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Abstract— Living cells encode diverse biological clocks for
circadian timekeeping and formation of rhythmic structures
during embryonic development. A key open question is how
these clocks synchronize across cells through intercellular
coupling mechanisms. To address this question, we leverage the
classical motif for genetic clocks the Goodwin oscillator where a
gene product inhibits its own synthesis via time-delayed negative
feedback. More specifically, we consider an interconnected
system of two identical Goodwin oscillators (each operating in
a single cell), where state information is conveyed between cells
via a signaling pathway whose dynamics is modeled as a first-
order system. In essence, the interaction between oscillators
is characterized by an intercellular coupling strength and an
intercellular time delay that represents the signaling response
time. Systematic stability analysis characterizes the parameter
regimes that lead to oscillatory dynamics, with high coupling
strength found to destroy sustained oscillations. Within the
oscillatory parameter regime we find both in-phase and anti-
phase oscillations with the former more likely to occur for small
intercellular time delays. Finally, we consider the stochastic
formulation of the model with low-copy number fluctuations
in biomolecular components. Interestingly, stochasticity leads
to qualitatively different behaviors where in-phase oscillations
are susceptible to the inherent fluctuations but not the anti-
phase oscillations. In the context of the segmentation clock, such
synchronized in-phase oscillations between cells are critical for
the proper generation of repetitive segments during embryo
development that eventually leads to the formation of the
vertebral column.

I. INTRODUCTION

Sustained oscillations are ubiquitous in biological systems
from oscillating gene products inside cells to spontaneous
beating of cilia and flagella on the cell surface microorgan-
isms and airway epithelium [1]–[3]. Diverse cell types are
known to encode genetic oscillators or clocks that function in
circadian timekeeping [4], [5], cell cycle regulation [6], [7]
and rhythmic structure formations across organisms during
development [8]–[10]. An intriguing central question that un-
derlies these phenomena is how cells synchronize oscillation
through intercellular coupling processes to create emergent
behaviors.

Over the years, several biomolecular motifs have been un-
covered for exhibiting sustained oscillations in gene product
levels [4], [9]–[13]. Two common regulatory mechanisms
used by cells as functional clocks are time-delayed negative
feedback, and combined positive-negative feedback circuits
[7]. In this paper, we investigate the effect of intercellular
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coupling on the collective behavior of genetic oscillators
where the communication between adjacent cells happens
via signaling molecules/pathways. This interaction couples
the oscillators in the neighboring cells which leads to
synchronization between oscillators. The synchronization of
coupled genetic oscillators is a subject of great interest both
experimentally [9], [14]–[17] and theoretically [18]–[20]. For
examples, in the case of the segmentation clock, coupling of
contacting cells through the Notch-Delta signaling pathway
leads to perfect formation of vertebral column in vertebrates
[10].

Here we study a system of two coupled Goodwin os-
cillators as illustrated in Fig. 1. The Goodwin oscillator
circuit consisting of three species is one of the simplest
model based on delayed auto-inhibition that creates sustained
oscillations. We phenomenologically model the intercellular
coupling via a first-order system that mimics the signaling
pathway biochemically connecting the two oscillations. Two
essential aspects of the intercellular coupling are preserved in
our simplified model– coupling delay and coupling strength.
The signaling molecule in one cell represses the gene ex-
pression of the other, and the repression strength represents
the coupling strength. The response timescale for the first-
order dynamics indicates the coupling delay. Using linear
stability analysis of the coupled systems, we systematically
show that strong coupling can destroy the sustained oscil-
lations, and obtain phase diagram for oscillating and non-
oscillating regimes as a function of coupling delay and cou-
pling strength. Then, we characterize the nature of collective
oscillations within the oscillatory regime. We find that de-
pending on the value coupling strength and delay the system
can show in-phase, anti-phase synchronizations. Finally, we
study the synchronization using the stochastic formalism,
as biochemical reactions that occur in low molecular copy
number subject to inherent randomness. Interestingly, the
introduction of stochasticity reduces the region of parameter
space for in-phase synchronization.

II. MODEL FORMULATION

For this study, we consider the well known Goodwin
oscillator based on the regulatory mechanism of time delayed
auto-inhibition of gene activity [21]. We start by first review-
ing the Goodwin oscillator that operates inside an individual
cell.

A. Dynamics of the Goodwin oscillator without coupling

The basic dynamics of a Goodwin oscillator can be
represented by the synthesis of a mRNA, that is subsequently
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Fig. 1. Two Goodwin oscillators coupled via a signaling molecule. Each cell encodes a genetic clock based on the
Goodwin oscillator, where a mRNA is translated into the inactive protein. The inactive protein converts into an active protein
that represses mRNA synthesis to create a time-delayed negative feedback oscillator. The active protein also activates the
production of a signaling molecule that represses mRNA transcription in the neighbouring cell.This simplified coupling is
inspired by the segmentation clock where clocks within single cells are coupled by the Notch-Delta signaling pathway to
create synchronized traveling waves that generate the vertebral column during development [8]–[10].

translated into an inactive protein. The inactive protein
converts into an active form that represses mRNA synthesis
to create a delayed negative feedback (Fig. 1). The dynamics
of the intracellular concentration of the mRNA (m), inactive
protein (p) and active protein (x) evolve as per the nonlinear
differential equation

dm

dt
= kmfs(x)− γmm, (1a)

dp

dt
= kpm− kcp, (1b)

dx

dt
= kcp− γxx, (1c)

where, km is the maximal transcription rate, kp is the
translation rate, kc is the conversion rate from the inactive
protein to active protein, γm is the degradation rate of
mRNA, and γx is the degradation rate for the active protein.
The repression function for the single oscillator fs(x) is
given by

fs(x) =
1

1 + (xi/xcrit)h
, (2)

where h is the Hill coefficient and xcrit is the concentration
where the repression is the half of the maximum value.

Here, we note that to observe sustained oscillations in the
context of auto-inhibition and linear degradation, at least an
intermediate dynamics as in our case via inactive protein or
explicit incorporation of time-delay via delayed differential
equation is essential, i.e. a two variables system does not
show any sustained oscillations [22]. Below, we discuss the
criterion for sustained oscillations for the Goodwin oscillator
using linear stability analysis.

Linear stability for the single Goodwin oscillator: We
linearize the dynamics of single Goodwin oscillator around
the fixed point of the system. The fixed point of the system
(m̃, p̃, x̃) can be obtained by solving the Eq. 1 by setting

time derivatives to zero and is given by

m̃ =
km
γm

fs(
kp
γx
m̃), p̃ =

kp
kc
m̃, and x̃ =

kp
γx
m̃. (3)

The monotonically decreasing function fs ensures that the
above transcendental equation in m̃ has an unique solution.
The matrix for the linearized dynamics of Eq. 1 around the
above fixed point is given by the Jacobian matrix

J =

−γm 0 −g
kp −kc 0
0 kc −γx

 ,

where

g = −km
∂fs
∂x

=
hγmγx(1− fs(x̃))

kp
. (4)

The characteristic polynomial of the Jacobian can be written
in the form Q(x) = x3+ax2+bx+c. The polynomial will be
stable if (i) a, b, c > 0, and (ii) ab > c [23]. It can be shown
that for the Goodwin dynamics, the first condition always
holds true and the violation of the second condition leads
to an unstable equilibrium that in this case, manifests as a
stable limit cycle. The latter violation implies the following
relation

h >
(γm + kc)(kc + γx)(γx + γm)

γmkcγx(1− fs(x̃))
. (5)

The functional form of the right hand side of the above
equation suggests that its minimum value is 8/(1 − fs(x̃)),
when kc = γm = γx. Thus, no oscillatory solution exists for
the Hill coefficient value less than 8 [22], [24].

B. Two Goodwin oscillators with intercellular coupling

To incorporate intercellular coupling between two Good-
win oscillators, we introduce two signaling molecules (one
for each cell). The signaling molecules is activated by the
oscillator and represses gene transcription in the neighboring
cell (see Fig. 1). Usually, the signaling molecules takes a
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Fig. 2. Effect of coupling strength α and coupling delay τ on oscillating solutions. (Top panel) The fixed point varies
with α. (A) Above a threshold value of α and τ a non-oscillatory regime emerges. (B) The trajectory of mRNA for a given
cell for representative points in oscillatory (point (i) in subplot (A)) and non-oscillatory (point (ii) in (A)) regime. (Bottom
panel) The fixed is kept constant by varying transcription rate km with α according to Eq. (11). (C) Similar to the top
panel a non-oscillatory region is observed for large value of α and τ . However, the oscillatory region is larger in this case
compared to (A). (D) The trajectory of mRNA for a given cell for representative points in oscillatory (point (i) in subplot
(C)) and non-oscillatory (point (ii) in (C)) regime. Parameters: km(0) = 200, γm = 1, kp = 1, kc = 1, γx = 1, h = 12, and
xcrit = 20.

finite amount of time to influence (by activating or repress-
ing) the gene expression in the neighbouring cells because
it involves several biochemical reactions and the exportation
of biomolecules. This involved process in the intercellular
coupling is often modeled via a reaction cascade [19] or
using an explicit time delay in the dynamical equations [9],
[20].

Here, we phenomenologically model the associated delay
in the coupling via the first order reaction for the signaling
molecule dynamics with an associated timescale τ that
represents time delay. This signaling molecule then represses
the transcription of the neighbouring cell. The coupling is
bidirectional and symmetrically acts on both the cells. The
dynamics coupled systems is given by

dmi

dt
= kmfc(xi, zj)− γmmi, (6a)

dpi
dt

= kpmi − kcpi, (6b)

dxi
dt

= kcpi − γxxi, (6c)

dzi
dt

= τ−1(xi − zi), (6d)

i = 1, 2 and j is the neighbour of i, i.e., j = 2(1) for
i = 1(2). The last equation represents the dynamics of the
signaling molecule. The inverse of τ is the rate for both the
production and degradation of the signaling molecule. The
repression functions for the coupled oscillators depends on
the level of signaling molecule in the neighbouring cell and
we choose it as

fc(xi, zj) =
1

1 + ((xi + αzj)/xcrit)h
, (7)

Here xcrit is the concentration of the active protein for which
the repression becomes the half of the maximum value in the
absence of coupling. The parameter α is coupling strength.
For no coupling case α = 0 and fc reduces to repression
function for the single oscillator fs. On the other hand, α = 1
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is the maximal coupling strength, assuming the repression
due to the intercellular coupling cannot dominate over the
intracellular repression due to the active protein.

The above way of incorporating the coupling is motivated
by the vertebrate segmentation clock [9], [15], where the
active protein represses its own production and also the
production of a signaling molecule deltaC, and deltaC in
turn activates the transcription of the gene in in the adjacent
cells. We note that deltaC should not be confused with the
signaling molecule in our systems. In our case, the oscillating
gene actives the signaling molecule production not represses
as in deltaC. However, the repression function together with
the signaling molecule dynamics captures the Notch-Delta
coupling effectively.

III. LINEAR STABILITY ANALYSIS FOR COUPLED
OSCILLATORS

Before discussing the effect of coupling on the collective
oscillations of the coupled system, we ask the following
question: Does the coupling induce or destroy sustained
oscillations that were present without coupling? To answer
that we do a linear stability analysis of the coupled system.
For this, we first determine the fixed points of the dynamical
system and then examine the dynamics of the linearized
system near the fixed point. The above dynamical system
has a unique fixed point given by,

m̃i =
km
γm

fc(
kp
γx
m̃i,

kp
γx
m̃i) (8a)

p̃i =
kp
kc
m̃i, (8b)

x̃i =
kp
γx
m̃i, (8c)

z̃i = x̃i. (8d)

Again as in the case of single Goodwin oscillator, the
Eq. 8(a) is a transcendental equation, and the monotonically
decreasing function fc ensures equation has one real solution.
It is important to note that the fixed point value depends on
the coupling strength α but is independent of the coupling
delay τ in our description.

We now linearize the dynamical equations of the coupled
system around the fixed point and the Jacobian matrix is
given by,

J =

(
A B
B A

)
,with A =


−γm 0 −a 0
kp −kc 0 0
0 kc −γx 0
0 0 1/τ −1/τ



and B =


0 0 0 −αa
0 0 0 0
0 0 0 0
0 0 0 0

 . (9)

Here, the factor a in matrix A and B is given by,

a = −km
∂fc(x, z)

∂x

∣∣∣
(x̃,z̃)

. (10)

For the coupled system, the order of the characteristic poly-
nomial is 8. Therefore, the obtaining analytical expression
of stability criteria for the coupled system is involved unlike
for the single Goodwin oscillator where the order of the
polynomial is 3. Thus, we obtain the stability condition
by numerically looking at the Eigenvalues. We determine
the Eigenvalues of the eight dimensional Jacobian matrix
for a given set of parameters using Mathematica software
(Wolfarm Research, Version 11.3). If the real part of any
single Eigenvalue is negative then system is stable and no
sustained oscillations can be observed. On the other hand, if
the real of any Eigenvalue is positive the dynamics will be
unstable where sustained oscillations are observed.

Interestingly, we observe that a high coupling strength
can destroy sustained oscillations that are present without
coupling. The threshold value of coupling strength above
which there are stable oscillations depends on the coupling
delay. In Fig. 2(A), we plot phase diagram of the oscillating
region as a function of coupling strength α and coupling
time delay τ for a given set of parameter. For small τ value,
sustained oscillations are observed for any α. As τ value
crosses above a threshold, there are no sustained oscillations
above a critical α value. Although we have presented the
density plot for a given parameter, we have checked that this
observation is also holds true for other parameter sets. We
numerically solve the ordinary differential equations Eq. (6),
and plot the trajectories of mRNA level as a function of
time for a given cell in Fig. 2(B). It is clear that sustained
oscillations are lost if we change the value of α from the
oscillatory regime to non-oscillatory regime.

As we have discussed previously, the change in α also
affects the fixed point value of the coupled system. Does the
loss of sustained oscillations associated with the alteration of
the fixed point? To understand this, consider the following
case. We vary both α and the synthesis rate km simultane-
ously to keep the fixed point value constant to that of without
coupling (m̃0, p̃0, x̃0, z̃0). For this, we increase km with the
α in the following way:

km := km(α) = km(0)
fs(x̃0)

fc(x̃0, z̃0)
. (11)

The oscillatory regime for the constant fixed point case is
shown in Fig. 2(C). We find the same qualitative behavior
with the case when the fixed point is not kept constant
(Fig. 2(A)). However, the oscillatory regime becomes larger
if we keep the fixed point the same. The plot of typical
trajectories mRNA level as a function of time for a given
cell for oscillatory and non-oscillatory regime shown in
Fig. 2(D). For a given τ and α, we see that the amplitude
of the sustained oscillations in Fig. 2(D) is larger compared
to the Fig. 2(B).

IV. SYNCHRONIZATION OF COUPLED OSCILLATORS

The above linear stability analysis cannot reveal whether
the same species in both cells oscillate in synchrony or out
of synchrony. Below we study the synchronization within the
oscillatory region using both the deterministic and stochastic
formalisms.
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Fig. 3. Effect of coupling strength and time delay on the synchronization between two Goodwin oscillators. (Top
panel) Deterministic case: (A) Density plot for the Pearson correlation coefficient between mRNA levels of both cells, C12,
as a function of α and τ showing in-phase (C12 > 0), anti-phase (C12 < 0) and random-phase (C12 ≈ 0) regions. C12 is
are averaged over 400 initial conditions. The points (i) and (ii) (marked by the cross symbol) are two representative points
showing in- and anti-phase synchronizations. The trajectories of mRNA levels for both cells for a given initial condition
are shown in (B) and (C) for the point (i) and (ii), respectively. (Bottom panel) Stochastic case: (D) Density plot C12 as
a function of α and τ . The region of in-phase synchronization becomes quite small compared to the deterministic case.
There is no prominent region of anti-phase synchronization. The trajectories for two representative points (i) and (ii) for
this stochastic case are shown in (E) and (F). The stochastic trajectory for both the cells oscillate in synchrony for (ii).
While the anti-phase synchronization between the stochastic trajectory for both cells is not clear for (i) as observed in the
deterministic case. Parameters: km(0) = 200, γm = 1, kp = 1, kc = 1, γx = 1, h = 12, and xcrit = 20. The fixed point is
not kept constant by varying km.

A. Deterministic Analysis

As the deterministic dynamics is nonlinear (Eq. 6), the
collective behavior may depend on the initial conditions
of the coupled system. In fact, we have checked that the
dynamical response of our system is initial condition depen-
dent. Therefore, to quantify the synchronization, we compute
the Pearson correlation coefficient from the steady-state
trajectories for large number of random initial conditions.
The Pearson correlation between mRNA levels in two cells
C12 is given by,

C12 =
〈m1m2〉 − 〈m1〉〈m2〉√

(〈m2
1〉 − 〈m1〉2)(〈m2

2〉 − 〈m2〉2)
, (12)

where the angular bracket 〈·〉 denotes the average over time
and initial conditions. The correlation C12 takes value 1 if
mRNA in both cells oscillate in perfect in-phase, −1 if both
cells oscillate in perfect anti-phase, 0 if both cells oscillate
randomly.

In Fig. 3(A), we plot C12 as a function α and τ for
the deterministic case. Depending on the value of α and
τ all the possible scenarios of in-phase, anti-phase, and

random-phase oscillations are observed. A clear in-phase
oscillation is observed for small values τ and large τ if
α is sufficiently large. For the intermediate value of α, an
anti-phase oscillation is observed when τ is higher than a
threshold. In between the in-phase and anti-phase regions,
the oscillations in both cells are random more or less. In
Fig. 3(B) and Fig. 3(C), we plot the trajectories the mRNA
level for both cells for the representative points (i) (large α
and small τ ) and (ii) (intermediate α and small τ ) marked
in the density plot (Fig. 3(A)) for a random initial condition.
In-phase is seen when for a small τ . Whereas, the anti-phase
synchronization is observed for large τ for an intermediate
value of α.

B. Stochastic Analysis

So far, we have been discussing the deterministic dy-
namics of the coupled Goodwin oscillators. However, the
gene expression is stochastic due to underlying biochemical
reactions that are inherently stochastic [25]–[31]. Besides,
there are extrinsic perturbations (due to factors such as cell-
to-cell differences in expression machinery) that can make
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an oscillatory expression noisy [29], [32]–[38]. As a result
simple non-oscillatory gene expressions [25]–[30] as well
oscillatory gene expressions [10], [39], [40] are subject to
large fluctuations. The stochastic oscillatory gene expression
can have several implications on biological functions and the
control of stochasticity is desire in many cases [17], [24],
[41], [42]. Therefore, it is importantto study the synchro-
nization study using stochastic formalism.

In stochastic the setting, biochemical reactions occur ran-
domly. After each reaction occurs, the number of involved
species change discretely. We denote molecular count of
the mRNA, inactive protein, active protein, and signaling
molecule in cell i at time t by mi(t), pi(t), xi(t), and zi(t),
respectively. The transition probabilities of all the reactions
within an infinitesimal time interval t and t + dt in cell
i ∈ {1, 2} are given by

mRNA synthesis:
P{mi(t+ dt) = mi(t) + 1} = kmfc(xi, zj)dt, (13a)
mRNA degradation:
P{mi(t+ dt) = mi(t)− 1} = γmmidt, (13b)
inactive protein synthesis:
P{pi(t+ dt) = pi(t) + 1} = kpmidt, (13c)
active protein conversation:
P{pi(t+ dt) = pi(t)− 1,

xi(t+ dt) = xi(t) + 1} = kcpidt, (13d)
active protein degradation:
P{xi(t+ dt) = xi(t)− 1} = γxxidt, (13e)
signaling molecule synthesis:
P{zi(t+ dt) = zi(t) + 1} = xi/τdt, (13f)
signaling molecule degradation:
P{zi(t+ dt) = zi(t)− 1} = zi/τdt, (13g)

where j is the neighbor of cell i.
We use the Gillespie algorithm to solve the stochastic dy-

namics numerically and generate stochastic trajectories [43].
The typical stochastic trajectories mRNA level for both both
cells are shown in Fig. 3(E) and (F). Using a large number
of stochastic trajectories, we compute the Pearson correlation
coefficient C12 as we did in the deterministic analysis, here,
the angular bracket 〈·〉 in Eq. 12 represents the average of
time and ensembles. We plot C12 in Fig. 3(D) as a function
of α and τ . The plot is not the same as the deterministic case.
The parameter regime where oscillations show in-phase be-
comes very small compared to the deterministic case the anti-
phase synchronization is not prominent. This reduction of
parameter space for synchronized oscillations suggests that
inherent stochasticity can destroy the established correlation
between two cells due to the coupling. The loss of correlation
also is also clear from the trajectory plots (Fig. 3(E) and (F)).

V. CONCLUSION AND DISCUSSION

In summary, we have investigated the role of intercellular
coupling on the collective oscillations between two Goodwin

oscillators. Motivated by real Delta-Notch signaling, we
have phenomenologically modeled the intercellular coupling
between cells via the first-order dynamics of a repressive sig-
naling molecule. While the repression strength corresponds
to the coupling strength, the associated timescale of the first-
order dynamics represents time delay in coupling.

We have found both the coupling strength and coupling
delay play a crucial role in the coupled dynamics. Using
linear stability analysis, we have shown that large coupling
can destroy sustained oscillations if the coupling delay is
larger than a threshold. We have found that, depending on
the value of the coupling strength and delay, that the species
in both cells can oscillate in-phase synchrony, anti-phase
synchrony or randomly. We note that the appearance of
alternating multiple in-phase and anti-phase was previously
reported where the intercellular coupling was modeled via a
reaction cascade [19] or incorporating delay in explicitly in
the deferential equation [20]. However, in our system, we do
not see multiple appearance of in-phase and anti-phase.

Finally, as the species levels in real oscillators are subject
to large fluctuations due to inherent randomness of bio-
chemical reactions, we have studied the correlated dynamics
using stochastic formalism. We have found stochasticity
can destroy the correlation established by the intercellu-
lar coupling. The parameter space for in-phase oscillations
become smaller compared to the deterministic case. The
impact of stochasticity on anti-phase synchronization is more
drastic. We found the anti-phase is not susceptible to inherent
stochasticity. We note that in the context of a previous study
where the intercellular coupling was modeled via a reaction
cascade, both the in-phase and anti-phase found to be stable
[19].
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