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Single-cell expression profiling is destructive, giving rise to only
static snapshots of cellular states. This loss of temporal informa-
tion presents significant challenges in inferring dynamics from
population data. Here we provide a formal analysis of the extent
to which dynamic variability from within individual systems
(“intrinsic noise") is distinguishable from variability across the
population (“extrinsic noise"). Our results mathematically for-
malise observations that it is impossible to identify these sources
of variability from the transcript abundance distribution alone.
Notably, we find that systems subject to population variation
invariably inflate the apparent degree of burstiness of the un-
derlying process. Such identifiability problems can be remedied
by the dual-reporter method, which separates the total gene ex-
pression noise into intrinsic and extrinsic contributions. This
noise decomposition, however, requires strictly independent and
identical gene reporters integrated into the same cell, which can
be difficult to implement experimentally in many systems. Here
we demonstrate mathematically that, in some cases, the same
noise decomposition can be achieved at the transcriptional level
with non-identical and not-necessarily independent reporters.
We use our result to show that generic reporters lying in the
same biochemical pathways (e.g. mRNA and protein) can re-
place dual reporters, enabling the noise decomposition to be ob-
tained from only a single gene. Stochastic simulations are used
to support our theory, and show that our “pathway-reporter"
method compares favourably to the dual-reporter method.
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Introduction
Noise is a fundamental aspect of every biochemical net-
work, and has integral functional roles in many cellular pro-
cesses (1). Accurate prediction and understanding of these
processes is therefore only possible through understanding
their stochasticity. Noise arising in gene expression has ar-
guably attracted most of the attention so far. Generally speak-
ing, gene expression noise is separable into two sources of
variability, as pioneered by Swain et al. (2). Intrinsic noise
is generated by the dynamics of the gene expression process
itself. The process, however, is often influenced by other ex-
ternal factors, such as the availability of promoters and of
RNA polymerase, the influence of long noncoding RNA as
a transcriptional regulator (3), as well as differences in the
cellular environment. Such sources of variability contribute
extrinsic noise, and reflect the variation in gene expression
and transcription activity across the cell population. As such,
understanding extrinsic noise lies at the heart of understand-
ing cell-population heterogeneity.

So far, elucidating the sources of gene expression noise
from transcriptomic measurements alone has proven diffi-
cult (4, 5). The fundamental hindrance lies in the fact that
single-cell RNA sequencing is destructive, so that datasets
reflect samples from across a population, rather than samples
taken repeatedly from the same cell. As temporal informa-
tion is lost in such measurements (6), it may be impossible to
distinguish temporal variability within individual cells (e.g.
burstiness), from ensemble variability across the population
(i.e. extrinsic noise). A number of numerical and experi-
mental studies have suggested this confounding effect (7–9),
showing that systems with intrinsic noise alone exhibit be-
haviour that is indistinguishable from systems with both ex-
trinsic and intrinsic noise. This is examined more formally
in (10), where it shown that the moment scaling behaviour
and transcript distribution may be indistinguishable from sit-
uations with purely intrinsic noise. The limitations in infer-
ring dynamics from population data are becoming increas-
ingly evident, and a number of studies that seek to address
some of these problems have emerged (11, 12) .
Here we provide a significantly more detailed analysis of the
extent to which sources of variability are identifiable from
population data. We demonstrate mathematically that it is in
general impossible to identify the sources of variability, and
consequently, the underlying transcription dynamics, from
the observed transcript abundance distribution alone. Sys-
tems with intrinsic noise alone can always present identically
to similar systems with extrinsic noise, and moreover, extrin-
sic noise is shown to invariably distort the apparent degree
of burstiness of the underlying system. This has important
ramifications for parameter inference, and highlights the re-
quirement for additional information, beyond the observed
copy number distribution, in order to constrain the space of
possible dynamics that could give rise to the same distribu-
tion.
This seemingly intractable problem can at least partially be
resolved with a brilliantly simple approach: the dual-reporter
method (2). In this approach, noise can be separated into ex-
trinsic and intrinsic components, by observing correlations
between the expression of two independent, but identically
distributed fluorescent reporter genes. Dual-reporter assays
have been employed experimentally to study the noise con-
tributed by both global and gene-specific effects (13–15). A
particular challenge, however, is that dual reporters are rarely
identically regulated (15, 16), and are not straightforward
to set up in many systems. More recently, there have been
some efforts in developing alternative methods for decom-
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Fig. 1. Modelling the effects of both intrinsic and extrinsic noise. (A) A schematic of the Telegraph process, with nodesA (active) and I (inactive) representing the state of the
gene. Transitions between the states A and I occur stochastically at rates µ and λ, respectively. The parameter K is the mRNA transcription rate, and δ is the degradation
rate. (B) The compound model incorporates extrinsic noise by assuming that parameters θ of the Telegraph model vary across an ensemble of cells, according to some
probability distribution f(θ;η). (C) Variation in the parameters across the cell population leads to greater variability in the mRNA copy number distribution.

posing noise (16, 17). Here we develop a direct generalisa-
tion of the original contribution of (2), that enables an analo-
gous noise decomposition to be obtained from non-identical
and not-necessarily independent reporters. Our result shows
that measurements taken from the same biochemical pathway
(e.g. mRNA and protein) can replace dual reporters, enabling
the noise decomposition to be obtained from a single gene.
This completely circumvents the requirement of strictly inde-
pendent and identically regulated reporter genes. The results
obtained from our “pathway-reporter” method are also borne
out by stochastic simulations, and compare favourably with
the dual-reporter method. In the case of constitutive expres-
sion, the results obtained from our decomposition are identi-
cal to those obtained via dual reporters. For bursty systems,
we show that our approach provides a satisfactorily close ap-
proximation, except in extreme cases.

Modelling Intrinsic and Extrinsic Noise
A simple model of stochastic mRNA dynamics is the Tele-
graph model: a two-state model describing promoter switch-
ing, transcription, and mRNA degradation. In this model, all
parameters are fixed, and gene expression variability arises
due to the inherent stochasticity of the transcription process.
As discussed above, this process will often be influenced by
extrinsic sources of variability, and so modifications to ac-
count for this additional source of variability are required.

The Telegraph Model. The Telegraph model was first in-
troduced in (18), and since then has been widely employed in
the literature to model bursty gene expression in eukaryotic
cells (19–22). In this model, the gene switches probabilis-
tically between an active state and an inactive state, at rates
λ (on-rate) and µ (off-rate), respectively. In the active state,
mRNA are synthesized according to a Poisson process with
rate K, while in the inactive state, transcription does not oc-
cur, or possibly occurs at some lower Poisson rate K0�K.
Degradation of RNA molecules occurs independently of the
gene promotor state at rate δ. A schematic of the Telegraph
model is given in Fig. 1A. Throughout the paper, we will
assume that all parameters of the Telegraph model are nor-

malised by the mRNA degradation rate so that δ = 1. The
steady-state distribution of mRNA copy number can be ex-
plicitly described as (23):

p̃T (n;θ) = Knλ(n)

n!(µ+λ)(n) 1F1(λ+n,λ+µ+n,−K). (1)

Here θ denotes the parameter vector (µ,λ,K,δ), the function
1F1 is the confluent hypergeometric function (24), and, for
real number x and positive integer n, the notation x(n) abbre-
viates the rising factorial of x (also known as the Pochham-
mer function). Throughout, we will refer to the probability
mass function p̃T (n;θ) as the Telegraph distribution with pa-
rameters θ.
One limiting case of the Telegraph model is constitutive gene
expression, which arises when the off-rate µ is 0, so that the
gene remains permanently in the active state. In this case,
the Telegraph distribution simplifies to a Poisson distribution
with rate equal to K; that is, Pois(K).
At the opposite extreme is instantaneously bursty gene ex-
pression in which mRNA are produced in very short bursts
with periods of inactivity in between. This mode of gene ex-
pression has been frequently reported experimentally, partic-
ularly in mammalian genes (15, 19, 21, 22). Transcriptional
bursting may be treated as a limit of the Telegraph model,
where the off-rate µ has tended toward infinity, while the on-
rate λ remains fixed. In this limit, it can be shown (7, 10) that
the Telegraph distribution converges to the negative binomial
distribution NegBin(λ, K

µ+K ).

The Compound Distribution. We account for random cell-
to-cell variation across a population by way of a compound
distribution (25)

q̃(n;η) =
∫
p̃(n;θ)f(θ;η)dθ, (2)

where p̃(n;θ) is the stationary probability distribution of a
system with fixed parameters θ and f(θ;η) denotes the mul-
tivariate distribution for θ with hyperparameters η. Often we
will take p̃(n;θ) to be the stationary probability distribution
of the Telegraph model (Eq. (1)), and refer to Eq. (2) as the
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Copy number distribution q̃(n;η) Underlying distribution p̃(n;θ) Noise distribution f(θ;η)
Tele(λ,µ′,K′) Tele(λ,µ,K) K ∼ BetaK′(λ+µ,µ′−µ)
Tele(λ,µ′,K′) Pois(K) K ∼ BetaK′(λ,µ′)

NegBin(λ, β
β+1 ) Tele(λ,µ,K) K ∼Gamma(λ+µ,β)

NegBin(λ, β
β+1 ) Pois(K) K ∼Gamma(λ,β)

NegBin(λ′, c
c+1 ) NegBin(λ, α

α+1 ) α∼ BetaPrimec(λ−λ′,λ′)

Table 1. Summary of the non-identifiability results. The results given in lines 1, 3 and 5 are our contributions, while the remaining representations (lines 2 and 4) are known
and can be obtained as special cases of our results. Note that here we use Tele(λ,µ,K) to denote a Telegraph distribution with parameters λ,µ,K. In lines 3 and 4, the
parameter β > 0 can be chosen freely and determines the mean burst intensity in the resulting compound system. In line 5 the parameters c,α > 0 are again mean burst
intensities, and c can be chosen freely in the determination of the distribution of α.

compound Telegraph distribution. Sometimes p̃(n;θ) will be
the Poisson distribution or the negative binomial distribution,
depending on the underlying mode of gene activity.
The compound distribution is valid in the case of static envi-
ronmental heterogeneity, that is, static parameter values for
individual cells, but which vary across an ensemble of cells
according to the distribution f(θ;η). This model is also a
valid approximation for individual cells with dynamic param-
eters, provided these change sufficiently slower than the tran-
scriptional dynamics. Fig. 1B gives a pictorial representation
of the compound distribution.
In general, the compound Telegraph distribution q̃(n;η) will
be more dispersed than a Telegraph distribution to account for
the uncertainty in the parameters; see Fig. 1C. Such disper-
sion is widely observed experimentally, and as demonstrated
in (10) often reflects the presence of extrinsic noise.

Identifiability Considerations
Decoupling the effects of extrinsic noise from experimental
measurements has been notoriously challenging. In the con-
text of Eq. (2), the distribution f(θ;η) reflects the popula-
tion heterogeneity, but experimental data provides samples
only of q̃(n;η). How much can we deduce of the underlying
dynamics (that is, p̃(n;θ)), and the population heterogeneity
(f(θ;η)), from measurements of transcripts from across the
cell population (q̃(n;θ))?
Of course even though we may be able to infer the parame-
ter η from experimental data, the expression p̃(n;θ) is really
a family of distributions, parameterised by θ. This presents
two challenges. The first is the possibility that there are dif-
ferent families of distributions p̃(n;θ) that can yield the same
compound distribution q̃(n;η) by way of different noise dis-
tributions, f(θ;η). The second challenge is that, even for a
fixed family of distributions p̃(n;θ) it may be possible that
different choices of the noise distribution f(θ;η) could still
yield the same compound distribution q̃(n;η). In these situa-
tions, we cannot hope to infer a unique solution for the noise
distribution. This identifiability problem has important ram-
ifications for the interpretability of parameter estimates ob-
tained from experimental data. Indeed, if two or more model
parameterisations are observationally equivalent (in this case,
in the form of the transcript abundance distribution q̃(n;η)),
then not only does this cast doubt upon the suitability of the
model to represent (and subsequently predict) the system, but
also obstructs our ability to infer mechanistic insight from ex-

perimental data.
An example of the first identifiability problem arises from a
well-known example of a compound distribution. Referring
to Eq. (2), when f(θ;η) is the gamma distribution and p̃(n;θ)
is a Poisson distribution, corresponding to constitutive gene
expression, the resulting compound distribution q̃(n;η) is a
negative binomial distribution (26). But this is the same dis-
tribution as that arising from instantaneously bursty gene ex-
pression (10). Such identifiability instances may be circum-
vented if there is confidence in the basic mode of gene activ-
ity i.e., if there is reason to believe that a gene is not consti-
tutive, for example. We find, however, that there are numer-
ous instances that can present insurmountable identifiability
problems.

Bursty Gene Expression. We first observe that any Tele-
graph distribution with fixed parameters can identically be
obtained from a Telegraph distribution with parameter vari-
ation. As shown in the SI Appendix, Section 1.A, any Tele-
graph distribution p̃T (n;λ,µ′,K′) can be written as:

p̃T (n;λ,µ′,K′) =
∫ K′

0
p̃T (n;λ,µ,t)fK′(t;λ+µ,µ′−µ)dt,

(3)
where µ<µ′ and fK′(t;λ+µ,µ′−µ) is the probability den-
sity function for a scaled beta distribution BetaK(λ+µ,µ′−
µ) with support [0,K′]. Thus, any Telegraph distribution can
be obtained by varying the transcription rate parameter on
a narrower Telegraph distribution (i.e., with a smaller off-
rate) according to a scaled beta distribution. Fig. 2A (top
panel) compares the representation obtained in Eq. (3) with
the corresponding fixed-parameter Telegraph distribution for
two different sets of parameters.
When µ = 0 the representation given in Eq. (3) simplifies
to the well-known Poisson representation of the Telegraph
distribution in terms of the scaled beta distribution (27).

Instantaneously Bursty Gene Expression. The previous
result extends to instantaneously bursty systems. The copy
number distribution of an instantaneously bursty system can
be obtained from both bursty and instantaneously bursty sys-
tems, provided that there is appropriate parameter variation.
The SI Appendix, Section 1.B, contains the relevant deriva-
tions. In the following, we let p̃NB(n;r,β) denote the proba-
bility mass function of a NegBin(r, β

β+1 ) distribution, where
β > 0. Then for any negative binomial distribution of the
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Fig. 2. (A) Accuracy of our representations for the Telegraph and negative binomial distribution. For each of the results in Eq. (3)-(5), we compare the (fixed-parameter)
Telegraph and negative binomial distributions with their respective compound representations for two different sets of parameter values. The top panel (shown in pink) is
shows comparisons for Eq. (3). Referring to Table 1, the parameter values for the top panel are (left) λ= 2, µ′ = 12,K′ = 100, µ= 3, andK ∼BetaK′ (5,9), and (right)
λ = 1, µ′ = 20, K′ = 100, µ = 2 and K ∼ BetaK′ (3,18). The middle panel (green) gives comparisons for Eq. (4), with parameter values (left) λ = 10, β = 2, µ = 2
and K ∼ Gamma(12,2) and (right) λ = 1, β = 1, µ = 2 and K ∼ Gamma(3,1). The bottom panel (coral) gives comparisons for Eq. (5). The parameter values (left)
are λ′ = 10, λ = 15 and c = 2 and (right) are λ′ = 2, λ = 5 and c = 3. (B) The top figure compares a Telegraph(2,4,60) distribution with samples from a compound
Telegraph distribution with normal noise Norm(37,10) on the transcription rate parameter. The middle figure compares a NegBin(5,0.5) with samples from a compound
Telegraph distribution with normal noise Norm(5.5,2.3) on the transcription rate parameter. The bottom figure compares a NegBin(5,1) distribution with samples from a
compound negative binomial distribution with normal noise Norm(2.3,0.6) on the burst intensity parameter.

form NegBin(λ, β
β+1 ) we have,

p̃NB(n;λ,β) =
∫ ∞

0
p̃T (n;λ,µ,t)f(t;λ+µ,β)dt, (4)

where f(t;λ+µ,β) is the probability density function of a
Gamma(λ+µ,β) distribution. This generalises the afore-
mentioned well-known Poisson representation of the negative
binomial distribution (26), which corresponds to the particu-
lar case of µ = 0. In Fig. 2A (middle panel), we compare
the representation obtained in Eq. (4) with the corresponding
fixed-parameter negative binomial distribution for two differ-
ent sets of parameters.
We also have the following representation for a negative bino-
mial distribution in terms of a scaled beta prime distribution,

p̃NB(n;λ′, c) =
∫ ∞

1
c

p̃NB(n;λ,θ)fc(θc−1;λ−λ′,λ′)dθ

(5)
where fc(cθ− 1;λ−λ′,λ′) is the probability mass function
of a scaled beta prime BetaPrimec(λ− λ′,λ) distribution,
where c > 0 and λ > λ′. This equivalently corresponds to
scaled beta noise Betac(λ−λ′,λ′) on the inverse of the ex-
pected burst intensity. Thus, the distribution of any instan-
taneously bursty system with mean burst intensity c can be
obtained from one with greater burst frequency, by varying
the mean burst intensity θ according to a shifted beta prime

distribution. Fig. 2A (bottom panel), compares the represen-
tation obtained in Eq. (5) with the associated fixed-parameter
negative binomial distribution for two different sets of param-
eters.

An exception: constitutive expression. It has long been
known (28) that a compound Poisson distribution uniquely
determines the compounding distribution. In the context of
Eq. (2), this means the full extrinsic noise distribution f(θ,η)
is identifiable from q̃(n;η).

Implications for Parameter Inference. Estimates of ki-
netic parameters from experimental data suggest that gene
expression is often either bursty or instantaneously bursty
(i.e., µ� λ). In turn, the assumption that gene-inactivation
events occur far more frequently than gene-activation events
is often used to derive other models of stochastic mRNA dy-
namics (29–31). The representations given in Eq. (3)–(5),
however, show that both estimating parameters and the un-
derlying dynamics from the form of the copy number distri-
bution alone can be misleading. Noise on the transcription
rate will invariably produce copy number data that is sugges-
tive of a more bursty model. To illustrate this, consider an
example in which the underlying process is a (mildly) bursty
Telegraph system with distribution p̃T (n;2,3,K). Now as-
sume that noise on the transcription rate parameter K fol-
lows the scaled Beta distribution on the interval [0,100] with
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α=λ+µ= 2+3 = 5 and β=µ′−µ= 12−3 = 9. The shape
of this noise distribution closely resembles a slightly skewed
bell curve, with the majority of transcription rates between
around 10 and 60. This noise on the transcription rate K
within the Telegraph system p̃T (n;2,3,K) will present iden-
tically to the significantly burstier system p̃T (n;2,12,100).
We remark that while the non-identifiability results (sum-
marised in Table 1) are dependent on specific noise distri-
butions, for practical purposes any similar distribution will
produce a similar effect. To demonstrate this, we replaced the
various noise distributions required for the representations in
Eq. (3)–(5), with suitable normal distributions truncated at 0.
In each case, we sampled 1000 data points from the corre-
sponding compound distribution, and compared this with the
associated fixed-parameter copy number distribution. The re-
sults are shown in Fig. 2B. The truncated normal distribution
is not chosen on the basis of biological relevance, but rather
to demonstrate that even a symmetric noise distribution (ex-
cept for truncation at 0) produces qualitatively similar results
to the distributions used in the precise non-identifiability re-
sults. In every case, the effect of a unimodal noise distri-
bution on the transcription rate or burst intensity parameter
is to produce a copy number distributions that are generally
consistent with systems that appear burstier.

Resolving non-identifiability
The results of the previous section show that additional infor-
mation, beyond the observed copy number distribution, is re-
quired to constrain the space of possible dynamics that could
give rise to the same distribution. One way to narrow this
space of possibilities, is to determine the intrinsic and extrin-
sic contributions to the total variation in the system.

The Dual-Reporter Method. The total gene expression
noise, as measured by the squared coefficient of variation η2,
can be decomposed exactly into a sum of intrinsic and ex-
trinsic noise contributions (2). The decomposition applies to
dynamic noise (32), and generalises to higher moments in
(33). As shown in (32), the noise decomposition is equiva-
lent to the normalised Law of Total Variance (34). Indeed, if
X is the random variable denoting the number of molecules
of a certain species (eg. mRNA or protein) in a given cell,
then we can decompose the total noise by conditioning X
on the state Z = (Z1, . . . ,Zn) of the environmental variables
Z1,. . . ,Zn:

η2
X = E(Var(X;Z))

E(X)E(Y ) + Var(E(X;Z))
E(X)E(Y ) ≡ η

2
int +η2

ext. (6)

It has been shown (2, 32) that if X1 and X2 are random vari-
ables denoting the expression levels of independent and iden-
tically distributed gene reporters, then the extrinsic noise con-
tribution η2

ext in Eq. (6) can be identified by the normalised
covariance between X1 and X2:

η2
ext = Cov(X1,X2)

E(X1)E(X2) (7)

Decomposing Noise with Non-Identical Reporters. The
dual-reporter method requires distinguishable measurements
of transcripts or proteins from two independent and identi-
cally distributed reporter genes integrated into the same cell.
In practice however, dual reporters rarely have identical dy-
namics, which is widely considered to be a significant chal-
lenge to interpreting experimental results (16). We show that,
under certain conditions, the decomposition in Eq. (6) can al-
ternatively be obtained from non-identically distributed and
not-necessarily independent reporters.

Our result relies on the observation that the covariance of any
two variables can be decomposed into the expectation of a
conditional covariance and the covariance of two conditional
expectations (the Law of Total Covariance (34)). If X and Y
denote, for example, the numbers of molecules of two chem-
ical species (eg. mRNA and protein) in a given cell, then the
covariance of X and Y can be decomposed by conditioning
on the state Z = (Z1, . . . ,Zn) of the environmental variables
Z1,. . . ,Zn:

Cov(X,Y ) = E(Cov(X,Y ;Z))︸ ︷︷ ︸
intrinsic

+Cov(E(X;Z),E(Y ;Z))︸ ︷︷ ︸
extrinsic

.

(8)
We will see that, in many cases of interest, the random vari-
able E(X;Z) (as a function of Z) splits across common
variables with E(Y ;Z). By this we mean that E(X;Z) =
f(ZX)hX(Z′) and E(Y ;Z) = g(ZY )hY (Z′), where ZX are
the variables of Z that appear in E(X;Z) but not in E(Y ;Z),
and dually, ZY are those in E(Y ;Z) that are not in E(X;Z).
The variables Z′ are those variables from Z not in ZX ∪ZY .
In these cases, the component of Cov(X,Y ) that is con-
tributed by the variation in Z may be written as the covari-
ance of the functions hX(Z′) and hY (Z′). Conveniently, in
the cases of interest here, the two functions hX and hY co-
incide, and this is the form we use in the following decom-
position principle. The SI Appendix (Section 2) contains the
proof of this result.

The Noise Decomposition Principle (NDP). Assume that
there are measurable functions f , g and h such that E(X;Z)
and E(Y ;Z) split across common variables by way of
E(X;Z) = f(ZX)h(Z′) and E(Y ;Z) = g(ZY )h(Z′). Then
provided that the variablesZ1, . . . ,Zm are mutually indepen-
dent, the normalised covariance of E(X;Z) and E(Y ;Z) will
identify the total noise on h(Z′) (i.e. η2

h(Z′)).

As we show in the next section, there are many situations
where the random variable E(X;Z) is precisely the com-
mon part of E(Y ;Z) and E(X;Z) (i.e., h(Z′) = E(X;Z)),
and the normalised intrinsic contribution to the covariance is
either zero or is negligible. In these cases, the normalised
covariance of X and Y will identify precisely the extrinsic
noise contribution η2

ext to the total noise η2
X . To see this, con-

sider the situation where E(Y ;Z) = f(ZY )E(X;Z). Then
provided f(ZY ) and E(X;Z) are independent random vari-
ables, the extrinsic contribution to the covariance ofX and Y
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Fig. 3. (A) Stochastic models of gene expression. The model M1 is the simplest model of mRNA maturation. Here nascent (unspliced) mRNA are shown in red/blue wavy
lines; the blue segments represent introns and the red segments represent the exons. Nascent mRNA are synthesized at the rateKN , and spliced at rateKM . Degradation
of the mature mRNA occurs at rate δM . The model M2 is the well-known two-stage model of gene expression. In this model, mRNA (shown in blue) are produced at the
rate Km, which are later transcribed into protein (shown in pink) at rate Kp. The degradation of mRNA and protein occur at rates δm and δp, respectively. The model M3
is the extension of the two-stage model to include promoter switching. The nodes A (active) and I (inactive) represent the state of the gene, with transitions between states
occurring at rates λ and µ. The remaining parameters are the same as those in the model M2. The model M4 extends the model M3 by incorporating mRNA maturation.
Here KN is the transcription rate parameter, and KM is the maturation rate. All other parameters are the same as in M3. (B) Time series simulation of the copy number
and activity state of a gene modelled by M4. For ease of visualisation, the parameters were artificially chosen as λ = 2, µ = 2.5, KN = 40, KM = 4, Kp = 4 and
δp = 1, with all parameters scaled relative to δm = 1. (C) As λ approaches 0, we see a higher correlation in the copy numbers of nascent mRNA, mature mRNA and
protein. Again, the parameters are artificially chosen to be λ= 0.1, µ= 2.5, KN = 80, KM = 4, Kp = 4 and δp = 1, with all parameters scaled relative to δm = 1. (D)
Heatmaps for the intrinsic contribution to the covariance, which estimates the level of overshoot in the pathway-reporter approach for the nascent-protein and mature-protein
reporters; blue regions show an overshoot of less than ' 0.05. Here the intrinsic contribution is calculated using stochastic simulations of the model M4. In the left panels,
the parameter µ = 2 is fixed, while δp and the on-rate λ are varied between 0.01 and 1 and 0.5 and 4, respectively. In the right panels, the parameter µ = 20 is fixed,
while δp and the on-rate λ vary between 0.01 and 1, and 1 and 10, respectively. In all cases, the parameters are scaled so that δM = 1. The maturation rate is fixed at
20, with the parameters KN and KP are chosen to produce a mean protein level of 1000, a mean nascent mRNA level of 5 and a mean mature mRNA level of 50. (E)
The nascent-mature reporter concerns only mRNA and so is independent of all protein-related parameters. The heatmap shows the intrinsic contribution for values of λ and
µ between 0.1 and 20, with the same parameter selections for KN , KM as in (D). Similar simulations for average nascent mRNA levels of 3 and of 8, and mature mRNA
levels of 30 and of 160 produced almost identical heatmaps.

is given by:

Cov(E(X;Z),E(Y ;Z)) = Cov(E(X;Z),f(ZY )E(X;Z))
= E(f(ZY ))Cov(E(X;Z),E(X;ZY ))
= E(f(ZY ))Var(E(X;Z)). (9)

If the normalised intrinsic contribution to the covariance is
either zero or is negligible, it then follows from Eq. (8) that

Cov(X,Y )
E(X)E(Y ) ≈

Var(E(X;Z))
E(X)2 = η2

ext. (10)

Thus, under certain conditions, measuring the covariance be-
tween two non-identically distributed and not-necessarily in-
dependent reporters can replace dual reporters.

The Pathway-Reporter Method
We show that for some reporters X and Y lying in the same
biochemical pathway, the covariance ofX and Y continues to

identify the extrinsic, and subsequently intrinsic, noise con-
tributions to the total noise. Throughout this section, we as-
sume that extrinsic noise sources act independently i.e., the
environmental variables Z1, . . . ,Zn of Z are mutually inde-
pendent. Additionally, our modelling is focused only on a
single gene copy, though the same analysis applies to multi-
ple but indistinguishable gene copies; see SI Appendix, Sec-
tion 3.A.

Measuring Noise from a Constitutive Gene. We consider
first the simplest case where the underlying process is consti-
tutive. We begin with a stochastic model of mRNA matu-
ration, which we denote by M1; Fig. 3A (top left) gives a
schematic of the model. In this model, the gene continuously
produces nascent mRNA according to a Poisson process at
constant rate KN , which are subsequently spliced into ma-
ture mRNA according to the rate KM . Degradation of the
mature mRNA occurs as a first-order Poisson process with
rate δM . The model M1 and extensions have been considered
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in a number of recent studies (30, 35–37), including a recent
preprint (12), where information about the marginal nascent
and mature distribution is used to distinguish between intrin-
sic and extrinsic versions of the model.
The model M1 has a known solution for the stationary joint
probability distribution (38), given by:

p̃(n,m;θ) =
e
− Kn
KM (KNKM )n

n!
e−

Kn
δ (KNδM )m

m! . (11)

Here n is the number of nascent mRNA, m is the number of
mature mRNA and θ = (KN ,KM , δM ).
We letXN denote the number of nascent mRNA, letXM de-
note the number of mature mRNA produced from the same
constitutive gene and let Z = (KN ,KM , δM ). To simplify
notation, we will abbreviate the variables in ZXN as ZN , and
similarly for ZXM . It follows immediately from Eq. (11) that
XN andXM are independent conditional on Z and so the in-
trinsic contribution to the covariance of XN and XM (the
first term of Eq. (8)) is 0. It is also easy to see from Eq. (11)
that E(XN ;Z) = f(ZN )KN and E(XM ;Z) = g(ZM )KN ,
where f(ZN ) = 1

KM
and g(ZM ) = 1

δM
. Since the extrin-

sic noise sources are assumed to act independently, it follows
that the Noise Decomposition Principle (NDP) of the previ-
ous section holds. We then have that Cov(XN ,XM ) = η2

KN
,

where η2
KN

is the total noise on the transcription rate param-
eter KN . Thus, measuring Cov(XN ,XM ) can replace dual
reporters to decompose the gene expression noise at the tran-
scriptional level.
To support our mathematical findings, we simulated the
model M1 subject to parameter variation using the stochas-
tic simulation algorithm (SSA). Table 2 (left) compares the
extrinsic noise contributions found from various simulations
with the corresponding theoretical values. In each simula-
tion, the degradation rate δm is fixed at 1, with the other pa-
rameters scaled accordingly. The maturation rateKM is sam-
pled according to a Gamma(8,0.0125) distribution, which
has coefficient of variation 0.125. We considered differ-
ent noise distributions on KN , producing a range of noise
strengths. Our theory predicts that pathway-reporters will
identify the total noise onKN . Overall, we observe an excel-
lent agreement between the results obtained by the pathway-
reporter method, the dual-reporter method and the theoretical
noise.
To explore the pathway-reporter method more widely, we
considered 36 different parameter combinations to produce
varying mean copy numbers consistent with those reported
in experimental papers. We also considered different noise
distributions taken from the scaled Beta distribution family
in order to produce a range of noise strengths; see SI Ta-
ble 1. The pathway-reporter method performed favourably to
the dual-reporter method calculated from mature mRNA, and
consistently outperforms the dual-reporter method on nascent
mRNA. We note that both the pathway-reporter and dual-
reporter methods are slow to converge for systems with very
low nascent mean copy numbers (mean ≤ 1); see SI Table 2.
Next, we considered the simplest stochastic model of gene
expression that includes both mRNA and protein dynamics:

the “two-stage model” of gene expression. We denote this
model by M2; see Fig. 3A (top right) for a schematic of this
model. The two-stage model, and its three-stage extension
to include promoter switching, have been considered in nu-
merous studies (14, 15, 39–44). In this model, mRNA are
synthesized according a Poisson process at rate Km, which
are then later translated into protein at rate Kp. Degrada-
tion of mRNA and protein occur as first-order Poisson pro-
cesses with rates δm and δp, respectively. . Let Xm de-
note the number of mRNA and Xp denote the number of
proteins produced from the same constitutive gene and let
Z = (Km,Kp, δm, δp). Then the stationary means and co-
variance are given by (39, 41):

E(Xm;Z) = Km
δm

, E(Xp;Z) = Kp
δp

Km
δm

and

Cov(Xm,Xp;Z) = KmKp
δm(δm+ δp)

. (12)

It is easily seen that E(Xp;Z) = f(Zp)E(Xm;Z), where
f(Zp) = Kp

δp
. Thus, it follows from the NDP, the normalised

contribution of Cov(Xm,Xp) contributed by Z will iden-
tify the extrinsic noise contribution to the total noise on Xm.
Now, if we assume that δm is fixed across the cell-population,
and all parameters are scaled so that δm = 1, we have the fol-
lowing expression for the intrinsic contribution to the covari-
ance of Xm and Xp (see SI Appendix, Section 3.A),

E(Cov(Xm,Xp;Z))
E(Xm)E(Xp)

= α

E(Km) , whereα= E(1/(δp+ 1))
E(1/δp)

.

(13)
Since mRNA tends to be less stable than protein, we have
that δp < 1, and often δp � 1 (45, 46). So, we can expect
α � 1. Further, for many genes we can expect the num-
ber of mRNA per cell (Km) to be in the order of tens, so
1/E(Km) < 1. It follows that E(Cov(Xm,Xp;Z))� 1,
so that Cov(Xm,Xp) will closely approximate the extrinsic
noise at the transcriptional level.
We tested our theory using stochastic simulations of the
model M2 subject to parameter variation. Table 2 (right)
gives a comparison of the results of the mRNA-protein re-
porters and dual reporters. In each case, we varied Kp ac-
cording to a Gamma(5,0.4) distribution and δp according
to a Gamma(8,0.125) distribution; the corresponding noise
strengths are 0.20 and 0.125, respectively. We considered
different noise distributions on Km, which produce a range
of noise strengths, and the noise distribution parameters were
selected to produce a mean mRNA of approximately 50 and
a mean number of approximately 1000 proteins in each sim-
ulation. As our theory predicts, the mRNA-protein reporters
identify the extrinsic noise contribution to the total noise on
Xm. Again, we can see from Table 2 (right) that there is
excellent agreement between the results of the pathway re-
porters and the dual reporters. A larger exploration of the
parameter space reveals similar results; these results are pro-
vided in SI Table 3. Thus, despite mRNA and protein num-
bers not being strictly independent, they can, for practical
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Theory Simulation

η2
ext Noise (KN ) PR DR (Mat)

0.00 KN = 50 0.00±0.01 0.00±0.00
0.10 Beta133.3̇(6,10) 0.10±0.01 0.10±0.01
0.20 Gamma(5,10) 0.20±0.02 0.20±0.01
0.50 Beta300(1.5,7.5) 0.49±0.04 0.50±0.03

Theory Simulation

η2
ext Noise (Km) PR DR (Mat)

0.00 Km = 50 0.00±0.01 0.00 ±0.00
0.10 Beta133.3̇(6,10) 0.10±0.01 0.10 ±0.01
0.20 Gamma(5,10) 0.20±0.02 0.20±0.01
0.50 Beta300(1.5,7.5) 0.51±0.04 0.50±0.03

Table 2. A comparison of the pathway-reporter method and the dual-reporter method for constitutive expression. Here PR gives the results of the nascent and mature pathway
reporters, while DR (Mat) gives the results of dual reporters calculated from the mature mRNA. We considered noise on both the transcription rate (KN ) and the maturation
rate (KM ). The decay rate is fixed at one, with the other parameters scaled accordingly. In each case, the maturation rate KM is varied according to a Gamma(8,1.25)
distribution, which has coefficient of variation 0.125. The values given are the average of 100 simulations, each calculated from 500 copy number samples, and the errors are
± one standard deviation. Our theory predicts that pathway-reporters will identify the noise on the nascent transcription rate KN (η2

ext). The noise distribution parameters
were chosen to produce an average nascent mRNA copy number of approximately 5 and an average mature mRNA copy number of approximately 50.

purposes, replace dual reporters to decompose the noise at
the transcriptional level.

Measuring Noise from a Facultative (bursty) Gene. The
most common mode of gene expression that is observed ex-
perimentally is burstiness (7, 15, 19, 21, 22, 47), in which
mRNA are produced in bursts with periods of inactivity in be-
tween. One example is gene regulation via repression, which
naturally leads to periods of gene inactivity. Here we con-
sider a four-stage model of bursty gene expression, which
incorporates both promoter switching and mRNA matura-
tion; we denote this model by M4; see Fig. 3A (bottom left).
This model has recently been considered in (30), where the
marginal distributions are solved in some limiting cases. In
this model, the gene switches probabilistically between an
active state (A) and an inactive state (I), at rates λ (on-rate)
and µ (off-rate), respectively. In the active state, nascent
mRNA are synthesized according to a Poisson process at rate
KN , while in the inactive state, transcription does not occur.
The nascent mRNA are spliced into mature mRNA at rate
KM , which are later translated into protein, according to the
rate KP . Degradation of mRNA and protein occurs indepen-
dently of the promotor state according to the rates δM and
δP , respectively.
Three natural candidates for pathway reporters arise from this
model: (a) nascent and mature mRNA (b) mature mRNA and
protein, and (c) nascent mRNA and protein reporters. We will
find that nascent-protein reporters yield consistently accept-
able estimates of the extrinsic noise contribution η2

ext, while
nascent-mature and mature-protein reporters are reliable in
some restricted cases. We begin by showing that each of
the reporter pairs (a), (b) and (c) satisfy the Noise Decom-
position Principle. We then demonstrate, computationally,
that despite a lack of independence between these reporter
pairs, the pathway-reporter method can still be used to de-
compose the total gene expression noise at the transcriptional
level. Throughout, we let XN denote the number of nascent
mRNA, we let XM denote the number of mature mRNA,
and let XP denote the number of proteins produced from the
same gene. We also let Z = {λ,µ,KN ,KM ,KP , δM , δP }.
As in (15), we now assume that the transcription KN is large
relative to the other parameters. We further assume that the
maturation rate KM is fast (i.e. KM > δM ), which is sup-

ported experimentally (30). Then using the results of (15)
and arguments similar to those in (30), it can be shown that
the stationary means for the nascent mRNA, mature mRNA
and protein levels are given by,

E(XN ;Z) = KN
KM

λ

(λ+µ) , E(XM ;Z) = KN
δM

λ

(λ+µ) and

E(XP ;Z) = KP
δP

KN
δM

λ

(λ+µ) (14)

respectively. The means for the mature mRNA and pro-
tein levels are given in (15) for the well-known “three-
stage model” of gene expression; see Fig. 3A (bot-
tom right). The SI Appendix provides a more detailed
justification of these expressions. We consider first the
nascent-mature pathway reporters, case (a). From Eq. (14),
it is easily seen that E(XN ;Z) = f(ZN )KN λ

(λ+µ) and

E(XM ;Z) = g(ZM )KN λ
(λ+µ) , where f(ZN ) = 1

KM
and

g(ZM ) = 1
δM

. So the NDP holds, and the normalised co-
variance of E(XN ;Z) and E(XM ;Z) will identify the ex-
trinsic noise on the transcription componentKN λ

(λ+µ) . Con-
sider now the mature-protein reporters, case (b). Again, we
can see from Eq. (14) that E(XM ;Z) = f(ZP )E(X;Z),
where f(ZP ) = KP

δP
. Thus the NDP holds, and so the nor-

malised covariance of E(XM ;Z) and E(XP ;Z) will identify
the total noise on E(XM ;Z) (the extrinsic noise on XM ).
For the nascent-protein reporters, case (c), it is easy to see
that E(XN ;Z) = f(ZN )KN λ

(λ+µ) , where f(ZN ) = 1
KM

,

and E(XP ;Z) = g(ZP )KN λ
(λ+µ) , where g(ZP ) = KP

δMδP
.

Thus, again the NDP holds, and the normalised covariance of
E(XN ;Z) and E(XP ;Z) will identify the noise on the tran-
scriptional component KN λ

(λ+µ) .
In order for the pathway-reporter method to provide a close
approximation to the extrinsic noise in cases (a), (b) and (c),
we require that the normalised intrinsic contribution to the
covariance is either zero or negligible. This condition will
hold provided there is sufficiently small correlation between
the reporter pairs. In the case of (prokaryotic) mRNA and
protein, this lack of correlation has been been verified exper-
imentally in E. Coli (48). More generally, it is possible to pro-
vide an intuition about the conditions under which the lack of
correlation might hold. The time series of copy numbers for
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Mean Simulation

λ µ KN KP δP PR (MP) PR (NP) DR (Mat)

0.5 1 150 2 0.1 0.46±0.06 0.38±0.07 0.32±0.07
1 2 150 2 0.1 0.39±0.05 0.34±0.07 0.32±0.05
1 20 1050 2 0.1 0.66±0.15 0.52±0.22 0.50±0.15
2 2 100 6 0.3 0.35±0.04 0.29±0.05 0.27±0.03
2 20 550 6 0.3 0.61±0.09 0.47±0.15 0.47±0.09
10 10 100 6 0.3 0.29±0.03 0.27±0.04 0.27±0.02

Table 3. A comparison of the pathway-reporter method and dual-reporter method for bursty expression. Here PR (NP) gives the results of the nascent and protein pathway
reporters, PR (MP) gives the results of the mRNA and protein reporters, while DR (Mat) gives the results of the dual reporters calculated from the mature mRNA. We
consider noise on all of the parameters except for δM and KM ; see discussion in main text. The values given are the average of 100 simulations, each calculated from
500 copy number samples, and the errors are ± one standard deviation. Our theory predicts that pathway-reporters will identify the noise at both the promoter level (λ,µ)
and transcriptional level (KN , δm); the total extrinsic noise in each case is given by η2

ext. As before, the noise distribution parameters were chosen to produce an average
nascent mRNA copy number of 5 and an average mature mRNA copy number of 50, and an average number of 1000 proteins.

each of nascent mRNA, mature mRNA and protein broadly
follow each other, each with delay from its predecessor (Fig.
3B). Parameter values that reduce this delay will tend to in-
crease correlation, and thereby increase the normalised in-
trinsic contribution to the covariance. The primary example
of this effect is seen when δp approaches, or even exceeds
δm (or for nascent-mature reporters, when δ approaches the
maturation rate). A further contributor to high correlation
between mRNA and protein, is when the system undergoes
long timescale changes. In this situation the copy numbers
tend to drop to very low values for extended periods. The
primary parameter influencing this type of behaviour is λ,
specifically, when λ tends to 0 (Fig. 3C). An illustrative ex-
ample of this can be seen by considering a Telegraph system
in the limit of slow switching, which produces a copy num-
ber distribution that converges to a scaled Poisson-Bernoulli
compound distribution: even without any extrinsic noise, the
pathway reporter method will identify the η2 value of the cor-
responding scaled Bernoulli distribution.

An extensive computational exploration of the parameter
space (SI Table 4) supports our intuition, though the strength
of the effect varies varies across the three different reporter
pairs. For nascent-protein reporters, the normalised intrinsic
contribution to the covariance is satisfactorily small, except
in cases of fast protein decay coupled with low values of λ;
changes in µ have a less significant effect. This is further cor-
roborated by the heatmaps shown in Fig. 3D (top row), which
for two fixed values of µ and a broad spectrum of δp and λ
values, give the intrinsic term ηint in Eq. (8), for fixed Z.
These provide only an estimate for the overshoot error in the
pathway-reporter approach. Blue pixels represent an over-
shoot estimate of less than 0.05. The heatmaps show that
an estimate for the overshoot error in the pathway reporter
approach is satisfactorily small (less than 0.05) for most rea-
sonable parameter values: only failing for (a) high values of
δp in unison with (b) low values of λ (less than 1, though
lower values are acceptable if δp is small). Note that here the
parameters have been scaled so that δ = 1. Similar results are
obtained for the intermediate case of µ = 10 (SI Appendix,
Fig. S1).

The assumption (a) that δP < δM is known to be true for a

large number of genes, and is justified by the difference in the
mRNA and protein lifetimes. While there is of course varia-
tion across genes and organisms, values of δP ≤ 0.5δM and
even δP ≤ 0.2δM seem reasonable for the majority of genes.
In E. Coli (48) and yeast (49), for example, mRNA are typ-
ically degraded within a few minutes, while most proteins
have lifetimes at the level of 10s of minutes to hours. For
mammalian genes (46), it is reported that the median mRNA
decay rate δM is (approximately) five times larger than the
median protein decay rate δP , determined from 4,200 genes.
The assumption (b) requires that the gene is sufficiently ac-
tive. In a recent paper by Larsson et al. (22), the promoter-
switching rates λ, µ and the transcription rate K of the Tele-
graph model were estimated from single-cell data for over
7,000 genes in mouse and human fibroblasts. Of those genes
with mean mRNA levels greater than 5, we found that over
90% have a value for λ of at least 0.5, and over 65% have a
value for λ greater than 1. In Cao and Grima (30), a com-
prehensive list of genes (ranging from yeast cells through to
human cells) with experimentally-inferred parameter values
are sourced from across the literature (see Table 1 in (30)).
After scaling the parameter values of the 26 genes reported
there, we find that around 88% have a value for λ of at least
0.5, and approximately 58% have a value for λ greater than 1.
Thus, the heatmaps given in Fig. 3D (top panel) suggest that
nascent-protein reporters will provide a satisfactory estimate
of the extrinsic noise level for a substantial number of genes.

The mature-protein reporters are less reliable, with the re-
quirement of slow protein decay and faster on-rate being
more pronounced than for the nascent-protein reporters; this
is evident from Fig. 3D (second panel). The performance of
the nascent-mature reporter is of course independent of δp,
but is only viable in the case of fast on-rate (Fig. 3E).

We tested our approach for each of the pathway reporter pairs
(a), (b) and (c) against dual reporters using stochastic simu-
lations. Table 3 shows the results from six simulations across
a spectrum of behaviours from moderately slow switching,
to fast switching as well as a range of levels of burstiness.
For each of the parameters µ,λ,KP , δP we selected a scaled
Beta(5,6) distribution, with squared coefficient of variation
η2 = 0.1; the scaling was chosen in each case to achieve a
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mean value equal to the parameter value given in Table 3. It
is routinely verified that scaling these distributions does not
change the value of η2. The parameter KN was given the
slightly heavier noise distribution Beta(3,6), with η2 = 0.2.
In order to achieve direct benchmarking against the dual re-
porters, the parameter KM was kept fixed at 10. This is be-
cause the nascent-protein pathway reporter estimates noise
on the value of KN λ

λ+µ , while the mature mRNA dual-

reporter measures noise on KN
KM

λ
λ+µ , and these coincide only

when KM is fixed. The mean values of KN and KP were
chosen to achieve approximate average nascent mRNA lev-
els, mature mRNA levels and protein levels at 5, 50 and 1000
respectively, given the chosen values of λ,µ,δP .
The results for the nascent-protein reporters given in Ta-
ble 3 show comparable performance to dual reporters, with
only modest overshoot; even in the worst performing case of
λ = 0.5, µ = 1 the result of the pathway reporters is within
one standard deviation, in a very tight distribution. The er-
ror heatmaps of Fig. 3 provide a surprisingly accurate esti-
mate of the overshoot in the nascent-protein results in Table
3. As an example, the first row is most closely matched by the
heatmap at top left of Fig. 3D, which at λ= 0.5 and δP = 0.1
is suggestive of an error around the boundary between blue
and red (around 0.06). The same accuracy is obtained for the
other rows. As predicted, the mature-protein reporters show
significantly more overshoot, especially with the less active
genes. Improved accuracy can again be obtained by subtract-
ing the estimated overshoot given in the error heatmaps from
the obtained value. Thus for example, the error heatmap for
µ= 2 (Fig. 3D lower left) gives an error approximately 0.07
for λ = 1, δP = 0.1, which agrees very closely to the actual
overshoot of 0.07 shown in the corresponding row of Table
3. An overshoot of approximately 0.06 is suggested by the
µ = 2 error heatmap when λ = 2, δP = 0.3, which leads to
a correction from 0.35 in Table 3 to a value of 0.29. This
is quite consistent with the dual reporter benchmark of 0.27.
As expected, based on Fig. 3E, nascent-mature reporters do
not perform well on bursty systems except for high λ and
so the values are not included in Table 3; only in the case
of λ = µ = 10 was the result approaching the dual reporter
value, returning 0.32±0.03.

Discussion
Despite the proliferation of experimental methods for single-
cell profiling, the ability to extract transcriptional dynam-
ics from measured distributions of mRNA copy numbers is
limited. In particular, the multiple factors that contribute to
mRNA heterogeneity can confound the measured distribu-
tion, which hinders analysis. Theoretical contributions that
can concretise these observable effects are therefore of great
importance. In this work, we have demonstrated, through
a series of mathematical results, that it is impossible to de-
lineate the relative sources of heterogeneity from the mea-
sured transcript abundance distribution alone: multiple pos-
sible dynamics can give rise to the same distribution. Our ap-
proach involves establishing integral representations for dis-
tributions that are commonly encountered in single-cell data

analysis, such as the negative binomial distribution and the
stationary probability distribution of the Telegraph model.
We show that a number of well-known representations can
be obtained from our results. A particular feature of our non-
identifiability results is that population heterogeneity inflates
the apparent burstiness of the system. It is therefore neces-
sary to obtain further information, beyond measurements of
the transcripts alone, in order to constrain the number of pos-
sible theoretical models of gene activity that could represent
the system. In particular, additional work may be required to
determine the true level of burstiness of the underlying sys-
tem.
Further, we have developed a theoretical framework for ex-
tracting estimates of the level of extrinsic noise, which can as-
sist in resolving the non-identifiability problems given in the
first part of this work. The well-known dual reporter method
of Swain et al. (2) already provides one such approach, how-
ever is experimentally challenging to set up in many systems,
requiring strictly identical and independent pairs of gene re-
porters. We present a Noise Decomposition Principle, that
directly generalises the theoretical underpinnings of the dual
reporter method and use it to identify a practical approach—
the pathway-reporter method—for obtaining the same noise
decomposition. Our approach allows us to use measurements
of two different species from the transcriptional pathway of
a single gene copy in replacement of dual reporters. The ac-
curacy of the pathway-reporter method is provably identical
for constitutive gene expression, and in the case of nascent-
mature mRNA reporters, the measurements are readily ob-
tained from current single-cell data (11, 35, 50). For bursty
systems, the method in general provides only an approxima-
tion of the extrinsic noise. We are, however, able to demon-
strate computationally, that one of the proposed pathway re-
porters provides a satisfactory estimate of the extrinsic noise
for most genes. The other pathway reporters also provide vi-
able estimates of the extrinsic noise in some cases.
Despite the generality of our theoretical contribution, our
pathway-reporter approach has some caveats. In particular,
the approach relies on the assumption that extrinsic noise
sources act independently. Experimentally, however, these
may be correlated. For example, it has been suggested
(51, 52) that the transcription and translation rates in E. coli
anticorrelate. Additional work, however, is required to deter-
mine degree to which the independence of noise sources is a
reasonable assumption.
A further potential limitation of the pathway-reporter ap-
proach in the case of bursty genes is that experimental im-
plementation requires simultaneous measurements of nascent
mRNA and protein from a single cell. Methods for obtaining
such measurements typically have low throughput and can
only profile a few genes and proteins at a single time. There
are, however, a number of methods emerging, such as CITE-
seq (53) and REAP-seq (54), that can now measure both tran-
scripts and protein levels simultaneously for thousands of sin-
gle cells.
The results that we have presented here will assist in setting
better practices for model fitting and inference in the analysis
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of single-cell data.

Data Availability
Simulations of the models used in the paper were
performed using Gillespie’s Stochastic Simulation
Algorithm (SSA) implemented in Julia. The sim-
ulation code is available in the GitHub repository
https://github.com/leham/PathwayReporters. The data
used in the paper are provided in SI Tables.
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A Bursty Expression: Telegraph Representation

Supplementary Note 1: Derivations of the Non-identifiability Results
In the main text we provide a number of examples of when the compound distribution does not have a unique representation.
We here provide the full details of the derivations of these results.

A. Bursty Expression: Telegraph Representation. Consider first a Telegraph distribution p̃T (n;λ,µ′,K′) and the proba-
bility density function of the scaled beta distribution BetaK′(λ+µ,µ′−µ), given by

fK′(t;λ+µ,µ′−µ) = Γ(λ+µ′)
Γ(λ+µ)Γ(µ′−µ)K

′1−λ−µ′
tλ+µ−1(K′− t)µ

′−mu−1,

Note that this distribution has support [0,K′]. In the main text we claim that the Telegraph distribution p̃T (n;λ,µ′,K′) can be
obtained from compounding a Telegraph distribution by a scaled beta distribution with pdf f(t;λ+µ,µ′−µ). In other words,
that p̃T (n;λ,µ′,K′) can be written as:

p̃T (n;λ,µ′,K′) =
∫ K′

0
p̃T (n;λ,µ,t)fK′(t;λ+µ,µ′−µ)dt (15)

This is Eq. (3) in the main text. Starting from the right hand side of Eq. (15), we have∫ K′

0
p̃T (n;λ,µ,t)fK′(t;λ+µ,µ′−µ)dt

= 1
n!

Γ(λ+µ′)
Γ(λ+µ)Γ(µ′−µ)

Γ(λ+n)
Γ(λ)

Γ(λ+µ)
Γ(λ+µ+n)

∫ K′

0
1F1(λ+n,λ+µ+n,−t)(K′)1−λ−µ′

tλ+µ+n−1(K′− t)µ
′−µ−1 dt

(16)

Substituting t=K′T and simplifying, the left hand side of Eq. (16) becomes

1
n!

Γ(λ+µ′)
Γ(λ+µ)Γ(µ′−µ)

Γ(λ+n)
Γ(λ)

Γ(λ+µ)
Γ(λ+µ+n) (K′)n

∫ 1

0
1F1(λ+n,λ+µ+n,−KT )(K′)1−λ−µ′

Tλ−µ−1(K′−T )µ
′−µ−1 dT

Now, using the integral representation (55)[13.4.2] of the confluent hypergeometric function, this becomes

1
n!

Γ(λ+µ′)
Γ(λ+µ)Γ(µ′−µ)

Γ(λ+n)
Γ(λ)

Γ(λ+µ)
Γ(λ+µ+n) (K′)nΓ(λ+µ+n)Γ(µ′−µ)

Γ(µ′+λ+n) 1F1(λ+n,λ+µ′+n,−K′)

= Γ(λ+µ′)
Γ(λ+µ′+n)

Γ(λ+n)
Γ(λ)

(K′)n

n! 1F1(λ+n,λ+µ′+n,−K′)

=p̃T (n;λ,µ′,K′),

which is the left hand side of Eq. (15). Hence, we have that Eq. (15) holds.

B. Instantaneously Bursty Expression: Negative Binomial Representations. We consider first the representation given
in Eq. (4) in the main text. Recall that we let p̃NB(n;r,β) denote the probability mass function of a NegBin(r, β

β+1 ) distribution,

where β > 0. In the main text we claim that for any negative binomial distribution of the form NegBin(λ, β
β+1 ) (where β > 0)

we have,

p̃NB(n;λ,β) =
∫ ∞

0
p̃T (n;λ,µ,t)f(t;λ+µ,β)dt, (17)

where f(t;λ+µ,β) is the probability mass function of a Gamma(λ+µ,β) distribution. Beginning with the right hand side of
Eq. (17) we have,∫ ∞

0
p̃T (n;λ,µ,t)f(t;λ+µ,β)dt

= 1
n!

Γ(λ+n)
Γ(λ)

Γ(λ+µ)
Γ(λ+µ+n)

β(λ+µ)

Γ(λ+µ)

∫ ∞
0

1F1(λ+n,λ+µ+n,−t)tλ+µ+n−1e−βt dt (18)

We now apply the following identity given in (56)[Appendix 1] with a = λ+n, b = λ+µ+n, k = −1, d = λ+µ+n and
h= β. ∫ ∞

0
1F1(a,b,kt)td−1e−ht = Γ(d)

hd
(1− k

h
)−a. (19)
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So the left hand side of Eq. (18) becomes

1
n!

Γ(λ+n)
Γ(λ)

Γ(λ+µ)
Γ(λ+µ+n)

β(λ+µ)

Γ(λ+µ)
Γ(λ+µ+n)
βλ+µ+n

(
1 + 1

β

)−(λ+n) = 1
n!

Γ(λ+n)
Γ(λ)

βλ

(β+ 1)λ+n = p̃NB(n;λ,β),

which is the right hand side of Eq. (17). Hence, we have that Eq. (17) holds. We now consider the representation given in Eq.
5 of the main text. Here we claim that any negative binomial distribution of the form NegBin(λ′, c

1+c ) (where c > 1) can be
written as,

p̃NB(n;λ′, c) =
∫ ∞

1
c

p̃NB(n;λ,θ)fc(θc−1;λ−λ′,λ′)dθ (20)

where fc(cθ−1;λ−λ′,λ′) is the probability mass function of a scaled beta prime BetaPrimec(λ−λ′,λ) distribution, where
c > 0 and λ > λ′. Starting from the right hand side of Eq. (20), we have∫ ∞

1
c

p̃NB(n;λ,θ)fc(θc−1;λ−λ′,λ′)dθ =
∫ ∞

1
c

Γ(λ+n)
Γ(n+ 1)Γ(λ)

(
1− θ

θ+ 1

)n(
θ

θ+ 1

)λ
cΓ(λ)

Γ(λ−θ)Γ(θ)
(cθ−1)λ−λ′−1

(cθ)λ

= c1−λΓ(λ+n)
Γ(n+ 1)Γ(λ′)Γ(λ−λ′)

∫ ∞
1
c

(cθ−1)λ−λ′−1

(1 +θ)λ+n

Now substituting H = cθ−1 and simplifying, we obtain

cnΓ(λ+n)
Γ(n+ 1)Γ(λ′)Γ(λ−λ′)

∫ ∞
0

Hλ−λ′−1

(H+ c+ 1)λ+n dH (21)

Now, letting y = c+ 1 and simplifying we have that∫ ∞
0

Hλ−λ′−1

(H+ c+ 1)λ+n dH = 1
(c+ 1)λ′+n

∫ ∞
0

yλ−λ
′−1

(y+ 1)λ+n dy (22)

= 1
(c+ 1)λ′+n

Γ(λ−λ′)Γ(λ′+n)
Γ(λ+n) (23)

Here we used the fact that the integral in the variable y is the probability density function of a BetaPrime(λ− λ′,λ′+n)
distribution. Thus, Eq. 21 simplifies to

Γ(λ′+n)
Γ(n+ 1)Γ(λ′)

cn

(c+ 1)λ′+n = p̃NB(λ′, c), (24)

which is the right hand side of Eq. (20). So Eq. (20) holds.

Supplementary Note 2: Proof of the Noise Decomposition Principle
Here we provide the proof of the Noise Decomposition Principle given in the main text. For convenience, we restate the
principle below.

The Noise Decomposition Principle (NDP). Assume that there are measurable functions f , g and h such that E(X;Z) and
E(Y ;Z) split across common variables by way of E(X;Z) = f(ZX)h(Z′) and E(Y ;Z) = g(ZY )h(Z′). Then provided that
the variables Z1, . . . ,Zm are mutually independent, the normalised covariance of E(X;Z) and E(Y ;Z) will identify the total
noise on h(Z′) (i.e., η2

h(Z′)).
Consider first the covariance of E(X;Z) and E(Y ;Z). We have

Cov(E(X;Z),E(Y ;Z)) = Cov(f(ZX)h(Z′),g(ZY )h(Z′))
= E(f(ZX)g(ZY)(h(Z′))2)−E(f(ZX)h(Z′))E(g(ZY)h(Z′))
= E(f(ZX))E(g(ZY))

[
E((h(Z′))2)− (E(h(Z′)))2] (25)

Note that here we used the fact that the variables in Z = (Z1, . . . ,Zn) are mutually independent. Now using the fact that
E(X) = E(E(X;Z)) and E(Y ) = E(E(Y ;Z)) (the Law of Total Expectation), and then normalising we obtain
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A Justification for simulating only one copy of the gene

Cov(E(X;Z),E(Y ;Z))
E(X)E(Y ) =

E(f(ZX))E(g(ZY))
[
E((h(Z′))2)− (E(h(Z′)))2]

E(f(ZX))E(g(ZY))(E((h(Z′)))2

= Var(h(Z′))
(E(h(Z′)))2

= η2
h(Z′) (26)

Hence, under certain conditions the normalised covariance of E(X;Z) and E(Y ;Z) will identify the total noise on h(Z′).

Supplementary Note 3: Pathway reporters

A. Justification for simulating only one copy of the gene. Our simulations and theory have been based over reporters
from a single gene copy, whereas in practice there may be multiple copies of the gene that contribute to the overall mRNA. If
there are mechanisms in place to distinguish the mRNA or protein of one gene copy from another, then the theory and analysis
we have developed in this paper holds without change. In the case where it is not possible to distinguish mRNA and protein
(respectively) from the multiple gene copies, then we now observe that the general theory continues to hold, provided there
is independence between the gene copies; this assumption has been verified experimentally (11). Here we demonstrate this
in the case of two gene copies, though the general case for more than two genes is essentially identical but is notationally
cumbersome. We are considering a situation where the variable X in the Noise Decomposition Principle is the sum of two
independent variables X1,X2 and Y is the sum of two independent variables Y1,Y2. We assume common dependence on the
environmental variables Z so that E(X1;Z) = E(X2;Z), E(Y1;Z) = E(Y2;Z). Using these equalities and the independence
of X1,X2 and Y1,Y2 in X =X1 +X2, Y = Y1 +Y2, we find the numerator of

Cov(E(X;Z),E(Y ;Z))
E(X)E(Y )

is simply 4Cov(E(X1;Z),E(Y1;Z)), while the denominator is 4E(X1)E(Y1). Thus the noise decomposition coincides with
that for the single copy X1,Y1. Further work may be required to consider systems where there is independence between, or
there is significant deviations in the gene copies.

B. Upper Bound for the Intrinsic Contribution to the Covariance: Constitutive Expression. In the main text, we
claim that the error in the pathway-reporter approach in the case of mRNA-protein reporters is negligible (i.e. the error is� 1).
Our argument relies on the expression given in Eq. 13 in the main text. We here provide full details of the derivation of this
expression. First let Xm and Xp be the number of mRNA and protein produced from the same constitutive gene modelled by
the "two-stage" model, M2 (see Figure 3A (top right) of the main text). Also, let Z = {Km, δm,Kp, δp}.
We restate here the expression for the intrinsic contribution to the covariance of Xm and Xp given in Eq. 13 of the main text.

E(Cov(Xm,Xp;Z))
E(Xm)E(Xp)

= α

E(Km) , where α= E(1/(δp+ 1))
E(1/δp)

. (27)

We require the following expressions for the stationary mean mRNA level and protein level of the two-stage model (39, 41).

E(Xm;Z) = Km
δm

, E(Xp;Z) = Kp
δp

Km
δm

and Cov(Xm,Xp;Z) = KmKp
δm(δm+ δp)

. (28)

Assuming that δm is fixed across the cell-population, and all parameters are scaled so that δm = 1, it follows from Eq. (28), that

E(Cov(Xm,Xp;Z)) = E
(

1
δp+ 1

)
E(Km)E(Kp). (29)

Using the Total Law of Expectation, we also have,

E(Xm) = E(Km) and E(Xp) = E
(

1
δp

)
E(Km)E(Kp). (30)

Thus, it follows that
E(Cov(Xm,Xp;Z))

E(Xm)E(Xp)
= α

E(Km) , where α= E(1/(δp+ 1))
E(1/δp)

. (31)
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C. Determination of the Marginal Means in the Model M4. To derive the marginal means for nascent and mature mRNA
and for protein, we first observe that the nascent mRNA population may treated identically to that of mRNA in general (that is,
no distinction between nascent and mature), as in (23), except that mRNA decay is replaced by the sum of decay and maturation.
As in the work of Cao and Grima (30), the assumption of fast maturation allows us to ignore decay completely in the nascent
phase, so that the marginal distribution is identical to that of (23), except with decay replaced by maturation. This leads to a
marginal nascent mRNA mean of

E(XN ;Z) = KN
KM

λ

(λ+µ) .

The marginal means for mature mRNA and protein are derived in (15) under the assumption that the transcription rate parameter
KN is large relative to the other parameters. The expressions are given by

E(XM ;Z) = KN
δM

λ

(λ+µ) and E(XP ;Z) = KP
δP

KN
δM

λ

(λ+µ) .

Formally, the marginal means in (15) are for the three-stage model M3, which ignores the downstream processing of mRNA,
such as splicing. The assumption of fast maturation however, justifies the treatment of the nascent phase of mRNA as an
ephemeral step within the Poissonian modelling of mRNA transcription.
There are a number of possibly compounding assumptions on the parameters here, but simulations show that there is a lot of
tolerance, with even only moderate maturation and transcription still returning sample means consistent with the formulas.

Fig. 4. An extension of Fig. 3D of the main text. The heatmaps shown for the intrinsic contribution to the covariance estimate the
level of overshoot in the pathway-reporter approach, for both the nascent-protein and mature-protein reporters. For more details refer
to the caption given in Fig. 3. Here we include the additional case of µ = 10. The remaining parameter values are the same as in
the main text. Each individual pixel is generated from a sample of size 3000, though there is still some instability in the convergence
for the nascent-protein reporter, particularly as the overshoot estimation starts to increase, and particularly as µ is larger. To produce
more accurate values, the case of µ = 2 was averaged over two full experiments while µ = 20 was averaged over three. This was also
done for the mature-protein reporter, however for these images there was almost no visible difference between the various runs of the
experiment and their averages. Each of the three µ values takes roughly 7–10 hours of computation, depending on lead in time before
sampling within a simulation.
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