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Abstract20

The hippocampal formation (HF) facilitates the creation of declarative memories, with subfields providing unique21

contributions to the discriminability and generalizability of events. The HF itself and its connections with other struc-22

tures exhibit a protracted development. Maturational differences across subfields facilitate a shift towards memory23

specificity, with peri-puberty sitting at the inflection point. Peri-puberty also happens to be a sensitive period in the de-24

velopment of anxiety disorders. Taken together, we believe HF development is critical to negative overgeneralization,25

a common feature of anxiety disorders. To investigate the role of the HF in behavioral discrimination and general-26

ization we examined the relation between behavior and cross-sectional indices of HF maturity derived from subfield27

volume. Participants aged 9-14 years, recruited from clinical and community sources, performed a recognition task28

with emotionally valent (positive, negative) and neutral images. T1-weighted and diffusion-weighted structural scans29

were collected. Partial least squares correlations were used to derive a singular metric of maturity for both HF volume30

and structural connectivity. We found our volumetric HF maturity index was positively associated with discrimi-31

nation for neutral images and generalization for negative images. Hippocampal-medial prefrontal cortex structural32

connectivity maturity metric evidenced a similar trend with behavior as the HF volumetric approach. These findings33

are important because they reflect a novel developmentally related balance between discrimination and generalization34

behavior supported by the hippocampus and its connections with other regions. Maturational shifts in this balance35

may contribute to negative overgeneralization, a common feature of anxiety disorders that escalates during the same36

developmental window.37
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Significance Statement38

The hippocampal formation (HF) facilitates declarative memory specificity and is composed of subfields whose de-39

velopment during adolescence overlaps with the onset of anxiety disorders. Aberrations in mechanisms governing40

memory specificity may contribute to negative overgeneralization in anxious youth. Participants completed an emo-41

tional memory discrimination task while in the scanner. Using a multivariate maturity metric based on subfield volume42

we found individuals with more “mature” HF were better at differentiating similar neutral images and more likely to43

generalize similar negative images. These findings are important because they capture a novel developmental mech-44

anism related to the balance between discrimination and generalization. Shifts in this balance, may contribute to45

negative overgeneralization, a common feature of anxiety disorders.46
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Introduction47

Memory increases in specificity, driven by maturation of key neurobiological substrate taking root around the onset of48

puberty and continuing into adolescence (Lavenex et al., 2007; Lee et al., 2014; Daugherty et al., 2017; Keresztes et al.,49

2018). Whether these specificity-supporting neurobiological mechanisms are similarly employed across different stim-50

ulus valences (e.g., emotional versus neutral) remains under-specified. Around the same developmental window, the51

prevalence of anxiety disorders increases (Beesdo et al., 2009). Together, understanding how developmental changes52

in memory specificity interact with emotional salience of stimuli may provide important insight into our understanding53

of negative overgeneralization, a characteristic symptom of anxiety where individuals generalize negative associations54

to similar events (Lissek et al., 2014). In the current study, we aim to understand the relation between cross-sectional55

indices of neurobiological maturation around the onset of adolescence and measures of behavioral discrimination and56

generalization to stimuli with emotional valence.57

A network of interconnected regions in the medial temporal lobe (MTL) and medial prefrontal cortex (mPFC) govern58

the specificity of declarative memories. The MTL is comprised of the rhinal cortices, the amygdala, and the hippocam-59

pal formation (HF) (Squire et al., 2004). The HF can be further separated into distinct subfields: dentate gyrus (DG),60

Cornu Ammonis (CA) 1, 2, and 3, and subiculum. In human neuroimaging studies, the DG and CA3 subfields are61

often combined due to difficulties in reliably separating them (Daugherty et al., 2017), The amygdala is comprised of62

the central, medial, lateral, and basolateral complex nuclei (Phelps and LeDoux, 2005). Unique functional attributes63

are conferred by underlying architecture (Marr, 1971; Rolls, 2001) and connectivity (Ranganath et al., 2004; Gold-64

stein et al., 2009; Bennett and Stark, 2016) of the MTL and mPFC. For example, the DG plays a disproportionate65

role in ‘pattern separation’ given its high number of granule cells and sparse firing, while the recurrent collaterals66

of the CA3 facilitate ‘pattern separation’ (Yassa and Stark, 2011; Rolls, 2013; Knierim and Neunuebel, 2016). The67

amygdala, contributes to the encoding of emotional salience of stimuli and events (Mcgaugh and Ayala, 2013) and the68

subsequent modulation of memory (McGaugh, 2004) with damage selectively impairing gist or generalized memories69

(Adolphs et al., 2001, 2005). While, the mPFC interacts with both the amygdala and HF regulating memory specificity70

(Colgin, 2011; Xu and Südhof, 2013; Jin and Maren, 2015; Sekeres et al., 2018).71

Notably, the HF and mPFC are characterized by prolonged developmental trajectories extending well into adulthood72

with particularly rapid changes occurring around the onset of adolescence (Giedd et al., 1996; Lavenex and Banta73

Lavenex, 2013; DeMaster et al., 2014; Avino et al., 2018). Moreover, the distinct developmental trajectories have74

been shown to differentially impact behavior (Lee et al., 2014; Keresztes et al., 2018; Riggins et al., 2018). However,75

cognition does not emerge from the independent contributions of individual brain regions but rather reflects the prod-76

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.30.319178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.30.319178
http://creativecommons.org/licenses/by-nc/4.0/


uct of networks of brain regions interacting (McIntosh, 2000). Thus, developmentally related increases in memory77

specificity likely reflect the composition of maturational changes across regions rather than the contribution of single78

regions alone(Keresztes et al., 2018).79

To examine the role of MTL maturity on discrimination and generalization of stimuli with emotional valence in a80

sample of peri-pubertal youth, participants completed an emotional similarity task (Leal et al., 2014) where they81

rated the valence of stimuli (negative, neutral, positive) during a Study session in the scanner, then returned to the82

scanner after 12 hours for a surprise memory test where they made ‘old’ or ‘new’ judgments. Separate volumetric83

and connectivity based HF and amygdala maturity were assessed using a partial least squares correlation analysis84

(PLSC) using the structural and diffusion weighted scans (Keresztes et al., 2017, 2018). Behavioral measures of both85

discrimination and generalization were related to the multivariate measures of volume and connectivity. We tested86

the hypothesis that emotional valence of stimuli differentially produced increasing neutral discrimination and negative87

generalization with increasing hippocampal and amygdala maturity.88

Methods89

Participants90

Fifty-two peri-pubertal youth (age 9-14 years) were recruited from mental-health clinics and the Miami-Dade commu-91

nity for a larger study to examine the neurobiological correlates of negative overgeneralization (McMakin et al., 2020).92

A strategy of recruiting from anxiety clinics and the community was used to maximize variability in key dimensions93

of interest—generalization and discrimination of emotional stimuli. Youth with anxiety are known to experience wide94

generalization gradients to negative stimuli in particular (Greenberg et al., 2013), which clinically appears as a ten-95

dency to pathologically extend fear from aversive contexts (e.g. house fire) to safe contexts with shared features (e.g.96

campfire). Participants recruited for the study were assessed for medical and psychiatric exclusionary criteria (e.g.,97

current depressive episode, bipolar disorder, post-traumatic stress disorder, conduct disorder, oppositional defiant dis-98

order, psychotic disorders, and obsessive-compulsive disorder) based on a screener assessing key symptoms associated99

with DSM-IV diagnoses and/or a parent-reported diagnosis. Following intake, three participants were ineligible for100

the study (left-handed) and another dropped out, leaving 48 volunteers to participate in the Study session scan. Two101

participants were not invited for the Test session scan due to excessive movement and an error in the experimental102

paradigm. A third participant failed to show-up for their appointment leaving 45 participants who completed the Test103

session scan. Eleven participants were excluded following the Test session: one failed to show up to their appointment,104

six for poor performance (hit rate for targets was 1.5SD below the average performance), three for errors in triggering105

the onset of the scanner with the task, and one participant was removed for excessive motion during the scan (defined106
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as greater than 0.5mm of framewise displacement for more than 30% of volumes) leaving 34 participants (11.4 ± 2.0107

years, 16 female) in the final sample. All participants provided written informed consent (legal guardian) and assent,108

and were compensated for their time.109

Behavioral Procedures and Methods110

Figure 1. Trial structure of emotional similarity task. Participants experienced two scanning sessions.
The Study session consisted of 145 images of differing valences while the Testing session consisted of a
recognition memory task comprised of 284 images across the three valences with Targets (presented during
the Study session), Foils (new images), and Lures (stimuli similar to the items presented during the Study
session).

Participants took part in an emotional similarity task (Fig. 1). The task included an incidental encoding session during111

which participants viewed scenes (2000 ms) and were instructed to endorse images as either: negative, neutral, or112

positive. Stimuli were separated by a jittered inter-stimulus-interval (2000-6000 ms) during which a white central113

fixation was presented on a black background. Each scene was presented once, totaling 145 images (48, negative, 47114

neutral, 50 positive). Participants returned 12 hours later for a surprise memory test, with approximately half (n=16) of115

them performing the task in the morning, post-sleep. During the Test session, participants were instructed to endorse116
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images as either ‘old’ or ‘new.’ A total of 284 images were presented: forty-eight targets (16 each of negative, neutral,117

and positive) – repetitions of the images presented during the incidental encoding session; ninety-seven (32 negative,118

32 neutral, and 33 positive) lures – images similar to but not exactly the same as an image shown during the incidental119

encoding session; and 139 foils (42 negative, 49 neutral, 48 positive) – images never presented before and not sharing120

similarity to the original images. Participants were asked to indicate whether each image was either ‘old’ (the subject121

recalls seeing that exact image during the Study session) or ‘new.’ They were instructed to endorse images as ‘old’122

only if they were the exact same as the image seen during the Study session and to respond while the image was still123

on the screen. During the Test session each image was also presented for 2000 ms.124

A lure generalization index (LGI) was calculated for each image valence by subtracting the proportion of old responses125

when given a foil image from the proportion of old responses when given a lure image (1).126

LGI = p(′old′|Lure)− p(′old′|Foil) (1)

A lure discrimination index (LDI) was calculated for each valence by subtracting the proportion of new responses to

targets from the proportion of new responses to lures (2).

LDI = p(′new′|Lure)− p(′new′|Target) (2)

Neuroimaging Data Collection and Preprocessing127

Neuroimaging data were collected on a 3T Siemens MAGNETOM Prisma scanner with a 32-channel head coil at the128

Center for Imaging Science at Florida International University. Diffusion-weighted images (1.7mm isotropic) using129

a multiband sequence (slice acceleration factor=3, 96 directions, seven b=0 frames, and four b-values: 6 directions130

with 500s/mm2, 15 directions with 1000s/mm2, 15 directions with 2000s/mm2, and 60 directions with 3000s/mm2) in131

addition to a T1-weighted magnetization-prepared rapid gradient echo sequence (MPRAGE: TR=2500ms, TE=2.9ms,132

flip angle=8º, FOV=256mm, 176 sagittal slices, voxel size=1mm isotropic) were collected. A fieldmap opposite of the133

phase encode direction of the dMRI acquisition was also acquired for distortion correction.134

FreeSurfer’s (version 6.0.0; Fischl, 2012) ‘recon-all’ algorithm was applied to each participant’s T1-weighted struc-135

tural scan to obtain cortical surface reconstruction and cortical/subcortical segmentations. For diffusion image prepro-136

cessing, each participant’s diffusion weighted scan was registered to FreeSurfer structural space using boundary-based137

registration with the reference image being the first acquired b=0 frame. The FreeSurfer parcellation and segmentation138

file (aparc+aseg) was then binarized and transformed into diffusion space using FreeSurfer’s ‘ApplyVolTransform’ tool139
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and was then binarized and dilated by 1mm to include edge voxels to act as a brain mask. Susceptibility distortion140

correction was then performed using FSL Topup, followed by eddy current correction using FSL Eddy on the diffusion141

data masked by the dMRI space brain mask. This preprocessed data was then input in to FSLs BEDPOSTX (Jbabdi et142

al., 2012) to model crossing fibers within each brain voxel. The results of BEDPOSTX were the basis of all subsequent143

probabilistic tractography based analyses.144

Delineating Amygdala Subregions145

The amygdala is comprised of several nuclei, with each having unique anatomical connections to cortical and sub-146

cortical targets. We used probabilistic tractography combined with a novel method of k-means clustering analysis to147

identify amygdala subregions. Probabilistic tractography was computed from bilateral masks of the amygdala to 24148

ipsilateral cortical and subcortical targets while avoiding the ventricles. This resulted in separate files (one for each149

target) containing the total number of random walks completed from each voxel in the amygdala mask to that specific150

targets. Each file was then vectorized and included in an n x m array, with n being the number of voxels in the left or151

right amygdala masks, and m being the number of amygdala targets. The array was then subjected to a k-means clus-152

tering algorithm with a limit of 4 clusters, with voxels serving as samples and targets serving as features, implemented153

in Python (scikit-learn). Each voxel in the amygdala masks were assigned a k-means cluster value based on their154

connectivity across the targets (aka, features), which were then coerced back into their three-dimensional anatomical155

representations. Volume estimates were then extracted for each of these clusters while correcting for ICV (Fig. 2).156

Delineating Hippocampal and Cortical Regions of interest (ROI)157

Hippocampal subfields (bilateral DG/CA3 , CA1, and subiculum) and the posterolateral and anteromedial entorhinal158

cortices were segmented using a consensus labeling approach. First, manual segmentations (Yassa and Stark, 2009;159

Yushkevich et al., 2015) were applied to an atlas set of 19 T1 MPRAGE scans and their corresponding T2-FSE scans160

(oblique orientation perpendicular to the long axis of the hippocampus; 0.47 mm2 in -plane, 2.0 mm slice thickness).161

Weighted consensus labeling from the atlas to an unlabeled T1 was accomplished by normalizing the atlas set to the162

unlabeled subject and applying multi-atlas segmentation with joint label fusion (Wang and Yushkevich, 2013). This163

approach capitalizes on both label and intensity information and has been used in a number of recent publications to164

segment hippocampal subfields (Sinha et al., 2018; Brown et al., 2019) (Fig. 3A). Cortical ROIs (e.g., perirhinal cortex,165

parahippocampal cortex, amygdala, superior frontal cortex, caudal and rostral anterior cingulate cortex, and medial166

orbitofrontal cortex) were created by binarizing FreeSurfer segmentations. All volume estimates were corrected for167

intercranial volume and age by multiplying each volume estimate by the ratio of age predicted whole-brain volume to168

actual whole-brain volume obtained via FreeSurfer .169
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Figure 2. Delineation of the Amygdala through k-means clustering. (A) Probabilistic Tractography
from the amygdala to 26 ipsilateral cortical and subcortical targets (first row) allowed for the definition of
fiber pathways (second row) which allowed for the construction of metrics of anatomical connectivity in
the form of number of walks to the target (third row; pictured is the number of successful walks from the
amygdala to the HF). (B) From the random walk data, a matrix of number of random walks from amygdala
to target was constructed across voxels in the amygdala. (C) The correlation matrix was then placed into a
k-means clustering algorithm implemented in ‘scipy’ set to sort the data into 4 clusters, with cluster loadings
pictured. (D). These four clusters were then classed for each participant, with an exemplar pictured.

Measures of Regional Connectivity170

To examine the structural connectivity between regions, probabilistic tractography was conducted using FSL’s Prob-171

trackx (Behrens et al., 2003, 2007) with 25,000 streamline samples (step length=0.5, curvature threshold=0.2, maxi-172

mum steps=2000) in each seed voxel to produce a connectivity distribution between each seed and target region, while173

avoiding paths through the ventricles. A list of the connections examined appears in Table 1.174
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Table 1. Seeds to target regions for connectivity analyses

Connection Seed Region Target Regions
Amygdala to HF Amygdala DG/CA3, CA1, ERC, Subiculum

HF to Rhinal HF PRC, pHPC, Posterior mERC, Anterior lERC
HF to mPFC HF Caudal ACC, Rostral ACC, Superior Frontal, mOFC

Regional Volumetric Maturity Estimates using PLSC175

To calculate regional maturity scores partial least squares correlation (PLSC) was conducted to produce regional matu-176

rity for the HF (DG/CA3, CA1, subiculum, posterolateral and anteromedial entorhinal cortices), rhinal (RHI) cortices177

(posterolateral and anteromedial entorhinal cortices, perirhinal cortex, and parahippocampal cortex), and amygdala178

(AMY) (resulting k-means clusters determined by probabilistic tractography) according to an approach first outlined179

by Keresztes et al. (2017). A correlation matrix was produced by correlating AGE (in months) and volumetric mea-180

sures for each ROI. The resultant matrix was then decomposed via singular value decomposition (SVD). Resultant181

weights for each ROI were then multiplied by each subject’s vector of ROI volumes to produce a singular regional182

maturity score. This process was completed for the HF, RHI and AMY to produce Hippocampal, Amygdala, and183

Rhinal Maturity Scores respectively.184

Connectivity Maturity Estimates using PLSC185

PLSC was also used to compute connectivity maturity metrics between regions. A correlation matrix was constructed186

using AGE (in months) and the median number of random walks between the seed and target regions. This matrix187

was decomposed via SVD and the resultant weights were multiplied by the median connection strength to produce188

a connectivity maturity score. This was conducted for all connections outlined in Table 1. (Amygdala to HF, HF to189

Rhinal Cortices, and HF to mPFC).190

Statistical Analyses191

Analyses into the effects of maturity and valence on lure generalization and discrimination outcomes were conducted192

using linear mixed-effects modeling conducted using the ’lme4’ package in R version 3.6.1 (Bates et al., 2015). In this193

model valence and maturity were entered as predictors, and subject was modeled as the random intercept. Interactions194

were probed using simple-effects analysis also conducted in R.195
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Results196

Hippocampal maturity was related to differential discrimination and generalization of neu-197

tral and negatively valenced scenes198

To test our hypothesis that negative and neutral images experience different patterns of mnemonic discrimination and199

generalization with multivariate volumetric hippocampal maturity during the emotional similarity task we examined200

the association between individual’s HF maturity scores with their discrimination and generalization performance201

across image valence. Lure Discrimination and Lure Generalization Index (LDI and LGI respectively) scores were202

calculated (Equations 1 and 2) to assess a participant’s likelihood to discriminate or generalize lure stimuli, thought to203

be dependent neurobiologically on pattern separation and completion respectively. As multiple models are present in204

the current study, a Holm-Sidak corrected alpha of .026 was used to assess significance.205

We observed differential patterns in the discrimination and generalization of emotionally valent lure stimuli across206

our HF maturity scores. As predicted, when comparing negative and neutral stimulus discrimination (e.g., LDI) we207

identified a significant interaction between HF maturity and stimulus valence (maturity∗valence : F (1, 32) = 6.159,208

p = .019, R2 = .161), with greater discrimination of neutral images associated with elevated HF maturity scores209

(β = .033, CI(95) = (0.003, 0.072), t(33) = 2.244, p = .032), while discrimination of negative images showed no210

evidence of such relationship with HF maturity (β = .016, CI(95) = (-0.041, 0.034), t(33) = −0.472, p = .640)211

(Fig. 3B). When assessing generalization (e.g. LGI) we similarly observed divergent patterns between negative and212

neutral stimuli (maturity ∗ valence : F (1, 32) = 5.737, p = .023, R2 = .126). We found enhanced generalization213

of negative images associated with greater HF maturity scores (β = .030, CI(95) = (0.003, 0.057), t(33) = 2.324,214

p = .027) while neutral generalization did not differ as a function of our HF maturity measure (β = −.000, CI(95) =215

(-0.023, 0.019), t(33) = −0.054, p = .957) (Fig. 3C)216

Valence related differences in discrimination and generalization not observed in the rhinal217

cortices or amygdala218

To assess the specificity of the observed interactions with discrimination and generalization of emotionally valent219

images and our HF maturity scores, we probed for similar associations between maturity and emotional valence220

in neighboring MTL regions; such as the rhinal cortices and amygdala, two regions anatomically connected to the221

hippocampus (Suzuki and Amaral, 1994) and important for memory and emotional processing (McGaugh, 2004), with222

the rhinal cortices experiencing earlier development than both the amygdala and HF (Insausti et al., 2010). We did223

not observe divergent patterns in discrimination (LDI) across our multivariate maturity measures and image valence224
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Figure 3. Differential relation between hippocampal maturity and memory performance across stim-
ulus valence. (A) Hippocampal subfield volume estimates from the CA1/CA2, DG/CA3, Subiculum and
entorhinal cortices (ERC) were used to produce a metric of hippocampal maturity as in Keresztes et al.
(2017). (B) There was a significant interaction between image valence and hippocampal maturity pre-
dicting LDI performance (maturity ∗ valence : F (1, 32) = 6.159, p = .019, R2 = .161), with
negative LDI showing no evidence of change across different levels of hippocampal maturity while neu-
tral LDI performance increased. (C) An opposing significant interaction appeared for LGI performance
(maturity ∗ valence : F (1, 32) = 5.737, p = .023, R2 = .126) where negative LGI increased across
hippocampal maturity, whereas neutral LGI showed no evidence of change.

in the rhinal cortices (maturity ∗ valence : F (1, 32) = 0.000, p = 0.986) or the amygdala (maturity ∗ valence :225

F (1, 32) = 1.185, p = 0.284) (Fig. 4A,C); nor divergent generalization (LGI) across maturity measures and valence226

in the rhinal cortices (maturity ∗ valence : F (1, 32) = 0.690, p = 0.4123) and amygdala (maturity ∗ valence :227

F (1, 32) = 0.009, p = 0.925) (Fig. 4B,C).228
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Figure 4. Rhinal cortices (RHI) and amygdala (AMY) show no differential relationship between
maturity and valence with LDI and LGI performance. (A) The rhinal cortex maturity metric did
not exhibit a differential relationship with discrimination for negative versus neutral valenced stimuli
(maturity ∗ valence : F (1, 32) = 0.000, p = 0.986) (B) nor with generalization (maturity ∗ valence :
F (1, 32) = 0.690, p = 0.4123). (C) The maturity metric for the amygdala similarly did not differentiate
negative versus neutral stimuli for discrimination (maturity ∗ valence : F (1, 32) = 1.185, p = 0.284) (D)
nor generalization (maturity ∗ valence : F (1, 32) = 0.009, p = 0.925) behavior.

Hippocampal-mPFC anatomical connectivity exhibit trend towards differential relation be-229

tween discrimination and generalization of emotionally valent stimuli230

We next assessed whether non-volumetric measures of maturity, in this case diffusion weighted connectivity, were231

related to changes in discrimination and generalization with valence. We created a novel amygdala-hippocampal232

(AMY-HF) connectivity maturity metric (see Methods) and examined the associations between this measure and image233

valence with both LDI and LGI. We did not identify a divergence in discrimination (LDI) between negative and neutral234

images across our AMY-HF connectivity maturity measure (maturity ∗ valence : F (1, 32) = 1.243, p = 0.273)235

(Fig. 5A). When examining generalization (LGI) we similarly did not observe a divergence in generalization with236

image valence across changes in our AMY-HF connectivity maturity score (maturity ∗ valence : F (1, 32) = 0.034,237
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p = 0.855) (Fig. 5B).238

We expanded this approach to other regions sharing anatomical connectivity with the hippocampus, creating maturity239

metrics for hippocampal-rhinal (HF-RHI) and hippocampal-mPFC (HF-mPFC) connectivity. We did not identify a240

difference between discrimination of emotionally valent stimuli across our HF-RHI connectivity maturity measure241

(maturity ∗ valence : F (1, 32) = 1.312, p = 0.260) (Fig. 5C). When examining generalization, we did not observe242

a divergence between emotional stimuli across our HF-RHI connectivity maturity measure (maturity ∗ valence :243

F (1, 32) = 1.833, p = 0.186) (Fig. 5D).244

When examining the relationship between discrimination and generalization and our multivariate HF-mPFC anatom-245

ical connectivity maturity measure a familiar differential pattern was evident. When comparing discrimination across246

image valence (negative and neutral) and our HF-mPFC anatomical connectivity maturity score we observed a trend247

towards differential discrimination (maturity ∗ valence : F (1, 32) = 3.885, p = 0.057) (Fig. 6A). Generalization248

on the other hand exhibited an inverse trend (maturity ∗ valence : F (1, 32) = 3.095, p = 0.088) (Fig. 6B). These249

trending effects mirror the interactions observed in our volumetric HF maturity analyses (Fig. 3A,C).250
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Figure 5. Association between connectivity maturity metrics and discrimination (LDI) and generaliza-
tion (LGI). (A) AMY-HF connectivity maturity showed no differential relationship with LDI (maturity ∗
valence : F (1, 32) = 1.243, p = 0.273) or (B) LGI (maturity ∗ valence : F (1, 32) = 0.034, p = 0.855)
across negative and neutral stimuli. Similarly, (C, D) HF-RHI connectivity maturity showed no valence re-
lated differential relationship with mnemonic performance (LDI: maturity ∗ valence : F (1, 32) = 1.312,
p = 0.260; LGI: maturity ∗ valence : F (1, 32) = 1.833, p = 0.186).
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Figure 6. Maturity of HF-mPFC connectivity shows similar pattern of results to volumetric hip-
pocampal maturity in relation to mnemonic performance. (A) There was a trending interaction between
HF-mPFC connectivity and LDI (maturity ∗ valence : F (1, 32) = 3.885, p = 0.057), showing increased
LDI for neutral and not negative images, (B) There was evidence of a trending effect of HF-mPFC connec-
tivity predicting LGI (maturity ∗ valence : F (1, 32) = 3.095, p = 0.088).
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Discussion251

We examined the role of MTL maturity (defined both volumetrically and through diffusion weighted connectivity)252

on discrimination and generalization of stimuli with emotional valence. We found greater volumetric maturity scores253

within the HF were related to enhanced mnemonic discrimination (LDI) performance for neutral images, as well as254

greater mnemonic generalization (LGI) for negative images. This effect of volumetric maturity appeared to be con-255

strained to the HF and was not present in adjacent MTL regions (the amygdala and rhinal cortices). Employing the256

same multivariate decomposition approach, but using anatomical connectivity between the HF and other regions, a257

similar differential pattern of mnemonic generalization and discrimination across stimulus valence, while only trend-258

ing, was evident in the connectivity between the HF and mPFC. Thus, development of the HF, assessed both volumet-259

rically and through its connections to the mPFC, produce differential patterns of generalization and discrimination for260

negative compared to neutral images during a sensitive developmental period. This finding may have implications for261

our understanding of negative overgeneralization, a core feature of anxiety, which increases in prevalence during this262

developmental window (Beesdo et al., 2009; Lissek et al., 2014). Specifically, maturational changes in how emotional263

valence drives generalization may contribute to increasing negative overgeneralization and anxiety among vulnerable264

youth.265

Previous studies have found positive associations between age related changes in the brain and mnemonic discrimina-266

tion performance for neutral stimuli. For example, discrimination of neutral objects is positively associated with267

changes in DG/CA3 subfield volume across age (Lee et al., 2014). Similarly, greater volume of the CA2-4/DG268

was associated with enhanced memory performance for neutral trivia information in early childhood (Riggins et al.,269

2018). When using a multivariate decomposition derived from PLSC approach, a similar positive association between270

mnemonic discrimination of object images with HF maturity was shown (Keresztes et al., 2018). Our data corroborate271

these findings, showing increases in HF maturity, using PLSC derived maturity, are associated with improvements272

in mnemonic discrimination of neutral images. The current study also extends the findings from prior work, show-273

ing generalization of negative images is positively associated with HF maturity. Together, our results suggest that274

discrimination and generalization behavior are impacted differentially by emotional valence across age.275

Generalization of emotional memories is adaptive and common. Behaviorally, learning under conditions of threat276

(Starita et al., 2019) or following negative (Schechtman et al., 2010) or aversive feedback (Resnik et al., 2011) fa-277

cilitates generalization of episodic memories. While the amygdala has long been known to facilitate consolidation278

(McGaugh, 2004) and recently been shown to prioritize declarative memories through its coordinated neural activity279

with the hippocampus (Manns and Bass, 2016), damage to this region specifically impairs gist memories and leaves280
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detailed memories spared (Adolphs et al., 2001, 2005). Neurons in the amygdala have been shown to have specific281

tuning properties related to generalization (Resnik and Paz, 2015) and specific populations in the lateral amygdala282

signal general versus cue-specific associations (Ghosh and Chattarji, 2015). While we did not identify in our results a283

difference in discrimination or generalization with emotional valence related to our volumetric or connectivity based284

metrics of maturation of the amygdala, a trend in amygdala volume (F (1, 32) = 3.679, p = 0.064) and connectivity285

with the HF (F (1, 32) = 5.373, p = .027) was associated with broad generalization irrespective of emotional valence.286

Rather, our results provide a novel contribution to the potential mechanisms underlying generalization and suggest the287

HF plays a unique developmental role, differentiating items to be discriminated from items garnering generalization.288

These results support the notion that the generalization of emotional stimuli is supported by a broad network of regions289

(Asok et al., 2019).290

Differences in development across the HF contribute to heterogeneity of behavior well into adulthood. The HF experi-291

ences a protracted post-natal development in primates, with histology indicating profound increases in the DG volume292

(Lavenex et al., 2007). This protracted development has also been observed in studies of the human hippocampus293

using structural MRI. Some studies have reported greater hippocampal volume from childhood through adolescence294

(Ostby et al., 2009), while others have localized these changes to the hippocampal body and reported concomitant295

decreases of volume in the head of the hippocampus (Gogtay et al., 2006; DeMaster et al., 2014). Focus on individual296

subfields using structural MRI have identified increasing DG/CA3 volume as participants approach adolescence (Lee297

et al., 2014; Daugherty et al., 2017). Stereological studies in macaques have similarly demonstrated that DG granule298

cell populations mature well beyond early life (Jabès et al., 2011). Notably, the CA3 appears to mature in lock step299

with the DG (Jabès et al., 2011). Histological studies in humans have corroborated these findings, showing increases300

in postnatal volume across the HF marked by prolonged development of the DG and CA3, while the rhinal cortices301

exhibit a comparatively earlier maturational plateau (Insausti et al., 2010).302

These differences in subfield volume and trajectories across development highlight the importance of using methods303

to simplify the input data when constructing models of HF development. This heterogeneity across the hippocampus304

is best captured by use of multivariate decomposition techniques (Keresztes et al., 2018). Our data demonstrates that305

findings such as those of Keresztes et al. (2018) are replicable across samples and different but related tasks using306

such techniques. Our data also demonstrates these techniques are sensitive to region specific changes, as indicated by307

different mnemonic outcome predictions between different constituent regions of the MTL (HF, amygdala, and rhinal308

cortices).309

In addition to multiple internal structures, the HF shares robust anatomical connections with the mPFC (Varela et310

al., 2014). The mPFC contributes to schema development (van Kesteren et al., 2010) and is sensitive to information311
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congruent with previous experience (van Kesteren et al., 2010). Developmentally related differences in the detection312

of congruence between previous and current contexts could influence generalization and discrimination behavior.313

The mPFC also plays an important role in mnemonic control, influencing memory specificity and generalization at314

encoding and retrieval (Xu and Südhof, 2013). When examining connectivity between the HF and mPFC using our315

PLSC metric, we found strikingly similar results to those in the initial analysis using only intra-HF volume.316

The transition from childhood to adolescence (“peri-puberty”) is a neurodevelopmental window when neural networks317

associated with generalization (Bowman and Zeithamova, 2018) and emotional processing (Phelps and LeDoux, 2005)318

undergo dynamic change. At the same time, disorders of emotion, such as anxiety increase putting youth at a higher319

risk for escalating mental health problems (e.g. depression) in later adolescence and adulthood (Pine et al., 1998).320

Here we provide evidence for age related brain changes in the HF associated with the discrimination of neutral and321

generalization of negative stimuli. A developmental change in this balance may exacerbate negative overgeneralization322

in peri-puberty and ultimately help explain rising rates of anxiety in this developmental window.323

Our study has several important limitations. First, our study was cross sectional, rather than longitudinal, and as such324

we can’t make any claims that these changes in volume with age are developmental in nature (Raz and Lindenberger,325

2011). Second, HF subfields were defined using a consensus labelling approach. No harmonized protocol for HF326

segmentation exists, but are currently being devised (Olsen et al., 2019). Lastly, the limited sample size of the current327

study warrants caution of over interpretation and the need for replication in a larger sample.328

Despite these limitations, our results both support and expand upon previous findings in the literature. Age related329

volumetric changes in the HF capture differences in generalization related to emotional salience and discrimination of330

emotionally neutral images. This difference in behavior appears unique to developmental changes in the hippocampus331

and may be related to changes in inter-regional connectivity between the HF and mPFC. Changes to the developmen-332

tally related balance between discrimination and generalization may support mechanisms of negative overgeneraliza-333

tion, a common feature of anxiety disorders often taking root during this developmental period.334
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