {O1, ..., On}, and suppose U = {u1, ..., uR} and V = {v1, ..., vC} represent two different
partitions of S. The Rand index is defined by the following formula:

RI =

∑

ij

(

nij

2

)

(

n
2

) (10)

where, nij = |Si ∩ Vj |,
(

nij

2

)

is binomial coefficient calculated as nij(nij − 1)/2.
The Rand index calculates the ratio of the total of

i) the number of pairs are placed in the same class in U and the same class in V

ii) the number of pairs are placed in the different classes in U and in different classes in V

to the total number of pairs in set S.
In addition, the ARI considers the results of random clustering. The ARI is defined by the following formula:

ARI =

∑

ij

(

nij

2

)

−∑i

(

ni·

2

)
∑

j

(

n·j

2

)

/
(

n
2

)

(

n
2

)

−
∑

i

(

ni·

2

)
∑

j

(

n·j

2

)

/
(

n
2

) (11)

where, ni· =
∑

j nij , n·j =
∑

i nij .

2.3.2 Parameters estimation

NMF is evaluated based on the value of the objective function to be minimized (the difference between the original
matrix and the reconstructed matrix). However, the optimization problem of NMF is NP-hard, and only its convergence
in minimizing the objective function is guaranteed ([15]). Therefore, there are several different local minima that can
be obtained by NMF. To mitigate these problems, the factor’s sparseness in NMF is an important property in that it is
a sufficient condition for the uniqueness of the solution, and we consider the sparseness of the factor in the evaluation
of the proposed method and in the choice of parameters. In this study, the sparseness of the matrixX ∈ R

k×M

+ is
formulated as proposed by Hoyer([16]).

sp(X) =
∑

m

sp(x·m)

=
∑

m

√
K − (

∑

k |xkm|)/
√

∑

k x
2
km√

K − 1
(12)

where, K is the rank of X .

2.3.3 Gene analysis

Our proposed method can perform not only cell clustering but also gene analysis by using the extracted features. The
factors in the coefficient matrix that show higher values in specific clusters than in other clusters indicate latent features
of the cluster. Therefore, the same factors in the basis matrices also show latent features of the cluster, and the genes
that show higher values in the basis matrices reflect characteristic features of the cluster, in other words, marker genes.

3 Results

To assess the accuracy of our method, we performed cell clustering with 4 datasets. In this clustering, we estimated the
optimal parameters (the number of ranks in matrix factorization) using the trade-off relationship between sparseness
and loss. Additionally, we analysed more details of the factorized matrices by showing the relevance to marker genes.

3.1 Dataset

We used 4 different mouse/human single-cell datasets (Table 1). including RNA-Seq reads and the quantified gene
expression levels measured by each method in previous studies. In addition, we newly quantified the gene expression
levels in each cell from the RNA-Seq reads using Salmon(v1.0.0) and GENCODE (Mouse Release 21/ Human Release
32). In advance, we removed any cell types that were unclear in previous studies.
As preprocessing before performing joint matrix factorization, we applied a gene filter to the input data, as in the SC3
method ([1]), and then log2 transformed the data. Finally, we normalized the data so that the sum of each gene L1

norm was 1.
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3.2 Rank estimation using loss and sparseness

There has been much discussion on the estimation of rank number in NMF; however, no consensus has been reached
yet. In addition, our method has another hyperparameter, the regularization parameter on the term of L1 norm. Re-
garding the optimization of NMF, the lower loss and the higher sparseness(L1/L2) is better. Fig 2 shows the transition
of ARI, sparseness, and loss with different ranks in joint NMF for all datasets. In general, the loss decreases and
the sparseness increases as the rank increases. Therefore, the rank number that stops the decrease in loss or increase
in sparseness is optimal because the factorized matrices with larger rank number include the information that is not
necessary to represent the principal features of the input matrix. In this experiment, the Treutlein and Pollen datasets
show the rank number that stops the increase in sparseness (4-6 in the Treutlein dataset, 7-9 in the Pollen dataset, 15-30
in the Xin dataset); however, the Segerstolpe dataset showed only a monotonic transition of sparseness and loss. We
also ran the with different λ4 (the regularization parameter for the term on sparseness of matrix H). The differences in
sparseness were confirmed in the Treutlein and Pollen datasets, while the Segerstolpe and Xin datasets showed almost
the same sparseness in each rank.

3.3 The accuracy of cell clustering

We compared the accuracy of cell clustering using our proposed method to that obtained using other major unsuper-
vised clustering methods. LSNMF : One of the NMF methods using the projected gradient method by ([17]). SC3 :
The clustering method using the results of an ensemble of multiple analyses by PCA and k-means proposed by ([1]).
Seurat : The method to analyse single cells proposed by ([2]). For cell clustering, this tool mainly uses Louvain clus-
tering.
Fig 3 shows the ARI score of the original (quantified in a previous study) and alternative (quantified using Salmon) data
for each clustering method. In the LSNMF method, as in joint NMF, classification by hierarchical clustering was per-
formed using a matrix of features of the cells. For LSNMF and SC3, each run was performed 10 times considering the
efficiency of the initial value, and for Seurat, we plotted the highest ARI score in the runs as the resolution parameter
was increased from 0 to 1 in steps of 0.1. For our proposed method, we performed 10 runs. Each run consists of 10 runs
and extracts an ARI score with the top combined rank in terms of sparseness and loss (the top ranking of sparseness
is minimum and the top ranking of loss is maximum). The rank number was determined as follows: Treutlein:k = 5,
Pollen:k = 8, Segerstolpe:k = 25, Xin:k = 16, according to the results of our experiment described in the next
section. In addition, we determined the regularization parameter λ1 = |geneset1|/|geneset2|, λ2 = 0, λ3 = 0. For
these datasets, λ2 and λ3 did not have a good influence on the clustering; in other words, the regularization terms of
|W1|, |W2| were excessively strong constraints. We ran a two-way experiment with λ4 = 1, λ4 = 10. Hierarchical
clustering cannot determine the number of clusters; therefore, we set the same number reported in previous studies in
advance.
In the Pollen and Xin datasets, our proposed method performed accurate cell clustering. On the other hand, in the
Treutlein and Segerstolpe datasets, the ARI score of the proposed method was higher than that of LSNMF but not the
highest score. Resulting clusters of our method is stable compared to conventional NMF method.

3.4 Gene analysis using factorized matrix

We found marker genes of the Xin dataset with the factorized matrices. The Xin dataset has data on 1492 single cells
and 4 classes (alpha, beta, delta, PP) in the pancreas. We show the results in Fig 4. The factor of the coefficient matrix
shows some characteristic patterns in each cell cluster Fig 4A. Some factors show marked features for the cell groups
(e.g. factor 2 and factor 5 show higher values in delta and PP cells). Next, we calculated the correlation of factors
between the basis matrices in the common genes (Fig 4B). The factors in the basis matrices showed similar features.
We also show the values of marked factors for delta cells in the coefficient matrix in 4C. Almost all genes showed
similar factor values between base1 and base2; however, we confirmed that some of the genes observed in either gene
expression profile also had high values. We also show the marker genes of delta cells in this dataset (Fig 4D) in the
scatter plot. The factor values of these genes tend higher than others regardless of whether the gene is observed in
both gene expression profiles or only ether one.

4 Discussion

Conventional clustering methods have hyperparameters that we have to decide intuitively, and the NMF method also
needs to determine the rank number. Previous studies analysed gene expression data using NMF and defined the rank
number based on the number of cell clusters. However, this approach is not optimal for extracting the latent feature
from given data. We defined the criteria for "good factorization" as the minimum loss and maximum sparseness. We
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provided a method to decide the hyperparameters of our method (the rank of factor matrices and the regularization
parameter) considering increasing sparseness and decreasing loss. However, the optimal number of ranks for the
Segerstolpe dataset is not obtained by deciding based on sparseness and loss. The optimal rank is not always clear
depending on the dataset even with our provided method, so more reliable rank estimation that is applicable to all data
sets is necessary.

Thus far, we showed the possibility that our unsupervised clustering method has high accuracy with using the
differences in gene expression quantification methods. In comparison with previous studies, our proposed method
showed highly accurate clustering results. However, the proposed method showed worse accuracy than SC3 in the
original Treutlein datasets and Seurat in the original Segerstolpe datasets, and showed the differences in accuracy due
to the differences in regularization parameters in the Pollen dataset. The Treutlein and Pollen datasets have fewer
cells than the others, which is one of the most important features in our experiments. Dataset size is an important
factor (common to machine learning approaches) in high accuracy, and this characteristic also applies to our method.

We presented more details about the factors of the factorized matrix and the relationships of marker genes. The
coefficient matrix had characteristic factors in each cell cluster, and both basis matrices had similar factors between
the matrices. The marker genes of a cell cluster have high values of the factor in the basis matrices that characterize
a specific cell cluster in the coefficient matrix, regardless of observation in both gene expression profiles or only one;
in other words, the factor values in the basis matrices that characterize a specific cell cluster in the coefficient matrix
are related to the marker genes for the cluster. This result suggested that the genes showing high values in the basis
matrices probably have some important features of the cluster with high values in the coefficient matrix. In particular,
we should pay particular attention to those genes observed only in either gene expression profile because they are not
considered in conventional methods.

5 Conclusion

We proposed SC-JNMF, which performs cell clustering using common factors extracted from multiple gene expression
profiles quantified by different methods. As a result, it is possible to perform robust analysis compared with the case
in which only a single quantification method is used because it is unnecessary to consider the differences in gene
expression profiles obtained from different profiles. The accuracy (ARI) of cell clustering obtained using our method
was higher than that of other major clustering methods. We also showed the transition of loss, sparseness and ARI in
each rank, and the results suggested that the number of ranks in our method that stops the increase in sparseness tends
to show the best ARI score. In addition, we showed the details of the extracted features with our method. The genes
characteristic of specific cell groups (marker genes) showed remarkable values in the factors of factorized matrices; in
other words, these results suggested a potential for identifying important genes in the dataset. Some genes may not be
counted depending on the methods to use; they can be detected by our method if they are potential markers.
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Figure 1: A workflow of SC-JNMF. ( i ) Make multiple gene expression profiles using different quantification method.
(ii) Extract the common factor among these gene expression profiles from the same RNA-Seq reads. (iii) Cell cluster-
ing using hierarchical clustering with extracted common factor.

Table 1: Dataset and quantification method in previous studies.

Dataset Treutlein Pollen Segerstolpe Xin

Tissue/process Lung epithelium Brain Pancrease Pancrease

Quantification TopHat v2.0.8, Cufflinks v2.0.2 RSEM v1.2.4, TopHat v2.0.4
STAR v2.3.0e,
rpkmforgenes

CLC Bio Genomics Workbench
v7.0

Reference mm10 hg19 hg19 GRCh37
The number of cells 80 259 2166 1492
The number of classes 5 10 12 4
Citation [18] [19] [20] [21]
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Figure 2: Loss and Sparseness of matrix H in each ranks. we ran the experiment in two way with different regulariza-
tion parameters (λ4 = 1 and λ4 = 10).
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Figure 3: The accuracy (ARI) of cell clustering in each method. For comparison methods, we performed experiment
with original gene expression profile (quantified in the previous research) and alternative gene expression profile
(quantified using Salmon). For our proposed method, we ran the experiment in two way with different regularization
parameters (λ4 = 1 and λ4 = 10).
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Figure 4: Gene analysis using our method in Xin dataset. (A) A heatmap of our coefficient matrix. (B) The correlation
of the factor values in genes common to basis matrix1 and basis matrix2. (C) The "factor 2" values of each genes
in base1 and base2. (D) Marker genes (differentially expressed genes) of delta cell in Original and Alternative gene
expression profile detected by Scanpy. The score means the z-score underlying the computation of a p-value for each
gene for delta cell.
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