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ABSTRACT 
 
Common genetic variation in a region on chromosome 15q26 confers susceptibility to breast and 
ovarian cancer. The P53 interacting gene RCCD1 in this region is a candidate susceptibility 
gene for both cancers. In this study, a colocalization analysis of breast and ovarian cancer 
case-control genetic association studies in over 145,000 and 146,000 controls fine mapped the 
shared association in this region to 17 pleiotropic credible causal risk variants (Pbreast < 1.16 x 
10 -14 and Povary < 7.50 x 10 -7).  These variants were strongly associated with the expression of 
RCCD1 in normal breast and ovarian tissues. Circular chromosome conformation capture (4C) 
analysis of RCCD1 in breast and ovarian cancer cells identified similar patterns of cis-interaction 
and significan t binding site enrichment for the BRCA2 interacting gene EMSY (Padjusted = 9.24 x 
10 -6). The 4C an alysis pinpointed a single 2kB RCCD1 cis-interaction that contained two of the 
17 shared risk variants. RCCD1 trans-interacting regions mapped to previously identified 
genome wide significant (P < 5 x 10 -8) breast cancer risk loci (1p34.2 and 3p14.1) and to the 
pleiotropic breast-ovarian cancer risk locus at chromosome 9q34.2. Stable overexpression of 
RCCD1 in breast and ovarian cancer precursor cells identified 13 and 11 differentially expressed 
genes (DEGs) respectively associated with breast and ovarian cancer risk at genome-wide 
significance (PMAGMA < 2.6 x 10 -6 after Bonferroni correction). Eighty-two DEGs shared between 
breast and ovarian cancer were strongly enriched in TP53 (P = 9.9 x 10 -4), Hippo (P = 2.51 x 
10 -3) and TNF signaling (P = 4.7 x 10 -3) pathways. 

INTRODUCTION 

Breast and ovarian cancers share common etiologies. Epidemiological studies have long 
established a role for sex steroid hormones (e.g. oral contraceptive use, hormone replacement 
therapy) influencing the risks of both cancer types1,2 . Breast and ovarian cancers also share 
similar genetic liabilities suggesting a significant contribution of pleiotropy to risk of these 
cancers. In particular, the BRCA1 and BRCA2 genes are responsible for most families in which 
breast and ovarian cancers cluster together3–7. Pleiotropy is also an emerging feature of 
non-Mendelian forms of these and other cancers. Hundreds of common low penetrance 
susceptibility alleles have been identified for multiple cancer types using genome wide 
association studies (GWAS) and there is strong evidence that there is a shared genetic risk 
component for common alleles across cancers8–11. Common variants in several regions are 
associated with risks of both breast and ovarian cancer, suggesting that similar underlying 
biology may drive neoplastic development in both cancer types. For example, GWAS performed 
in breast and ovarian cancer populations have independently identified risk associations for each 
cancer at the 8q24.21 CMYC locus12, the 5p15.33 TERT locus13 and the 19p13.11 
ANKLE1/ABHD8 locus14. A recent meta-analysis combining GWAS data for both cancers 
identified shared (pleiotropic) risk regions that were not identified when each cancer was 
evaluated separately 15. This study performed a GWAS meta-analysis that included 62,533 
women with breast cancer and 60,976 controls, and 15,437 women with invasive epithelial 
ovarian cancer and 30,845 controls and identified two new risk loci at 9q31.1 and 15q26.1 
associated with both breast and ovarian cancer were at genome wide levels of significance in 
the combined breast and ovarian cancer data 15. 

The vast majority of disease associated variants lie in non-coding DNA regions and likely target 
tissue specific epigenomic elements that regulate the expression of a target susceptibility gene 
and/or critical gene expression networks involved in disease pathogenesis. Where the same 
genetic variants in a genomic region confer risk of two or more closely-related phenotypes, we 
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hypothesize that there is shared underlying biology driving disease pathogenesis for the different 
phenotypes. 

The goal of the current study was to interrogate the functional mechanisms underlying 15q26.1 
breast and ovarian cancer risk locus and establish if the shared genetic associations identified 
for these cancers reflect a shared biology. Using the integrated approach illustrated in Figure 1, 
we applied a combination of genetic fine-scale mapping and epigenomic annotation, cell biology 
modeling of candidate genes identified by quantitative risk variant-gene expression assocation 
analysis, and cis- and trans-interaction studies in breast and ovarian cancer precursor and 
cancer cells to identify shared networks of differential gene expression and transcription factor 
binding linked to genetic risk. 

MATERIALS AND METHODS 

Genetic fine mapping analysis: SNP genotype and sample quality control, ancestry inference, 
imputation, genome-wide association and meta-analysis procedures for the breast and ovarian 
cancer GWAS meta-analysis data sets have been described previously16,17.  All analyses were 
based on individuals of European ancestry and used 1000 Genomes Phase 3 (Version 
5)-imputed or genotyped SNPs18.  We harmonized effect and non-effect alleles and effect size 
estimate (beta coefficient) signs across the GWAS meta-analysis summary statistics data sets 
included in this study.  We focused all analyses on 3,609 variants with minor allele frequency > 
1% and imputation quality > 0.4 in each data set in the chr15:91009215-92009215 genomic 
region.  Colocalization analysis was performed using the hypothesis prioritization in multi-trait 
colocalization (HyPrColoc) R package 19.  Expression Quantitative Trait Loci (eQTL) annotation of 
the credible set SNPs was conducted using the Qtlizer web application 20 for the Genotype 
Tissue Expression (GTEx) project version 8 database 21 and using an online eQTL browser 22 for 
The Cancer Genome Atlas (TCGA)23–25. 
 
Cell culture: The FT282  and FT246 cell lines were established from fresh normal human 
fallopian tube (FT) tissue gifted by Dr. R. Drapkin 26. These FT cell lines were maintained in 
DMEM-F12 medium (Gibco, Invitrogen, Carlsbad ) supplemented with 10% fetal bovine serum 
(Gibco ). Normal mammary epithelial cells (MCF10A, MCF12A) were cultured in MEBM medium 
supplemented with 100 ng/ml cholera toxin. Ovarian cancer cell line UWB 1.289 was purchased 
from ATCC and was cultured in a mixture (1:1) of 50% RPMI and 50% MEGM media with 3% 
FBS. The breast cancer cell line MCF7 was maintained in DMEM medium with 10% FBS. BT549 
and Kuramochi were cultured in RPMI-1640 media supplemented with 10% FBS. All cell lines 
were thawed and allowed to recover for one day before expansion. All cell lines were passaged 
and plated onto 150mm plates. Cells were harvested at 80% confluency to be fixed, pelleted and 
snap frozen. Two biological replicates were included for each cell line. 
 
Preparation of 4C-Seq library: 4C-Seq libraries were prepared using a protocol that has been 
modified from our previous method 27. In brief, cells were single-cell suspended and their 
chromatin was crosslinked with 1% formaldehyde for 10 min at room temperature (21°C). 
Crosslinked cells were resuspended in a pre-chilled lysis buffer (10 mM Tris HCl, 10 mM NaCl, 
0.2% NP-40) with fresh protease inhibitors (Millipore Sigma). The lysate was then digested with 
the primary restriction enzyme, DpnII (10,000 units/ml, New England Biolabs), and incubated 
overnight at 37°C. Next, DpnII-digested DNA was subjected to proximity ligation using 1X T4 
DNA ligase (NEB), 1% TritonX-100, 0.1% BSA (NEB) and 4000U of T4 DNA ligase. Ligation was 
carried out overnight at 16°C followed by overnight cross-link removal with 20mg/ml Proteinase 
K (Qiagen). The samples were purified using phenol-chloroform and ethanol precipitated 
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resulting in 3C libraries. The 3C libraries were subjected to a second restriction enzyme 
digestion using Csp6i (Life Technologies), followed by another proximity ligation using T4 DNA 
ligase. For each viewpoint, a total of 3.2 μg of the resulting 4C templates was used to carry out a 
scale-up inverse PCR, of which 16 reactions (200 ng in each) were amplified for 29 cycles and 
purified using Macherey Nagel Nucleospin Gel and PCR Purification kit (Takara Bio). 
Sequencing libraries were made of the 4C PCR products using Thruplex DNA-seq kit (Takara 
Bio). 4C libraries were subjected to Agencourt AMPure XP Bead cleanup (Beckman Coulter) 
using a bead-to-DNA ratio of 1:1 before high-throughput sequencing on the MiniSeq system 
(Illumina). Libraries were sequenced 1 X 75bp for a minimum coverage of 2 million read depth. 
Two technical replicates of each Dpn-Csp6I 3C library were made for each 4 cell lines. 
 
Primer design for 4C-Seq: The inverse primers were designed based on a viewpoint region. 
UCSC Genome Browser (build GRCh37/hg19) was used to locate the region of interest. Upon 
loading DpnII and Csp6I tracks, DpnII restriction sites flanking the region of interest were 
identified and the sequence between the nearest DpnII and Csp6I restriction sites were selected 
as the viewpoint region. Based on this region, 4C primers were designed with the following 
settings: optimal primer melting temperature of 57 ⁰C (minimum 55 ⁰C and maximum 60 ⁰C); 
GC content between 40 and 60%.  For DpnII-Csp6I libraries, 2 baits were designed as follows: 
1) forward- TAGCTAGCACTGACAAGATC, reverse- GGATGTCCTCTGTTCTGAGT; and 2) 
forward- GAGGGCATAGGGTCAAGATC, reverse- CTTCAACCAGGCTCAGCT.  
 
4C cis-analysis: For 4C raw sequencing data, cutadapt (version 2.0) was used to remove PCR 
primers (forward and reverse) and Illumina adapter from the reads, Burrows-Wheeler Aligner 
(bwa version 0.7.15-r1140) was employed to align raw sequencing files to the human genome 
(hg19). Samtools (version 1.9) was used to convert sequence alignment files (sam) to their 
binary version (bam). To determine statistically significant cis-interactions we used 
Bioconductor’s R package r3Cseq to count the reads per restriction fragment.  Using technical 
replicates from each 4C library, the reads were normalized to RPM and interactions were 
obtained around 100kb from the view-point (4C bait), interactions closer than 3kb from the bait 
(promoter of RCCD1, coordinate 91496106 hg19) were removed. Cis-Interacting regions (CIRs) 
that were identified from biological replicates for each cell line, with a q-value < 0.01. Ovarian 
cancer CIRs were then merged based on the overlap of UWB1.289 and Kuramochi interactions. 
Breast CIRs were computed as the merged set of interactions in MCF7 and BT49 cell lines. 
Shared CIRs were identified by overlapping the breast and ovarian CIRs to obtain a unified CIR 
set with 100% of the interactions being shared across all four cell lines.  
 
4C trans-analysis: For trans- interactions analysis raw coverage signal from sequencing files 
was inputted for FDR calculation, where a threshold of 0.01 was determined based on 100 
permutations for each chromosome. From these permutation calculations, any window sizes that 
exceed 500 unique fragment ends were identified as trans- interactions28.  All Interaction regions 
(cis and  trans) were processed into bed files for plotting and visualization on UCSC Genome 
Browser as custom tracks.  
 
ChIP-Sequencing: Chromatin Immuno-Precipitation sequencing (ChIP-Seq) was performed as 
previously reported 29. Cells were fixed in 1% formaldehyde for 10 minutes and quenched with 
2M glycine. Cells were harvested, lysed in buffer, and sonicated using the Covaris E220 
evolution Focused-Ultrasonicator (Covaris). Antibodies used included H3K27ac (Diagenode), 
CTCF (Active Motif), H3K4me1 (abcam) and H3K4me3 (EMD Millipore). The H3k27ac antibody 
was incubated with 5 μg of chromatin while CTCF, H3k4me1 and H3k4me3 were incubated with 
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25ug of chromatin at 4°C overnight. Blocked magnetic Dynabeads (Life Technologies) were then 
added to the antibody-lysate conjugates and incubated at 4°C for 4 hours with rotation. Beads 
were then washed with RIPA buffer and treated with RNaseA and proteinase K (Qiagen). DNA 
was eluted from the beads in Tris-EDTA buffer and cleaned up using the Nucleospin Gel and 
PCR Purification kit (Macherey-Nagel). For every cell line, two independent 
immunoprecipitations and one input sample were submitted for next-generation sequencing on a 
HiSeq 5000 (Fulgent Genetics; Temple City, CA). All ChIP-Seq data was processed based on 
the ENCODE histone ChIP-Seq pipeline 30 with modifications on the peak calling algorithm, to 
retain peaks with P< 1 x 10 -9.  
 
Functional Annotation of Genome: The Statepaintr R package  translates epigenomic files into 
chromatin segmentations using a rule-based-decision matrix combined with an abstraction layer 
with functional categories31.  StatePaintR uses the deposited ChIP-Seq files of all uniquely 
mapping segment boundaries from the start and end coordinates of every peak then evaluates 
the presence or absence of each functional category. Next the package assesses overlaps of 
each segment to produce a boolean value. StatePaintR enables rank scoring of all states, 
allowing prioritization for non-coding variant annotation. ChIP-Seq data of the histone 
modifications (H3K27Ac-active enhancer/promoter), H3K4me3 (active promoter), 
H3K4me1(poised promoter/enhancer) and architectural complex protein (CTCF) was integrated 
for combinatorial patterning of overall chromatin states using Statepaintr in all precursor normal 
(MCF10A, FT246) and cancer cell lines (MCF7, BT549, UWB1.289 and Kuramochi). Bed files 
from these Statepaintr chromatin annotations were visualized on UCSC genome browser and 
IGV viewer.  
 
Transcription Factor Binding Site (TFBS) and protein interaction analysis: We utilized 
PERFECTOS-APE (PrEdict Regulatory Functional Effect of SNPs by Approximate P-value 
Estimation), a software built to identify TFs whose  in silico binding sites are predicted to be 
significantly affected by a given nucleotide substitution 32. This tool uses basic and dinucleotide 
Position Weight Matrices (PWMs) as TFBS and estimates the statistical significance (P value) of 
a predicted TFBS overlapping a SNP. Next, the method determines if the TFBS binding P values 
calculated for different homologous alleles differ significantly, such that extremely small or large 
ratios of P values are indicative of a TFBS existing for only one allele. TFBS motif variant 
prediction was conducted on the SNPs which intersected PCI/CCIs.  
 
TFBS enrichment analysis was performed using ReMap 2020 33, a curated database of 1135 
transcription factors from 5798 ChIP-Seq experiments. To date this is the largest catalogue of 
experimentally derived regulatory regions by integrating all available DNA-binding assays 
generating 165M binding regions across the human genome. Genomic positions of the 4C 
interaction regions were crossed against the entire catalog of in vitro TF binding peaks. The 
collective chromosomal positions for all CCIs were compared to the ReMAP catalog of TF 
binding peaks to calculate statistical enrichment for TFs. First, trans-interacting regions were 
subdivided into 1kb peaks, in which these chromosomal positions were used as a query for the 
TFBS enrichment analysis. In this analysis a TF peak was considered for enrichment when the 
TF ChIP-Seq peak in the catalogue had 100% overlap within the 1kb query peak. The default 
setting for overlap is 10% but we selected 100% as the most stringent filter.  For each queried 
peak,  six genomic regions were shuffled to create a theoretical distribution. The p-value 
represents the probability to observe an effect at least as extreme as the result, under null 
hypothesis, which can be interpreted as an estimation of the false positive rate (FPR) and it is 
computed using  the Poisson distribution (and validated empirically with randomized query 
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regions). The q-value is the correction of the p-value to take into account the multiple testing due 
to the fact that the query is compared to each TF of the remap catalogue and it is an estimation 
of the false discovery rate (FDR), utilizing the Benjamini-Yekutieli method. Using ggplot2, the 
TFs enriched in CCIs were plotted by their Q Significance (-log10 of the Q-value) and frequency 
in which they occurred in the CCIs. This analysis was also applied to all PCIs to look for TF 
specifically enriched in these regions. TFs enriched in breast trans-interactions were evaluated 
using the union set of trans-interacting regions found in the breast cancer cell lines (MCF7 and 
BT549). Similarly the union set of trans-interactions in the ovarian cancer cell lines (UWB 1.289 
and Kuramochi) were used as the regions queried in the ReMap dataset.  
 
Integrative modelling of chromatin landscapes and cistromes: We utilized Lisa 
(http://lisa.cistrome.org/) to predict the transcriptional regulators (TRs) of differentially expressed 
gene (DEG) sets. Briefly, Lisa uses publicly deposited histone mark ChIP-seq and chromatin 
accessibility profiles to construct a chromatin model related to the regulation of the DEG sets 
from breast and ovarian precursor models of RCCD1 overexpression. Using TR ChIP-seq 
peaks, this software analyses chromatin models to find the relevant TRs. to prioritize the 
candidate TRs, Lisa compares the predicted effects on the query and background gene sets 
using the one-sided Wilcoxon rank-sum test. We used two DEG sets as input for the model: set 
1 was the DEG list from FT282 RCCD1+(n= top 500; P<0,05; FDR<0.01) and set 2 was the DEG list 
in MCF12ARCCD1+ (n = 291; P<0,05; FDR<0.01). For the background gene set, we used all genes 
annotated on Gencode v.35. For the methods selection, ALL criterion was chosen which 
corresponds to both ISD-RP for motif and ChIP-Seq and TF ChIP-Seq Peak-RP. 
 
Luciferase reporter construct and activity assay : Reporter vectors were constructed in the 
pGL3-Promoter luciferase vector (Promega; GenBank Accession # U47298). The desired 
enhancer  regions spanning the 4C interaction (chr15:91,504,893-91,507,207) were amplified 
from human gDNA by PCR using primer set F1/R3. pGL3-Promoter was linearized with XhoI 
restriction enzyme. Resulting two linear fragments was assembled using NEBuilder HiFi DNA 
Assembly kit (New England Biolab Inc.) as recommended by manufacturer to create 
pGL3-promoter-RCCD1 enhancer (pSD1) with an enhancer element containing risk alleles A for 
rs8028409 and T for rs8037137. pSD2, pSD3 and pSD4 containing one or both risk allele 
mutations (A to C and T to A for rs8028409 and rs8037137 respectively) were created using 
pSD1 as template to generate fragments for HiFi DNA assembly reaction introducing mutation at 
desired site/s . Primers used to generate fragments and introduce mutation/s are listed in 
Supplementary Table S1 . Primer sets F1/R1, F2/R3, PGL3-F/PGL3-R generated 3 fragments 
for pSD2 plasmid assembly, primer sets F1/R2, F3/R3, PGL3-F/PGL3-R generated 3 fragments 
for pSD3 plasmid assembly and primer sets F1/R1, F2/R2, F3/R3, PGL3-F/PGL3-R generated 4 
fragments for pSD4 plasmid assembly. All plasmid constructs were confirmed by Sanger 
sequencing. MCF7  and UWB1.289 cells were seeded in 6-well plates at a density of 0.3 million 
cells with respective media as mentioned above. Transfection was carried out when cells 
reached 60-70% confluency. 1.9µg firefly luciferase reporter plasmids (Promega; Accession # 
U47298) and 100ng of Renilla luciferase control plasmid (Promega; Accession # AF025848) was 
mixed with 3μL of BioT transfection reagent (Bioland Scientific LLC) and transfected the cell 
lines. Cells were grown in their corresponding media for 48 h. Transfected cells were assayed 
after 48 h (as indicated for firefly and Renilla luciferase activity using the Dual-Luciferase 
Reporter Assay System (Promega) in a GloMax® Explorer System (GM3500). 
 
RCCD1 overexpression plasmid construction and preparation: Overexpression of RCCD1 
was accomplished using a sequence validated RCCD1 cDNA clone (HsCD00936904) This 
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plasmid along with a control plasmid containing CAGG sequence were purchased from the 
DNASU repository (Biodesign Institute, Arizona State University, Tempe, AZ, USA). HEK 293T 
cells were plated onto 6cm plates and used to propagate the virus (RCCD1 overexpression 
plasmid and empty control plasmid). Twenty-four hours post plating, 30μl of BioT (Bioland 
Scientific, CA, USA) was added to 100 μL serum free media containing a total of 2μg per well of 
the desired RCCD1 expression construct or control empty vector plasmid. The BioT transfection 
and DNA solutions were then combined following manufacturer recommendations. Following 
48 h of culture, virus was collected and prepared according to the manufacturer's 
recommendations. Recipient cells (FT282 and MCF10A) were transduced with viral vectors. 
After 72h, transduction efficiency was evaluated and estimated by presence of fluorescence 
reporter from the plasmid.  
 
RNA isolation, library preparation and sequencing: Total RNA was isolated using RNA 
isolation kit (Machery Nagel) as per manufacturer’s instructions. RNA concentration and quality 
were determined by NanoDrop, Qubit and Agilent Bioanalyzer 2100. Total RNA were used as 
templates for cDNA libraries and were prepared as poly-A selected libraries using the Truseq 
stranded mRNA protocol (Illumina, San Diego, CA) and then sequenced on the Illumina 
Novaseq platform at AGCT Core (Los Angeles, CA) at 2 × 150 bp paired reads for a minimum 
of 35 million reads.  
 
RNA-sequencing analysis: Raw reads obtained from RNA-Seq were aligned to the 
transcriptome using STAR (version 2.5.0)34 / RSEM (version 1.2.25)35 with default parameters, 
using a custom human GRCh38 transcriptome reference downloaded from 
http://www.gencodegenes.org, containing all protein coding and long non-coding RNA genes 
based on human GENCODE version 23 annotation. All data analysis was performed using R 
and Bioconductor packages therein. For normalization purposes read count was transformed to 
TPM. Bioconductor’s package DESeq2 was used to compare the RCCD1 overexpression lines 
to control plasmid groups,  performing differential expression analysis based on a model using 
the negative binomial distribution 36. 
 
Cell proliferation assay:  The human cell lines FT282 p53R175H (sgOR10A (Control ox), RCCD1 
ox, sgRCCD1 (RCCD1 KO), CAGG ox (Control ox) and normal human breast epithelial cell 
MCF12Ap53R175H with CAGG ox, RCCD1 ox, RCCD1 KO and Control KO were grown in 
Dulbecco's modified Eagle's medium/Ham's F12 medium supplemented with 10% FBS and 
Dulbecco's modified Eagle's medium and Ham's F12 medium, 20 ng/ml Human epidermal 
growth factor, 100 ng/ml cholera toxin, 0.01 mg/ml bovine insulin and 500 ng/ml hydrocortisone, 
95%; horse serum, 5% respectively. Cells were seeded in triplicate at the cell density of 10,000 
cells/well in 96-well plate overnight in 200 ul respective media. After overnight incubation, equal 
volume of the 2X RealTime-Glo™ MT Cell Viability Reagent (Catalog # G9711)(Promega)) were 
added according to the manufacturer’s protocol. We measure the luminescence using the 
GloMax Microplate reader (Promega). To determine cell growth curve, we continue measuring 
luminescence at various times over the desired time course (e.g., 1hr, 2hr, 3hr, 4hr, 5hr, 8hr). 
We plot the luminescence versus different time points using linear regression curve fit. A one 
way ANOVA was used for statistical analysis of proliferation assays. 
 
RESULTS 
 
Genetic associations with breast and ovarian cancer risk in the 15q26.1 region colocalize 
to 17 candidate causal risk variants: We performed colocalization analysis of the previously 
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identified breast and ovarian cancer susceptibility signal in the 15q26.1 region 15 using summary 
genetic association data for 3,609 SNPs in the 1 Mb interval  chr15:91009215-92009215  from the 
Breast Cancer Association Consortium (122,977 overall breast cancer cases and 105,974 
controls)16 and the Ovarian Cancer Association Consortium (22,406 invasive epithelial ovarian 
cancer cases and 40,941 controls)17. Colocalization analysis supported two conclusion s (Figure 
2A): First, that there is a confirmed association with breast and ovarian cancer risk for common 
genetic variants in the chr15:91009215-92009215 interval (regional posterior probability of 
association (PPA) > 99%);  second, that the alignment of cross-cancer associations in the region 
was strongly compatible (posterior probability of colocalization = 80%) with the presence of a 
single underlying causal signal that is associated with both breast and ovarian cancer risk.  

Colocalization analysis fine-mapped the pleiotropic breast and ovarian cancer signal in the 
region to a credible set of 17 SNPs that together explained > 99% of the shared association in 
the region  (i.e., > 99% of the posterior probability of colocalization; Figure 2B; Supplementary 
Table S2 ). This joint cross-cancer fine mapping represents a 5 SNP (or 23%) improvement over 
a recently published large-scale, breast cancer-specific fine mapping effort that refined the 
breast cancer signal in the region down to 22 SNPs37.  In a QTL based analysis of 396 breast 
and 167 ovarian tissues in the genotype-tissue expression (GTEx) project all 17 risk associated 
SNPs in the credible causal set were associated with the expression of two genes: RCCD1 
(Pbreast < 1.7 x 10 -21 and Povary < 8.3 x 10 -6) and the long non-coding RNA PRC1-AS1 (Pbreast < 7.5 
x 10 -9 and Povary < 4.2 x 10 -9) (Supplementary Table S3 )21. The alleles associated with increased 
risk of breast and ovarian cancer were associated with decreased RCCD1 expression and 
increased PRC1-AS1 expression in both breast and ovarian tissues (Figure 2C).  The original 
lead SNP at this locus, rs8037137, was among the 17 SNPs in the credible causal set; gene 
expression associations for RCCD1 and PRC1-AS1 with rs8037137 genotypes are shown in 
Figure 2C . We also found that  rs8028409 was the top eQTL for RCCD1 expression in TCGA 
breast tumors (P = 3.2 x 10 -7). As with our findings in GTEX, in TCGA data the A (risk) allele is 
associated with decreased RCCD1 expression. No expression associations were identified for 
these SNPs in ovarian tumors from TCGA22.  

RCCD1 interacts with shared epigenomic targets and two colocalized risk variants in 
breast and ovarian cancer cells: We hypothesized that RCCD1 is the target susceptibility 
gene of genetic risk allele(s) at 15q26.1 regulated by the same genetic and epigenomic 
mechanisms in breast and ovarian cancers. To evaluate this, we first integrated the 17 risk 
variants with epigenomic features from profiling breast and ovarian precursor and cancer cell 
lines to identify putative regulatory targets of these variants (Table 1). This identified 
intersections between 9/17 risk variants and different epigenomic features including active 
enhancers, poised enhancers, active regions and CTCF-bound regions, and with numerous 
transcription factors binding site (TFBS) motifs for 14/17 risk variants (Table1; Supplementary 
Tables S4 and S5). We then used circular chromosome conformation capture (4C) analysis to 
identify which, if any, of these regions physically interacts with RCCD1. The promoter of RCCD1 
was used to bait interacting regions in the breast cancer cell lines MCF7 and BT549; and in the 
high grade serous ovarian cancer (HGSOC) cell lines UWB1.289 and Kuramochi.  We identified 
a total of 65 cis-interacting regions (CIRs) with RCCD1 including the same 9 CIRs in all four cell 
lines (Figure 3A; Supplementary Table S6 ). One of these nine CIRs in a region of 
approximately 2kb (chr15:91504892-91507207) harbored 2/17 credible causal risk variants: 
rs8028409 (Pbreast risk = 4.73 x 10 -15 and Povaran risk = 3.26 x 10 -7) and rs8037137 (Pbreast risk = 6.52 x 
10 -15 and Povarian risk = 4.61 x 10 -7). Neither of these SNPs coincided with putative enhancers, 
promoters or CTCF-bound regions, but were predicted in silico to disrupt TFBS motifs for 16 
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factors (Figure 3A; Table1; Supplementary Table S4 ). We also used ReMap data to evaluate 
all local regions that interact with RCCD1 for TFBS motif enrichment based on experimentally 
observed binding sites identified with ChIP-seq. CIRs were most significantly enriched for TFBSs 
with known roles in cancer including the BRCA2 interacting TF EMSY (Padjusted = 9.24 x 10 -6), the 
STAT1 and NF-κB regulator PIAS1 (Padjusted = 6.74 x 10 -3) and ZNF316 (Padjusted = 6.74 x 10 -3) 
(Figure 3B) . 

We tested the functional effects of different allelic combinations of rs8028409 and rs8037137 on 
RCCD1 expression using luciferase reporter assays in breast (MCF7) and ovarian (UWB1.289) 
cancer cells. Four constructs each containing different allelic combinations of rs8028409 
(A-risk/T-protective) and rs8037137 (T-risk/C-protective) were transfected into MCF7 and 
UWB1.289 cells. Constructs containing only the risk alleles of rs8028409 and rs8037137 were 
associated with the lowest RCCD1 expression in both breast and ovarian cancer cells. 
Constructs expressing only protective alleles were associated with the highest RCCD1 
expression (Pbreast <0.0001 and Povarian = 0.02 respectively) while constructs containing different 
combinations of protective/risk allele for each SNP were associated with intermediate RCCD1 
expression (Figure 3C).  

RCCD1 4C trans interactions in breast and ovarian cancer risk are enriched for disease 
associated transcription factor binding sites: We used 4C data in the breast and ovarian 
cancer cells to identify long-range trans interacting regions (TIRs) between RCCD1 and 
regulatory elements throughout the genome. In total, we found 165 TIRs across all four cancer 
cell lines with 30 and 46 TIs respectively identified in MCF7 and BT549 breast cancer cells, 66 
and 23 TIRs respectively identified in UWB1.289 and Kuramochi ovarian cancer cells and three 
TIRs shared across all four cell lines (Supplementary Table S7). Five other TIRs were shared 
between both breast cancer cell lines, and nine other TIRs were shared between both ovarian 
cancer cell lines (Figure 4A). We performed enrichment analyses of these TIRs with respect to 
TFBS motifs from ReMap data. There were significant enrichments for many TFBSs shown to 
play a role in cancer development generally and breast and ovarian cancer biology specifically. 
For breast cancer TIRs, the most significantly enriched TFBS motifs included the transcriptional 
regulator chromobox protein (CBX1), the P53 degradation E3 ligase protein (RNF2), the DNA 
double-strand break repair protein  RAD21 and  the retinoblastoma protein (RB1)(Figure 4C; 
Supplementary Table S8) . For ovarian cancer, the most significantly enriched TFBS motifs 
included the MYC Associated Factor X (MAX) protein, the stromal antigen 1 protein(STAG1) and 
bromodomain transcriptional regulatory (BRD4) (Figure 4D; Supplementary Table S9).  
Phenotypic and molecular analysis in breast and ovarian cancer precursor cells support 
a role for RCCD1 in early stage neoplastic development:  Expression QTL analyses suggest 
that the risk alleles of variants at 15q26.1 are associated with a decrease in RCCD1 expression 
(Figure 2C ); but in breast and ovarian tumors and in cancer cell lines the evidence suggests that 
RCCD1 is overexpressed during tumor development (Supplementary Figure 1A)23,24. 
Therefore, we tested the effects of modulating RCCD1 expression by both overexpressing and 
knocking down the gene separately in models of breast (MCF12A) and ovarian (FT282) cancer 
precursor cells. We first generated single cell clonal models of RCCD1 overexpression 
(MCF12ARCCD1+ and FT282 RCCD1+) and confirmed overexpression of both RCCD1 transcript and 
protein (Supplementary Figure 1B).  MCF12ARCCD1+ and FT282 RCCD1+ cells were significantly 
more proliferative than MCF12A and FT282 cells (P = 1.7 X 10 -3and 5.1 X 10 -3 respectively) 
(Figure 5A & B ). Next, we used CRISPR/Cas9 to knockdown RCCD1 expression 
(MCF12ARCCD1- and FT282 RCCD1-), derived single cell clones and confirmed loss of RCCD1 
transcript and protein expression (Supplementary Figure 1C). RCCD1 knockdown induced a 
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strong growth suppression in MCF12ARCCD1- cells (P = 4.5 X 10 -3 ; Figure 5A ) but an increase in 
proliferation in FT282 RCCD1- cells (P = 1.1 X 10 -3; Figure 5B ).  

Because the phenotypic effects associated with RCCD1 overexpression were similar in MCF12A 
and FT282 cells, we chose to perform whole transcriptome profiling of MCF12ARCCD1+ and 
FT282 RCCD1+ clones by RNA-seq. We identified 291 differentially expressed genes (DEGs) 
(|log2FC | >0.5, Padjusted< 0.05) between MCF12A and MCF12ARCCD1+ cells of which 138 genes 
were up-regulated and 153 genes were down-regulated (Figure 5C, Supplementary Table 
S10). Comparing FT282 with FT282 RCCD1+ cells, we identified 2,469 DEGs (| log2FC |> 0.5, 
p adjusted< 0.05), of which 1,084 genes were up-regulated and 1,385 genes were down-regulated in 
(Figure 5D, Supplementary Table S10 ). Eighty-two DEGs were shared between breast and 
ovarian cancer precursor cell line models. All DEGs were annotated using the KEGG database 
to identify biologically relevant pathways (Supplementary Table S11-13). In MCF12ARCCD1+ 

models we identified significant enrichments for pathways involved in PPAR (peroxisome 
proliferator-activated receptor) signaling (P = 0.01), the pro-inflammatory cytokine IL-17 
(interleukin 17A) signaling (P = 0.02) and steroid hormone biosynthesis (P = 0.03) 
(Supplementary Table S11) . In FT282 RCCD1+ cells we identified significant enrichments for 
pathways involved in Ras (P = 9.4 X 10 -5), Rap1 (P = 9.83 x 10 -5) and p53 signaling pathways (P 
= 9.9 x 10 -5) (Supplementary Table S12).  Pathway analyses of the 82  DEGs that were shared 
between breast and ovarian RCCD1 overexpression models identified significant enrichment of 
genes in the TP53 (P = 9.9 x 10 -4), Hippo (P = 2.51 x 10 -3) and TNF signaling (P = 4.65 x 10 -3) 
pathways (Supplementary Table S13). 

Evidence that RCCD1 interacts with and operates in the TP53 pathway in breast and 
ovarian cancer: We further explored the putative role of RCCD1 in the TP53 pathway. RCCD1 
is a known partner of the histone H3K36 demethylase KDM8 (JMJD5)38 which interacts with the 
DNA-binding domain of TP53 to negatively regulate its activity (Figure 6A). This finding was 
mainly driven by enrichment for TP53-associated DEGs identified in FT282 RCCD1+ models.  
Several DEGs identified in these models are closely related partners of TP53 signaling including: 
MDM2, a critical negative regulator of P53; the cyclin-depe ndent kinase inhibitor CDKN2A; and 
CCND1 and CCND2, two regulators of cyclin-dependent kinases (Figure 6B). In two 
independent clones of RCCD1 knockdown in FT282  cells stably expressing a functional 
mutation of TP53 (R175H), mutant TP53 was significantly depleted (Figure 6C). We analyzed 
RCCD1 expression with respect to somatic, functional TP53 mutations in primary breast and 
ovarian cancers using TCGA data 39. Both breast and ovarian cancers with increased RCCD1 
expression were significantly more likely to harbor functional TP53 mutations than tumors with 
low RCCD1 expression (Pbreast = 8 x 10 -12 and Povary = 4 x 10 -3) (Figure 6D ).  

Differentially expressed genes identified in RCCD1 overexpression models are associated 
with breast and ovarian risk alleles: We used GWAS data generated by the Breast and 
Ovarian Cancer Association Consortia to map common variants across the genome to genes 
and performed gene-level association analysis using MAGMA40,41. This identified 281 genes 
associated with breast cancer risk and 42 genes associated with ovarian cancer risk at 
genome-wide significance (PMAGMA < 2.62 x 10 -6; threshold adjusted for testing 19,100 genes). 
Thirteen of the 281 breast cancer associated genes and 11/42 ovarian cancer associated genes 
from MAGMA showed significant gene expression perturbations (Padjusted < 0.05) in 
MCF12ARCCD1+ cells and FT282 RCCD1+ cells, respectively (counts exclude RCCD1; 
Supplementary Table S14 ). There was a |log2FC| > 0.5 fold change in expression of TRIM31 in 
the MHC region and CDYL2 and NOTCH2NL in MCF12ARCCD1+ cells and ANKLE1, BNC2, 
HOXB3, and LRRC37A in FT282 RCCD1+ cells. Several differentially expressed genes in 
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FT282 RCCD1+ cells were located at pleiotropic breast and ovarian cancer risk loci, such as 
ANKLE1 and ANO8 at the 19p13.11 locus14; LRRC37A, KANSL1, ARL17A, and PLEKHM1 at 
the 17q21.31 locus42,43, and TERT at the 5p15.33 locus 13. The HOXB  cluster and BNC2 have 
previously been identified as having specific functional roles in mediating ovarian cancer risk44,45. 
MLLT10 was differentially expressed in both MCF12ARCCD1+ and FT282 RCCD1+ cells (Padjusted < 
0.05) and was significantly associated with both breast and ovarian cancer risk in the MAGMA 
analyses (PMAGMA < 2.62 x 10 -6). 

Integrating transcriptomic and RCCD1 interactome data validates 4C trans-interactions 
identified in breast and ovarian cancers:  To validate the functional significance of 
RCCD1-TIRs in breast and ovarian cancers, we integrated these regions with the differential 
expressed genes identified after overexpression of RCCD1 in MCF12A and FT282 cells. We 
identified six DEGs(PCBP3,  BSCL2, COL18A1, NUP210 ,POLR2G and PARP10) in 
MCF12ARCCD1+ cells that overlap   TIRs in breast cancer cell lines and eighteen DEGs (EEF1G, 
BCDIN3D, TUBD1,PPM1D, RNF43,  BCAS4, TSHZ2, DOK5 DOCK3, MKRN2OS,  HRH1, 
RPL26L1, VDAC1, SKP1, ZDHHC11, RPS10, PRKRIP1, RASA4) that overlap TIRs in ovarian 
cancer cell lines. This enrichment of DEGs in RCCD1-TIRs in breast and ovarian cancer cells 
was significantly more than expected by chance based on the simulation of more than a 
thousand random permutations (Wilcoxon P =  0.049; Figure 4B).  

Finally, we used the online tool LISA (Cistrome) to evaluate the TFs and chromatin regulators 
that may be responsible for the perturbation of DEGs found in MCF12ARCCD1+ and FT282 RCCD1+ 
cell s . In MCF12ARCCD1+  cells 13 out of the top 50 TFs overlapped ReMAP and Cistrome 
predictions (including YY1,  HDAC2, EGR1, STAG1, HEXIM1,  MBD3, ELF1 and CHD2) 
(Supplementary Table S15)  and in FT282 RCCD1+ cells 11 of the top 50 TFs overlapped ReMAP 
and Cistrome predictions from the DEGs identified in FT282 RCCD1+ cells (including NR2F1,  SP1, 
ERG,    ESR1,  RUNX1 and HIF1A) (Supplementary Table S16).  We also identified several 
TFs that were shared between breast and ovarian cancer cells in both our trans TF enrichment 
and Cistrome analyses including MYC, RAD21, CTCF, MAX and AR. 

 
DISCUSSION 

We have shown that the genetic architecture of common variant risk associations in the 15q26.1 
region is the same in both breast and ovarian cancer suggesting that similar functional 
mechanisms at this locus drive disease development for both cancer types. We focused on 
RCCD1 (regulator of chromosome condensation domain-containing protein 1) in this region as 
the most likely breast and ovarian cancer susceptibility gene and target of risk variation following 
expression quantitative trait locus (eQTL) analysis which found significant associations between 
risk genotypes and RCCD1 expression in normal breast and ovarian tissues. However, we 
cannot rule out that other genes in the region may be the target susceptibility gene operating in 
collaboration with or independently from RCCD1 and our eQTL analyses also identified 
significant associations with the lncRNA PRC1-AS1 (Protein Regu lator of cytokinesis 1- 
antisense 1) in normal breast and ovarian tissues. PRC1-AS1 overlaps the PRC1 gene, and as 
such may play a role in regulating PRC1 transcript expression. While we did not identify a 
significant eQTL for PRC1 in this analysis, a previous transcriptome wide association study 
(TWAS) has identified a significant splice-QTL for PRC1 in breast tumors which fully explained 
the GWAS signal in ovarian cancer at the 15q26.1 46. In addition, recent studies have suggested 
that PRC1 overexpression may be associated with the development of multiple tumor types47–49 
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and in one study PRC1 mRNA and protein expression were upregulated in high‑grade serous 
ovarian cancers, particularly in tumors from patients without BRCA1/BRCA2 mutations50. 

RCCD1 is a highly plausible breast and ovarian cancer susceptibility gene. By partnering with 
the histone H3K36 demethylase KDM8 (JMJD5)38,RCCD1 interacts with the DNA-binding 
domain of TP53 to negatively regulate its activity, and is an important complex for spindle 
organization, chromosome segregation and accurate mitotic division 38. Germline pathogenic 
mutations in TP53 are responsible for the autosomal dominant Li-Fraumeni syndrome (LFS), 
which is most commonly associated with early onset sarcoma, and malignancies of the brain, 
breast and adrenal glands51. The risk of breast cancer in women with LFS is estimated to be 
about 50% by age 60 52. Somatic P53 mutations are also essential for HGSOC development, are 
common aberrations in triple negative breast cancer25,24, and are associated with BRCA1 and 
BRCA2 mutant cancers53,54. In this study, we provide functional evidence that RCCD1 interacts 
with TP53 in early stage neoplastic development. Knockout of wild-type RCCD1 expression in 
fallopian tube cells expressing the functional TP53 hotspot mutation (R175H) resulted in 
depletion of TP53 protein expression. Consistent with this, primary breast and ovarian tumors 
analyzed by TCGA 39 with low RCCD1 expression are significantly less likely to also harbor 
pathogenic TP53 mutations than tumors with higher RCCD1 expression. 

The interaction with TP53 suggests that RCCD1 plays an important role in cell cycle regulation 
and DNA damage repair55. Other data from this study support this hypothesis. The same RCCD1 
cis-interacting regions identified in both breast and ovarian cancer cell lines were significantly 
enriched for EMSY binding site motifs. EMSY is a transcriptional repressor that directly interacts 
with the DNA double strand break repair protein BRCA2, a well characterized breast and ovarian 
cancer susceptibility gene. Thus, EMSY likely dysregulates DNA damage repair to induce 
genomic instability. Immunofluorescence analysis in the normal mammary epithelial cell line 
MCF-10A and breast cancer cell line MCF-7 shows that EMSY localizes to the nucleus after 
exposure to ionizing radiation; there is also direct evidence that EMSY locates to sites of DNA 
lesions after DNA damage 56,57. In another study, overexpression of EMSY disrupted the 
BRCA2/RAD51 pathway in response to DNA-damage, leading to the hypothesis that 
amplification of EMSY mimics BRCA2 deficiency by overriding RPA and PALB2, crippling the 
BRCA2/RAD51 complex at site of DNA damage 58.  

RCCD1 trans-4C interaction analyses identified genomic regions that were highly significantly 
enriched in motifs for TFs that are known to be involved in breast and/or ovarian cancer biology 
including in the three shared regions identified in four breast and ovarian cancer cell lines. This 
included RAD21 an essential gene that functions in the DNA double strand break repair 
pathway, further supporting the putative functional role of RCCD1 in DNA repair. A recent study 
has shown that mutant p53 stimulates cell invasion through its interaction with RAD21 in ovarian 
cancer cells, while RAD21 expression is associated with poor prognosis in BRCA2 associated 
breast cancers 59. ESR1 (estrogen receptor 1) was also enriched in RCCD1 trans-interacting 
regions in breast and ovarian cancer cells. ESR1 is a nuclear receptor that is activated by the 
sex hormone estrogen. ESR1 aberrations play a significant role in the development of breast 
cancers and their progression to metastasis and resistance 60,61. Germline variants at the ESR1 
locus on chromosome 6q25 are associated with breast cancer risk62, including in women 
carrying  BRCA1 and BRCA2 mutations63 and variations in mammographic density64, probably 
through their regulation of ESR1 gene expression 65. In breast cancer cells we found enrichment 
for several notable genes and TFs involved in cancer development including RB1 and FOXA1 . 
The critical role of RB1 (retinoblastoma protein 1) as a driver of neoplastic development is 
unequivocal. Alterations of RB1 or components regulating the CDK-RB-E2F pathway have been 
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identified in nearly every human malignancy and lead to excessive cell growth through loss of 
cell cycle control . FOXA1 (Forkhead box protein A1) is a member of the forkhead class of 
DNA-binding proteins and hepatocyte nuclear factor transcriptional activators. It has a well 
characterised role in breast cancer development acting as a pioneer factor in estrogen receptor 
(ER) positive breast cancer, where its  expression may indicate ER+ cancers that undergo rapid 
reprogramming of ER signaling are associated with poor outcomes and treatment resistance 66. 
In ovarian cancer cells TFs that were enriched included MYC, NR2F1 and KDM5B. Genomic 
amplification of MYC  is known to be a major driver of ovarian cancer development67,68 while the 
CMYC locus on chromosome 8q24.1 is the most significant pleiotropic risk locus so far identified 
in breast, ovarian and several other cancers12,69–73. NR2F1 (n uclear receptor subfamily 2 group 
F, member 1) binds directly with ESR1 and is a member of the nuclear hormone receptor family 
of steroid hormone receptors, consistent with the underlying etiology and known role of steroid 
hormones in the risk of ovarian cancer1,2. Finally, KDM5B (JARID1B) regulates EMSY via its 
interaction with the micro-RNA miR-3174 and induces re-expression of HEXIM1, which was also 
enriched in in RCCD1 trans-interacting regions in ovarian cancer cells75.  

Differential gene expression analysis after RCCD1 overexpression identified 82 genes in both 
breast and ovarian cancer precursor cell line models that may be associated with the early 
stages of neoplastic development of breast and ovarian cancers (Supplementary Table S17). 
As expected, RCCD1 was one of these genes. For others, there is substantial evidence they are 
altered during breast/ovarian cancer initiation and development including: CCND2 (Cyclin D2), a 
regulator of cyclin-dependent kinases that appears to be frequently methylated in breast cancers 
affecting drug resistance76,77 and in which common germline variants may affect both risk and 
survival for ovarian cancer 78,79; WNT5A, which is central to many processes in cancer development 
including cellular senescence, proliferation, invasion, migration, inflammation, metastasis and 
chemo-resistance80, increases cell migration and invasion in breast cancers81-82 and is upregulated in 
ovarian cancer promoting epithelial-mesenchymal transition83,84; and the cadherin CDH11 is 
overexpressed in about 15% of breast cancers and is associated with poor prognosis 85. Some genes 
may represent novel, possibly overlooked candidate biomarkers for screening and/or targets for 
therapeutic intervention. These include the Ras Protein Activator Like 1 gene, RASAL1 (Ras 
pathway activation is a critical component of ovarian, breast and many other cancers86); the 
Wilms Tumor interacting protein, WTIP (the Wilms Tumor 1 gene is a highly specific diagnostic 
and prognostic marker for ovarian cancers)87; the kalikrein -related peptidase KLK5 (one of a 
family of secreted proteins evaluated as screening biomarkers, including KLK3, or prostate 
specific antigen, which is routinely used to screen for prostate cancer)88; and the death 
associated protein kinase gene DAPK1, a candidate tumor suppressor gene and drug target that 
promotes the growth of P53 mutant cancers89. 

The 82 differentially expressed genes shared between breast and ovarian cancer models were 
also significantly enriched in three of the most well established pathways in cancer: TP53, Hippo 
and TNF signaling. Aside from TP53,  which has been discussed at length already, the Hippo 
pathway is involved in regulating cell proliferation and promoting apoptosis in organ 
development and has a critical role in stem cell and tissue specific progenitor cell self-renewal 
and expansion 90. Many of the pathway components in the Hippo signaling network are 
recognized as tumor suppressor genes and oncogenes that are perturbed in human cancers, 
including Fat4 which is mutated in breast cancer91 and YAP in ovarian cancers92,93 . TNF (tumor 
necrosis factor) signaling has a primary role in the regulation of immune cells and is involved in a 
wide range of physiological processes including inducing fever, apoptotic cell death, cachexia, 
inflammation and tumor inhibition. Dysregulation of TNF production has been implicated in 
cancer development94 with breast and ovarian cancers often accompanied by inflammatory 
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processes characterized by the presence of proinflammatory cytokines including TNF-α95,96. 
Immunotherapy has become a major focus of targeted treatments against  a wide range of 
cancers and within this field members of the TNF receptor superfamily have also been proposed 
as novel therapeutic targets97. Some of the pathways were the same as those identified as 
enriched networks in RCCD1 4C trans-interaction studies, in particular steroid hormone 
biosynthesis in breast cancer and P53 associated pathways in ovarian cancer, even though 
these networks were derived using different methods and experimental models at different 
stages of disease pathogenesis.  

Strikingly, our data provide evidence that connects 4C trans-interaction networks and gene level 
associations from modelling RCCD1 overexpression to credible causal risk variants at already 
identified breast, ovarian and pleiotropic breast-ovarian risk regions. Our results suggest 
cross-talk between regulatory elements in risk regions with gene promoters at other risk regions 
on different chromosomes. Recently, Pritchard and colleagues 98 proposed a model where 
genetic contributions to complex traits are partitioned into direct effects from core genes and 
indirect effects from peripheral genes acting in trans. The data we present here indicates that 
there are likely to be direct functional trans-relationships between different GWAS risk loci for 
any given phenotype. Interestingly, past studies have shown these types of contacts are known 
to be within interchromosomal enhancer–promoter networks in developmental cell 
differentiation 99,100 and have been proposed to contribute to transcriptional heterogeneity within 
cell populations101,102. In one study, aberrant TAL1 expression in human T-cell acute 
lymphoblastic leukemia (ALL) was mediated by interchromosomal interaction between the TAL1 
promoter on chromosome 1 with a regulatory element called TIL16 on chromosome 1 103 
indicating that trans-interactions can capture a target gene’s ability to co-regulate the expression 
of other genes. This supports the hypothesis that weak trans-eQTL SNPs contribute to their 
modest heritability effects through their regulation of peripheral genes to alter core gene 
expression 98. If these core genes tend to be co-regulated, then the model also predicts that 
peripheral variation effects can be increased with a large proportion of heritability driven by these 
weak trans effects. 

In summary, we describe a functional framework for the analysis of pleiotropic GWAS risk loci, 
based on the identification of trans-interaction networks combined with differential gene 
expression modeling of candidate susceptibility genes, to connect different susceptibility loci 
through their shared biology. The data we present supports the hypothesis that RCCD1 is the 
susceptibility gene target for both breast and ovarian cancer at the 15q26.1 pleiotropic risk locus, 
and suggests that by looking at RCCD1 interaction networks throughout the genome we can 
identify additional risk loci and susceptibility genes for these phenotypes. This may be 
particularly relevant for studying rare phenotypes where the ability to identify new genome wide 
risk associations based on case-control genotype analyses alone is restricted by sample size.  
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FIGURES AND TABLES 

Table 1: Details of the 17 credible causal risk variants (in order (5’ to 3’) of nucleotide location) 
identified by colocalization analyses of breast and ovarian cancer data at the 15q26.1 locus 

SNP ID Nucleotide 
position 

(build 37) 

P-Value 
breast 
cancer 

P-Value 
ovarian 
cancer 

SNP 
Score a 

# TF motifs 
intersections 

Tissue 
specific 

epigenomic 
intersections 

b 

rs8028409 c 91506422 4.73 x 10-15 3.26 x 10-7 0.046 13 - 

rs8037137 c 91506637 6.52 x 10-15 4.61 x 10-7 0.023 3 - 

rs112770790 91507495 3.44 x 10 -15 4.97 x 10 -7 0.039 7 EPR 

rs77554484 91509215 1.28 x 10 -15 5.73 x 10 -7 0.090 - AR 

rs2290202 91512267 1.87 x 10 -15 4.38 x 10 -7 0.073 11 - 

rs2890156 91513157 5.65 x 10 -15 4.81 x 10 -7 0.022 14 - 
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rs12595025 91520131 4.03 x 10 -15 4.20 x 10 -7 0.039 15 - 

rs12594925 91520287 2.64 x 10 -15 3.54 x 10 -7 0.070 16 CTCF 

rs113343095 91522092 3.37 x 10 -15 4.54 x 10 -7 0.056 16 AR; EAR 

rs8026714 91522253 6.05 x 10 -15 5.20 x 10 -7 0.021 - EPR; AR; EAR 

rs2301825 d 91528070 2.24 x 10-15 4.37 x 10-7 0.070 4 EAR 

rs150333865 91528875 3.83 x 10 -15 6.46 x 10 -7 0.026 24 EAR 

rs60290423 91529452 3.21 x 10 -15 7.50 x 10 -7 0.027 4 EPR 

rs12594752 91531995 1.86 x 10 -15 2.13 x 10 -7 0.159 1 - 

rs76119208 91535329 2.40 x 10 -15 2.20 x 10 -7 0.129 29 EPR 

rs78029804 91538920 3.17 x 10 -15 2.46 x 10 -7 0.098 - - 

rs3826033 91548601 1.16 x 10 -14 7.14 x 10 -7 0.008 15 - 

a Ranking score for the top 17 risk associated SNPs in breast and ovarian cancer from 
co-localization analysis (i.e., posterior probability of colocalization at each SNP). These 17 SNPs 
explain > 99% of the shared association in the region 
b  EAR: Active enhancer region; EPR: Poised enhancer region; CTCF: Architectural complex 
region; AR: Active region 
c Intersects a 4C interacting region in breast and ovarian cancer cells (Figure 3A) 
d Intersects a 4C interacting region in breast and ovarian precursor cells (Figure 3A) 

 

  
Figure 1: The experimental pipeline used for the genetic and functional analysis of the 
15q26.1 (RCCD1) breast and ovarian cancer susceptibility locus . 
  
Figure 2: Fine mapping and expression quantitative trait locus analysis of the 
chromosome 15p26.1 breast and ovarian cancer risk locus: (A) Regional association plot for 
the chr15:91009215-92009215 interval derived from independent genetic association analysis 
performed breast and ovarian cancer case-control studies and from a meta-analysis that 
combines breast and ovarian cancer cases and controls to identify 17 credible causal risk 
variants that are shared between both cancers; (B) Regional localization plot showing the 
location of the 17 credible causal risk variants with respect to three nearest by genes, RCCD1, 
PRC1 and the lncRNA PRC1-AS1; (C)  Expression QTL analysis in normal breast and ovarian 
tissues from GTEx. Violin plots show allele-expression associations for rs8037137 index SNP. 
The T (risk associated) allele is significantly associated with decreased expression of RCCD1 
and increased expression of PRC1-AS1 in both breast and ovarian tissues. 
  
Figure 3: Circular chromosome conformation capture (4C) analysis anchored to RCCD1 in 
breast and ovarian precursor and cancer cell lines.  (A) Genomic locus plot of chr 15: 
91470-91450 showing. RefSeq genes annotated from hg19 build of UCSC genome browser. 
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Shared 4C interactions with RCCD1 in breast and ovarian cancer cell lines (magenta loops) and 
breast and ovarian precursors (blue loops). Combined tracks of enhancer-associated H3K27ac 
histone marks catalogued in breast (pink peaks) and ovarian (dark teal peaks) cancer and 
precursor cell lines show the 4C-RCCD1 landscape extending upstream and downstream of 
RCCD1, with respect to the colocalized credible causal risk variants (vertical dark blue lines). 
Interacting peaks that overlap 2/17 risk variants (rs8037137 and rs8028409) in cancer cell lines 
and 1/17 risk variants (rs2301825) in precursor cell lines are highlighted by the pink and purple 
vertical bars respectively. Chromatin states annotated in breast (MCF7) and ovarian 
(UWB1.289) cancer cell lines: Active region (AR): active promoter region (PAR); poised 
promoter region (PPR); active enhancer region (EAR); poised promoter region (PPR); 
architectural complex region (CTCF). (B) Enrichment of TFs ChIP-Seq peaks found in 
cis-interactions of breast cancer (MCF7, BT549) cell lines. Color designates the statistical 
significance (Q value) of the TF enrichment with highest (red) to lowest E value (blue). Circle 
sizes depict the number of overlaps the TFs intersect with cis-interactions; (C) Enrichment of 
TFs ChIP-Seq peaks found in  cis-interactions of (B) ovarian cancer (UWB1.289, Kuramochi) cell 
lines. 
  
Figure 4: Trans-4C interaction and network analysis for RCCD1 in breast and ovarian 
cancer cells. (A) Circos plot of genome wide RCCD1 trans-interactions (FDR<0.01) in breast 
cancer cell lines (MCF7, BT549) and ovarian cancer cell lines (UWB.1289, Kuramochi) are 
depicted as red and green lines, respectively, looping in the center. Interactions are aligned with 
respect to chromosomes (outer track), and breast and ovarian cancer GWAS risk loci (P≥5x10 -8) 
which intersect trans-interactions (inner circle). (B) Wilcoxon text of DEGs enriched in 
RCCD1-TIRs in breast and ovarian cancer cells based on the simulation of more than a 
thousand random permutations (P =  0.049)(C) Enrichment of TF ChIP-Seq peaks found in 
trans-interactions of breast cancer cell lines MCF7 and BT549. Color of the circles represent the 
statistical significance of the TF enrichment with red representing the highest and blue the 
lowest. Circle sizes represent the total numbers of overlaps between TFs and  trans-interactions 
in breast cancer; (D) Enrichment of TF ChIP-Seq peaks found in trans-interactions of ovarian 
cancer cell lines UWB1.289 and Kuramochi. Color codes are the same as in (B).  
 
Figure 5:   Phenotypic analysis of RCCD1 overexpression models in precursor breast and 
ovarian cancer cells. (A) Cell  proliferation is significantly increased in precursor (A) breast 
(MCF12A RCCD1 OE) and (B) ovarian (FT282-RCCD1 OE) cell models of RCCD1 
overexpression compared to control (CONTROL OE). Cell proliferation decreased in RCCD1 
knockout cell models in breast (MCF12A RCCD1 KO)  but increased in ovarian cancer models 
(FT282 RCCD1 KO) compared to control cells (OR104A KO). Heat map of color coded 
expression of DEGs (| log2FC |> 0.5, p adjusted<0.05) from overexpression of RCCD1 in (C) breast 
cancer precursor cells (MCF12ARCCD1+) and (D) ovarian cancer precursor cells (FT282 RCCD1+). 
Upregulated genes are depicted in yellow and down regulated genes are shown in green.  
 
Figure 6: RCCD1 is a putative regulator of the P53 pathway in breast and ovarian cancer 
cells (A) RCCD1 operates in the P53 pathways through its interaction with KDM8. As part of this 
complex RCCD1 also regulates HIF1A signaling, transcriptional activation via H3K36me2, 
epithelial mesenchymal transition via TGF beta signaling, cell proliferation via CCNA1, DNA 
damage response and Androgen receptor signaling. (B) Pathway analysis of DEGs from RCCD1 
overexpression models are enriched in key proteins of the TP53 signaling pathway.  
(C) Western blot analysis after CRISPR/Cas9 knockout of RCCD1 in fallopian tube epithelial 
cells expressing the R175H P53 mutation (FT282 P53:R175H). Two different RCCD1 knockout 
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clones are compared to knockdown of a control gene, the olfactory receptor OR10A4. After 
RCCD1 knockdown and clonal selection, mutant TP53 is depleted in FT282 P53:R175H cells 
indicating downregulated expression of mutant TP53 is selected for in the presence of RCCD1 
knockout. 
(C)  RCCD1 expression in TCGA breast and ovarian tumors based on TP53 mutation status. 
These plots were obtained using the UALCAN web tool 
(http://ualcan.path.uab.edu/cgi-bin/TCGAExResultNew2.pl?genenam=RCCD1&ctype=BRCA. 
Briefly, in UALCAN, TP53 mutation status was obtained from TCGA whole exome sequencing 
data. Mutation Annotation Format files (derived from VarScan2) from the Genomic Data 
Commons portal were matched with TCGA RNA-seq data and the analysis performed stratifying 
the samples with/without TP53 mutatio n. 
 
Supplementary Table S1:  Primers used for luciferase enhancer assay to create risk and non 
risk SNPs (rs802840, rs8037137) 

Supplementary Table S2: Colocalization fine-mapping of the breast and ovarian cancer 
datasets at the 15q26 breast-ovarian cancer risk locus identifies 17 credible SNPs (rows 2-18) 
explaining > 99% of the shared genetic association in the region.  
  
Supplementary Table S3: Quantitative trait locus (QTL) analysis for all 17 credible causal 
SNPs in the 15q26 risk region and their association with expression of the RCCD1 gene and the 
PRC-AS1 lncRNA within the region. 
 

Supplementary Table S4: Variant effect prediction of altered TFBSs by broken TF motifs of risk 
SNPs which intersect with 4C interactions using PERFECTOS-APE. 
 
Supplementary Table S5: Epigenomic annotations of all 17 credible causal SNPs in the 15q26 
breast and ovarian cancer risk region by tissue type. Chromatin state annotations were compiled 
from H3K27Ac (active promoter/enhancer), H3K4me3(active promoter) , H3k4me1 (poised 
enhancer/promoter), CTCF (architectural protein)  
  
Supplementary Table S6:  cis-4C interaction enrichments in breast, ovarian, and combined 
breast-ovarian normal and cancer cell lines. 
 
Supplementary Table S7:  trans-4C interaction enrichments in breast (MCF7, BT549) and 
ovarian (UWB1.289, Kuramochi) cancer cell lines (FDR<0.01).  
  
Supplementary Table S8: TFBS enrichment of trans-interactions from breast cancer cell lines 
(MCF7, BT549) in ReMAP 2020 dataset (P<0.01).  
 
Supplementary Table S9:  TFBS enrichment of trans-interactions from ovarian cancer cell lines 
(UWB1.289, Kuramochi) in ReMAP 2020 dataset (P<0.01).  
 
Supplementary Table S10:  Differentially expressed genes, ranked by P-value, identified by 
RNA-Seq analysis, after overexpression of RCCD1 in breast and ovarian precursor cell 
lines(MCF12ARCCD1+, FT282 RCCD1+ respectively).  
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Supplementary Table S11 : KEGG pathway enrichment in breast precursor cells 
(MCF12ARCCD1+) 
 
Supplementary Table S12:  KEGG pathway enrichment in ovarian precursor cells (FT282 RCCD1+) 
 
Supplementary Table S13 : KEGG pathway enrichment in overexpression of RCCD1 in breast 
(MCF12ARCCD1) and ovarian (FT282 RCCD1) precursor cell lines 
 
Supplementary Table S14: Genes with Padjusted < 0.05 and PMAGMA < 2.6 x 10-6 
 
Supplementary Table S15:  TF Enrichment from LISA Cistrome Analysis in MCF12ARCCD1+ 

 
Supplementary Table S16: TF Enrichment from LISA Cistrome Analysis in FT282 RCCD1+ 

 
Supplementary Table S17: Directional effects of DEGs shared between  RCCD1 
overexpression in breast and ovarian precursor cells (MCF12ARCCD1+ and FT282 RCCD1+); 
(adjusted P value<0.05) 

 
Supplementary Figure 1: (A) RT-PCR analysis of breast and ovarian normal and cancer cell 
lines. RCCD1 shows higher expression in  triple negative breast cancer cell lines compared to 
normal mammary epithelial cells, in low grade serous ovarian cancer cell lines compared to the 
likely precursors -fallopian tube secretory epithelial cells and ovarian surface epithelial cells;(B) 
Western blot analysis after CRISPR/Cas9 knockout of RCCD1 in breast (MCF12ARCCD1-) and 
ovarian (FT282 RCCD1-) cancer precursor cells compared to knockout of the olfactory receptor 
ORF104A. After RCCD1 knockout and clonal selection, RCCD1 is depleted in MCF12A and 
FT282 cells, but not in cells after knockout of ORF104A; (C)(i) RT-PCR analysis confirming 
increased RCCD1 expression after stable overexpression of full length RCCD1 and clonal 
derivation in breast (MCF12A) and ovarian (FT282) cancer precursor cells. (ii) Western blotting 
analysis confirms over expression of RCCD1 protein in breast (MCF12ARCCD1+) and ovarian 
(FT282 RCCD1+) cancer precursor cells 
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FIGURE 4
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FIGURE 5
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FIGURE 6 
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