
   
 

   
 

1 

Addiction-associated genetic variants implicate brain cell type- and region-specific cis-1 
regulatory elements in addiction neurobiology 2 
Chaitanya Srinivasan1*, BaDoi N. Phan1,2*, Alyssa J. Lawler3, Easwaran Ramamurthy1, Michael 3 
Kleyman1, Ashley R. Brown1, Irene M. Kaplow1,4, Morgan E. Wirthlin1,4, Andreas R. Pfenning 4 
1,3,4,‡ 5 
 6 
1Computational Biology Department, School of Computer Science, Carnegie Mellon University, 7 
15213 8 
2Medical Scientist Training Program, School of Medicine, University of Pittsburgh, 15213 9 
3Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, 10 
15213 11 
4Neuroscience Institute, Carnegie Mellon University, 15213 12 
*CS and BNP contributed equally to the work 13 
‡Direct correspondence to apfenning@cmu.edu 14 
 15 
Number of pages: 54 pages of text, 13 pages of figures 16 
 17 
Number of figures:  18 

5 main figures 19 
6 supplemental figures 20 
1 supplemental table 21 

 22 
Number of words 23 
 Abstract: 244 words 24 
 Introduction: 559 words 25 
 Discussion: 1347 words 26 
 27 
CONFLICT OF INTEREST: 28 
AJL, ER, and ARP are inventors of the cSNAIL patent. Other authors do not declare any conflict 29 
of interest. 30 
 31 

ACKNOWLEDGEMENT 32 

We would like to thank members of the Eric Yttri lab at Carnegie Mellon University for providing 33 
Drd1-cre and Adora2a-cre mice for cell type-specific ATAC-seq experiments. 34 

Author contributions: Conceptualization: ARP, BNP, CS; ATAC-seq data processing: AJL, ER, 35 
IMK, BNP; GWAS enrichment investigation: BNP, CS, ER, MK; Machine learning models: AJL, 36 
BNP, ER, IMK; bulk tissue ATAC-seq: AJL, ARB, MEW; cSNAIL ATAC-seq: AJL, ARB; 37 
writing (original draft): BNP, CS; review and editing: AJL, ARP, BNP, CS, ER, IMK; funding 38 
acquisition, resources, & supervision: ARP;  39 

Funding: National Institute of General Medical Sciences training grant T32GM008208 (BNP), 40 
Sloan Foundation Fellowship (ARP), National Institute on Drug Abuse Avenir Award 41 
1DP1DA046585 (ARP), National Science Foundation Graduate Student Research Fellowship 42 
DGE1745016 (AJL), Carnegie Mellon Brainhub Presidential Fellowship (ER), Carnegie Mellon 43 
Computational Biology Department Lane Postdoctoral Fellowship (IMK)  44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

2 

ABSTRACT 45 

Recent large genome-wide association studies (GWAS) have identified multiple confident risk 46 

loci linked to addiction-associated behavioral traits. Genetic variants linked to addiction-47 

associated traits lie largely in non-coding regions of the genome, likely disrupting cis-regulatory 48 

element (CRE) function. CREs tend to be highly cell type-specific and may contribute to the 49 

functional development of the neural circuits underlying addiction.  Yet, a systematic approach for 50 

predicting the impact of risk variants on the CREs of specific cell populations is lacking. To dissect 51 

the cell types and brain regions underlying addiction-associated traits, we applied LD score 52 

regression to compare GWAS to genomic regions collected from human and mouse assays for 53 

open chromatin, which is associated with CRE activity. We found enrichment of addiction-54 

associated variants in putative regulatory elements marked by open chromatin in neuronal 55 

(NeuN+) nuclei collected from multiple prefrontal cortical areas and striatal regions known to play 56 

major roles in reward and addiction. To further dissect the cell type-specific basis of addiction-57 

associated traits, we also identified enrichments in human orthologs of open chromatin regions of 58 

mouse neuron subtypes: cortical excitatory, PV, D1, and D2. Lastly, we developed machine 59 

learning models from mouse cell type-specific regions of open chromatin to further dissect human 60 

NeuN+ open chromatin regions into cortical excitatory or striatal D1 and D2 neurons and predict 61 

the functional impact of addiction-associated genetic variants. Our results suggest that different 62 

neuron subtypes within the reward system play distinct roles in the variety of traits that contribute 63 

to addiction.  64 

Significance Statement: 65 

Our study on cell types and brain regions contributing to heritability of addiction-associated traits 66 

suggests that the conserved non-coding regions within cortical excitatory and striatal medium 67 
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spiny neurons contribute to genetic predisposition for nicotine, alcohol, and cannabis use 68 

behaviors. This computational framework can flexibly integrate epigenomic data across species to 69 

screen for putative causal variants in a cell type- and tissue-specific manner across numerous 70 

complex traits.  71 
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INTRODUCTION  72 

Substance use disorders (SUD) have increased in prevalence over the last three decades, 73 

with an estimated 100 million cases worldwide(GBD 2016 Alcohol and Drug Use Collaborators, 74 

2018; Eddie et al., 2019). Pharmacological interventions are limited in their ability to cure 75 

addiction due to physiological and logistical barriers(Pullen and Oser, 2014; Pear et al., 2019). As 76 

the societal epidemic of substance use grows, there is a greater need to understand the neurobiology 77 

of substance use behaviors and addiction. 78 

The reward circuits co-opted in addiction are highly conserved across primates and 79 

rodents(Scaplen and Kaun, 2016). It is generally accepted that addictive substances promote 80 

impulsive and compulsive behavior by activating the mesolimbic dopamine system, in which 81 

dopaminergic inputs from the ventral tegmental area project to medium spiny neurons (MSN) of 82 

the nucleus accumbens (NAc) (Koob and Volkow, 2010). Furthermore, glutamatergic inputs to the 83 

NAc from the amygdala, frontal cortex, and hippocampus contribute to motivational action 84 

through the extrapyramidal motor system(Koob and Volkow, 2010). Subsequently, the NAc sends 85 

outputs to different nuclei of the ventral pallidum critical for processing and modulating substance 86 

reward signal(Koob and Volkow, 2010). The dorsal striatum (STR) is also hypothesized to be 87 

recruited during the development of compulsive substance-seeking(Koob and Volkow, 2010). 88 

Additionally, the dorsal striatum and prefrontal cortical regions(Goldstein and Volkow, 2011) 89 

regulate reward and addiction-related phenotypes. The findings emphasize the interplay of brain 90 

regions and the cellular components involved in substance use behavior. 91 

Increasing evidence reveals strong genetic links to substance use risk(Pasman et al., 2018; 92 

Erzurumluoglu et al., 2019; Karlsson Linnér et al., 2019; Liu et al., 2019b) and SUD(Kendler and 93 

Prescott, 1998a, 1998b; Dick, 2016; Waaktaar et al., 2018). Genome-wide association studies 94 
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(GWAS) report that genetic risk for substance use shares underlying architecture with other 95 

neuropsychiatric disorders(Pasman et al., 2018; Liu et al., 2019b), of which risk variants tend to 96 

lie in non-coding and functional regions of the human genome(Jensen, 2016). These single 97 

nucleotide polymorphisms (SNPs) can disrupt transcription factor binding in cis-regulatory 98 

elements (CREs) with varying impact on gene regulation and downstream neural circuitry. Many 99 

CREs have tissue- and cell type-specific activity(Roadmap Epigenomics Consortium et al., 2015), 100 

suggesting that cell types and tissues underlying addiction may be uniquely targeted by genetic 101 

variants at these CREs. GWAS for nicotine-, alcohol-(Liu et al., 2019b), and cannabis-use 102 

traits(Pasman et al., 2018) have identified multiple confident risk loci and SNPs linked to 103 

addiction-associated phenotypes with brain-specificity, yet their effects on the CREs of specific 104 

brain regions and cell types involved in addiction pathophysiology are an open area of inquiry.  105 

GWAS have found that SNP enrichment within functional non-coding regions contribute 106 

disproportionately to heritability of complex traits due to polygenicity(Finucane et al., 2015). 107 

Linkage disequilibrium (LD) of significant SNPs complicates the identification of causal variants 108 

contributing to genetic risk(Bush and Moore, 2012). The functional consequences of risk SNPs in 109 

CRE sequences cannot be reliably inferred from DNA sequences alone(Shlyueva et al., 2014). 110 

Recent developments in epigenomic assays(Buenrostro et al., 2013; Mo et al., 2015; Tak and 111 

Farnham, 2015) and machine learning(Ghandi et al., 2014; Zhou and Troyanskaya, 2015; Kelley 112 

et al., 2016, 2018; Lee, 2016) can predict cell types affected by addiction-associated genetic 113 

variation to propose cell type-specific hypotheses on the pathogenesis of addiction.  114 

Here, we implement a framework that identifies regions and cell types that are affected by 115 

genetic risk variants for addiction-associated traits. We intersect these GWAS variants across 116 

human and mouse datasets from bulk tissue and cell type-specific open chromatin assays to 117 
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identify region- and cell type-specific CREs that may be impacted by genetic variation associated 118 

with addiction-related traits. We then apply machine learning models to predict open chromatin 119 

activity in key neuronal subtypes within reward circuits and refine our GWAS enrichments in these 120 

subtypes. Further, we apply these models to screen for putative causal SNPs within dense loci 121 

reported in GWAS for addiction-associated traits. This pipeline, to our knowledge, describes the 122 

first integrative analyses across species, regions and cell types to screen for candidate causal 123 

addiction-associated genetic risk variants in dense loci with numerous significant SNPs in LD.  124 
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RESULTS 125 

Genetic risk for substance use traits is associated with the neuronal epigenomes of reward 126 

areas 127 

Recent well-powered GWAS have characterized the genetic loci associated with seven 128 

addiction-associated traits, revealing several candidate loci encoding addiction genetic 129 

risk(Pasman et al., 2018; Karlsson Linnér et al., 2019; Liu et al., 2019b). These GWAS identify 130 

genetic variants associated with reward, risk tolerance, and various substance use behaviors to 131 

provide a means of studying genetic variation associated with addiction. We found that 72-98% of 132 

addiction-associated genetic variants map to noncoding intronic or intergenic regions of the 133 

genome  (Figure 1A). The proportion of intronic risk variants (47%-85%) overrepresented the 134 

proportion of intronic variants on the reference genotype panel (odds ratio, ORAgeOfInit =2.3, 135 

ORCannabis = 2.3, ORCigsPerDay = 1.4, ORDrinksPerWeek = 1.6, ORRiskyBehavior = 1.4, ORSmokCess = 1.8, 136 

ORSmokInit =1.3, Fisher’s Exact PBonferroni < 8 x 10-79).  Furthermore, these seven traits have shared 137 

and distinct genetic architecture estimated using genetic correlation of risk alleles (rg, 138 

Supplemental Figure 1A). Although common genetic variants are shared between addiction-139 

associated traits on a genome-wide scale, the reported significant loci are often unique to a 140 

particular trait and are densely packed with SNPs in high LD (Supplemental Figure 1B).  141 

We investigated whether genetic variants of addiction-associated GWAS cluster at putative 142 

cis-regulatory elements (CREs) of the brain using a partitioned heritability linkage disequilibrium 143 

score (LDSC) regression approach(Bulik-Sullivan et al., 2015b; Finucane et al., 2018) on open 144 

chromatin regions (OCRs) of sorted neuronal (NeuN+) and glial (NeuN-) nuclei across 14 brain 145 

regions(Fullard et al., 2018) (Figure 1B). We found that genetic variants associated with having 146 

ever regularly smoked (SmokingInitiation), being a former versus current smoker 147 
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(SmokingCessation), the number of alcoholic drinks per week (DrinksPerWeek), and 148 

lifetime cannabis use (Cannabis) significantly enriched in NeuN+ OCRs of brain regions 149 

known and speculated to contribute to reward and addiction(Volkow and Morales, 2015) (FDR < 150 

0.05). In particular, we found that genetic variants associated with SmokingInitiation and 151 

Cannabis shared enrichment in NeuN+ prefrontal cortical OCRs (from orbitofrontal cortex and 152 

dorsolateral prefrontal cortex) while those associated with SmokingCessation and 153 

DrinksPerWeek shared enrichment in NeuN+ striatal OCRs (both putamen and NAc). The 154 

enrichments of NeuN+ OCRs indicate that genetic variation in epigenomes of neuronal 155 

populations from frontal cortex and striatum contribute to addiction liability. The difference in 156 

NeuN+ enrichments between regions across addiction-associated traits can likely be explained by 157 

the difference in proportions of neuronal subtypes of each area, so we sought to dissect the different 158 

neuronal subtypes contributing to these enrichments. 159 

Broad marker-gene based labeling approaches, such as using NeuN to label neurons, do 160 

not capture the rich diversity of neuronal subtypes; bulk NeuN+ open chromatin signal represents 161 

an average signal from heterogeneous neuronal subtypes, each with distinct epigenomic 162 

landscapes, gene regulation, network connectivity. Hence, NeuN-labeled open chromatin profiles 163 

likely do not capture OCRs unique to less populous neuronal subtypes. The difference in 164 

proportions of neuronal subtypes between brain regions may also contribute to brain region-165 

specific NeuN+ OCR enrichment for GWAS variants of addiction-associated traits. We therefore 166 

applied LDSC regression GWAS enrichment on open chromatin profiles from human postmortem 167 

occipital cortex cell types via single-cell transposase hypersensitivity sequencing (scTHS-seq) 168 

(Lake et al., 2018) (Figure 1C). We found that addiction-associated genetic variants largely 169 

enriched in both excitatory and inhibitory neuronal OCRs. We found enrichment of genetic 170 
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variants associated with age of smoking initiation (AgeOfInitiation) and 171 

SmokingCessation in OCRs of cortical excitatory neurons. We found no enrichment of 172 

genetic variants associated with average number of cigarettes smoked per day 173 

(CigarettesPerDay)for OCRs of occipital cortex cell types. Genetic variants associated with 174 

SmokingInitiation, which enriched in astrocyte, endothelial, inhibitory, and 175 

oligodendrocyte precursor cell OCRs, shared enrichment in NeuN- OCRs of mediodorsal thalamus 176 

(Figure 1B). Interestingly, genetic variants associated with SmokingCessation, which had 177 

enriched for striatal NeuN+ OCRs, enriched only for OCRs of cortical excitatory neurons and not 178 

cortical inhibitory neurons. Sorted bulk ATAC-seq only showed enrichment of 179 

SmokingCessation associated genetic variants in OCRs of NeuN+ striatal regions, which are 180 

largely composed of inhibitory MSNs. Single-cell epigenomics of human postmortem brain can 181 

further dissect the genetic risk for substance-use traits into neuronal subtypes that otherwise would 182 

not be parsed with bulk tissue assays.  183 

We confirmed that our pipeline for LDSC regression on NeuN-sorted OCRs from 14 brain 184 

regions is able to reproduce the GWAS enrichments published by Fullard et al. While our approach 185 

uses OCRs from reproducible ATAC-seq peaks rather than differentially accessible peaks, we 186 

found consistent enrichments of genetic variants associated with schizophrenia risk 187 

(Schizophrenia), highest level of educational attainment (EduAttain), and habitual sleep 188 

duration (SleepDuration) (Supplemental Figure 2B). We did not find enrichment in brain 189 

OCRs of genetic variants identified in several low-powered GWAS (cocaine dependence 190 

(CocaineDep)(Cabana-Domínguez et al., 2019), opioid dependence (OpioidDep)(Cheng et 191 

al., 2018), and obsessive-compulsive disorder (OCD)(International Obsessive Compulsive 192 

Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics 193 
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Association Studies (OCGAS), 2018), each of which had included fewer than 5000 individuals 194 

with the trait (Supplemental Figure 2A). In addition, we found no enrichments in brain OCR for 195 

several well-powered studies of traits related to addiction behaviors, multi-site chronic pain 196 

(ChronicPain)(Johnston et al., 2019) and cups of coffee per day (CoffeePerDay)(Coffee 197 

and Caffeine Genetics Consortium et al., 2015) and anthropometric traits coronary artery disease 198 

(CAD)(Howson et al., 2017), bone mineral density (BMD)(Kemp et al., 2017), and lean body mass 199 

(LBM)(Zillikens et al., 2017) (Supplemental Figure 2B, C). Lastly, we validated that human 200 

OCRs from non-brain tissues would not enrich for risk variants associated with brain traits. We 201 

gathered publicly available OCRs from stomach ATAC-seq, adipocyte ATAC-seq, preadipocyte 202 

ATAC-seq, liver DNase-seq, and lung DNase-seq profiles(ENCODE Project Consortium, 2012; 203 

Thurman et al., 2012; Davis et al., 2018; Cannon et al., 2019) (Supplemental Figure 4D) and 204 

performed LDSC regression on the total 18 GWAS from above. To our expectation, we did not 205 

find enrichments of stomach, liver, or lung OCRs for genetic variants associated with brain-related 206 

traits. We did find enrichment of BMD in lung OCRs, a connection previously recognized(Lee et 207 

al., 2016; Kim et al., 2019; Zeng et al., 2019). The secondary GWAS enrichments in other traits 208 

and foregrounds demonstrate two trends: a GWAS trait would enrich if the GWAS was properly 209 

powered to detect genetic risk variants, and the foreground regions are from cell types or tissue of 210 

that trait’s potential etiological origin.  211 

 212 

Mouse-human conserved cell type-specific open chromatin enrich for addiction risk loci 213 

In order to resolve the different neuronal subtypes that comprise the addiction-associated 214 

enrichments in Fullard et al. and Lake et al. OCRs (Figure 1, Supplemental Figure 2), we 215 

performed targeted epigenomics in mouse to isolate various neuronal subtypes from frontal cortex 216 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

11 

(CTX), caudoputamen (CPU), and the nucleus accumbens (NAc), which are key brain regions of 217 

the reward circuit. We isolated cell type-specific nuclei for ATAC-seq using a modified version 218 

of the INTACT approach(Mo et al., 2015), which we call cre-specific nuclei anchored independent 219 

labeling (cSNAIL). cSNAIL-INTACT uses the AAV-PHP.eB virus to isolate nuclei marked by 220 

Pvalb, Sst, Drd1, and Adora2a cre-lines without crossing with a Sun1-Gfp transgenic mouse 221 

(Figure 2A). We show that cell type-targeting provided markedly distinct genome-wide ATAC-222 

seq profiles compared to bulk tissue ATAC-seq alone (Supplemental Figure 3A). cSNAIL 223 

ATAC-seq specifically captured nuclei with increased accessibility around the marker gene that 224 

was driving Cre recombinase expression (Supplemental Figure 3B). Accessibility around 225 

cSNAIL ATAC-seq transcription start sites (TSS) strongly correlated with matched pseudobulk 226 

gene expression in the same cell type and tissue (Methods, both Pearson and Spearman correlation 227 

Pbonf < 2 x 10-16, Supplemental Figure 3C,D). We applied the HALPER approach(Zhang et al., 228 

2020) to reliably map ~70% of mouse OCRs to their human orthologs in hg38 (Methods) to run 229 

LDSC regression GWAS enrichments.  230 

Our GWAS enrichments of human orthologs from mouse OCRs of various neuronal 231 

subtypes and bulk tissue (Figure 2B) show that genetic variants associated with 232 

SmokingInitiation and Cannabis shared enrichment in human orthologs of mouse 233 

cortical PV and EXC neuron OCRs from both Mo et al. and this study (FDR < 0.05). Cannabis 234 

associated genetic variants further enriched in CTX bulk tissue OCRs, which could be attributed 235 

to signal from cortical EXC and PV neuron populations. Cortical PV neuron OCRs further 236 

enriched with genetic variants associated with DrinksPerWeek. SmokingCessation 237 

associated genetic variants distinctly enriched in cortical VIP neuron OCRs. 238 
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Within cell types from CPU and NAc, we found enrichment of genetic variants associated 239 

with all measured addiction-associated traits in CPU and NAc D2 MSN OCRs.  Genetic variants 240 

associated with all measured traits excluding SmokingInitiation and RiskyBehavior all 241 

enriched in CPU and NAc D1 MSN OCRs. CPU D1 MSN OCRs were enriched with genetic 242 

variants associated with all measured traits excluding RiskyBehavior. We found that CPU 243 

bulk tissue OCRs were enriched with genetic variants associated with all measured addiction-244 

associated traits excluding AgeOfInitiation and RiskyBehavior. Distinctly, CPU PV+ 245 

and SST+ neuron OCRs enriched with genetic variants associated with Cannabis.  246 

Corresponding to our analysis of human brain OCRs, we also confirmed the specificity of 247 

mouse-human orthologous CRE enrichments for genetic variants of addiction-related, brain-248 

related, and non-brain related traits (Supplemental Figure 4). We found enrichments of genetic 249 

variants associated with ChronicPain in cortical PV neuron OCRs from both Mo et al. and this 250 

study (Supplemental Figure 4A). Within striatal cell types, we found that CPU D2 and NAc D1 251 

MSN OCRs were enriched for genetic variants associated with ChronicPain. In contrast, CPU 252 

D1 and NAc D2 MSN OCRs were enriched for genetic variants associated with OpioidDep. 253 

Genetic variants associated with OpioidDep also enriched in CPU D1 MSN and CPU PV OCRs. 254 

Schizophrenia, EduAttain, and SleepDuration associated genetic variants all 255 

enriched in OCRs of all measured cell types (Supplemental Figure 4B). None of these human 256 

orthologs of mouse neuronal OCRs enriched for genetic variants associated with non-brain-related 257 

traits BMD, CAD, and LBM (Supplemental Figure 4C). We validated that our approach to map 258 

OCRs from mouse to human did not bias enrichment to brain traits by performing GWAS 259 

enrichment on OCRs from mouse non-brain tissues (kidney, liver, and lung)  (Supplemental 260 

Figure 4D). As expected, we did not find an enrichment for genetic variants associated with a 261 
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brain-related trait. We did find that human orthologs of lung OCRs enrich for BMD, which concords 262 

with the enrichment of human lung OCRs.  263 

 264 

Machine learning models of mouse cell type-specific CRE activity refine human NeuN+ 265 

OCRs for GWAS enrichment 266 

Assays such as ATAC-seq capture the open chromatin genomic regions that can be 267 

occupied by DNA-binding regulatory proteins. DNA-binding proteins and their cofactors  regulate 268 

gene expression, often in response to external stimuli; therefore, the DNA sequences underlying 269 

OCRs reveal the complex combinations of DNA-binding protein motif, i.e. the “cis-regulatory 270 

grammar,” that is being read by regulatory proteins to define the cell’s epigenetic state. We 271 

hypothesized that conservation of OCRs between mouse and humans must also rely on a conserved 272 

regulatory grammar to maintain the similar cell identity between human and mouse (Chen et al., 273 

2018). The concordant pattern of enrichment for addiction associated genetic variants in human 274 

and mouse-human orthologous OCRs suggested that risk variants may affect the regulatory 275 

grammar of cell types conserved in mouse. We therefore trained a collection of convolutional 276 

neural network (CNN) machine learning (ML) models to learn the regulatory grammar for cortical 277 

excitatory (EXC) neurons, striatal D1 MSNs, and striatal D2 MSNs (Zhou and Troyanskaya, 2015; 278 

Kelley et al., 2016, 2018; Chen et al., 2018). For each set of reproducible OCRs from mouse 279 

INTACT and cSNAIL group, we trained 5-fold cross-validated models to predict the reproducible 280 

peaks from ten times the number of GC-matched negative sequences (Methods). Our models made 281 

confident predictions on held-out test sequences as reported by accuracy, F1-score, and areas under 282 

the receiver-operator characteristic and precision-recall curves (Supplemental Figure 5A). 283 
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We reasoned that NeuN+ OCR signal that is comprised of several neuronal subtypes that 284 

can be parsed into component cell types by ML models trained to predict OCR activity in those 285 

cell types. To discern whether NeuN+ OCR enrichments in addiction-associated genetic variants 286 

come from the same cell types that we see in Figure 3, we used the ML models to predict whether 287 

cortical or striatal NeuN+ OCRs have activity in cortical EXC or striatal D1 and D2 cells, 288 

respectively (Figure 3A). We did not conduct these analyses for PV neurons because they 289 

comprise a much lower percentage of cortical and striatal neurons than the other neuron types. We 290 

ran LDSC regression (Finucane et al., 2018) GWAS enrichments on the sets of NeuN+ OCRs 291 

predicted to be specific to cortical EXC, striatal D1, and striatal D2 neurons. Genetic variants 292 

associated with SmokingInitiation, which initially enriched in OCRs of various NeuN+ 293 

frontal cortical areas (Figure 1B), enriched in NeuN+ OCRs predicted to be active in EXC neurons 294 

(Figure 3B). Genetic variants associated with Cannabis, which enriched in NeuN+ cortical 295 

OCRs (Figure 1B), also enriched in NeuN+ OCRs predicted to be active in EXC neurons. The 296 

enrichments of excitatory cortical cell type-specific OCRs for SmokingInitiation and 297 

Cannabis associated genetic variants agree with the results from the Fullard et al. and Lake et 298 

al. human datasets (Figure 1B, C). Genetic variants associated with SmokingCessation and 299 

DrinksPerWeek, which enriched in PUT and NAc NeuN+ OCRs (Figure 1B), shared 300 

enrichment in OCRs predicted active in both D1 and D2 MSNs of both PUT and NAc. The 301 

framework that we outline in Figure 3A refines addiction genetic risk signal to neuronal subtypes, 302 

maintains the brain region context of the source NeuN+ OCR, and can be applied to CREs from 303 

any tissue, cell type combination for which bulk tissue open chromatin exists in human and open 304 

chromatin from that cell type exists in another vertebrate(Chen et al., 2018; Minnoye et al., 2020).  305 

 306 
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Machine learning models predict allele-specific activity of addiction-associated GWAS SNPs 307 

in neuronal subtypes  308 

Lastly, we applied our ML models to screen addiction-associated genetic variants for 309 

predicted functional activity in EXC, D1, and D2 neuronal subtypes. These ML-based approaches 310 

have been demonstrated to fine-map dense risk loci and select candidate causal genetic variants 311 

(Alipanahi et al., 2015; Zhou and Troyanskaya, 2015; Kelley et al., 2016, 2018), yet none have 312 

been applied in the context of addiction-associated genetic risk or in the cell types that we have 313 

assayed. We collected 14,790 SNPs across the seven addiction-associated GWAS and filtered 314 

down to 170 SNPs that are in NeuN+ OCRs and predicted to be causal with statistical fine-mapping 315 

(Methods). We demonstrated that our cortical and striatal ML models produce scores near 0 (no 316 

predicted open chromatin activity in this cell type) for SNPs not in any OCRs, low scores for SNPs 317 

in NeuN- OCRs, and significantly larger scores (larger predicted open chromatin in this cell type) 318 

for SNPs in NeuN+ OCRs (PBonferroni < 0.05, Figure 4A). Using these models and the 170 filtered 319 

SNPs, we prioritized 26 unique SNPs spanning 16 loci with predicted functional consequence on 320 

gene regulation (Supplemental Figure 5B, Methods). One such SNP, rs7604640, lies in NeuN+ 321 

open chromatin specific to striatum ~46kb upstream of the SIX3 locus on chromosome 2. 322 

rs7604640 overlaps human orthologs of mouse OCRs in only D1 and D2 neurons and had 323 

predicted open chromatin activity in both D1 and D2 neurons but not in EXC neurons (Figure 324 

4B). rs7604640 is one of many off-lead SNPs identified in the SmokingInitiation GWAS 325 

(PGWAS =3.04 x 10-12) and is in LD with the lead SNP rs163522 (R2 = 0.856). Furthermore, this 326 

SNP is a known cis-eQTL for the antisense SIX3-AS1 gene in striatal regions from the Genotype-327 

Tissue Expression (GTEX) project (GTEx Consortium, 2013, 2015; Melé et al., 2015; GTEx 328 

Consortium et al., 2017). Anti-sense gene expression is one mechanism of regulating their sense 329 
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gene(Pelechano and Steinmetz, 2013; Barman et al., 2019), and deletion of the gene SIX3 has been 330 

shown to inhibit development of D2 medium spiny neurons (Xu et al., 2018). Altogether, this 331 

evidence formulates the hypothesis that common genetic variant rs7604640 has D1 and D2 MSN-332 

specific open chromatin activity in a mouse-human conserved putative CRE regulating the MSN 333 

regulator SIX3.  334 

We found a number of other SNP candidates that may be putative causal SNPs with cell 335 

type-specific activity in addiction-associated traits (Supplemental Figure 6). For example, SNPs 336 

rs11191352 (PSmokingInitiation=2.12 x 10-7) and rs9844736 (PRiskyBehavior= 3.04 x 10-7, 337 

PSmokingInitiation=3.58 x 10-7) are both cis-eQTL for nearby genes in GTEx striatal regions 338 

(Supplemental Figure 6A,B). Curiously, SNPs such as rs7604640, rs10742814, and rs11191352 339 

had predicted cell type-specific activity in only MSNs (Figure 4B, Supplemental Figure 6A,B), 340 

while the SNP rs9844736 had predicted activity in mouse-human orthologous CREs from all three 341 

cell types (Supplemental Figure 6D). SNPs rs6870603 (PSmokingInitiation=1.04 x 10-8) and 342 

rs7712167 (PSmokingInitiation=8.79 x 10-9), which are 317bp apart, were predicted to alter only EXC 343 

open chromatin activity and lie in a strong cortical-specific NeuN+ OCR. The complete summary 344 

of prediction scores and annotations of GTEX eQTL membership for each SNP can be found in 345 

Supplemental Table 1.   346 
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DISCUSSION 347 

In this study, we demonstrate the first analyses integrating cell type OCRs across human 348 

and mouse brain epigenomics using ML models to select candidate addiction-associated SNPs 349 

acting at putative cell type-specific CREs. We trained ML models to predict cell type-specific 350 

activity of OCRs and used the models to predict whether addiction-associated genetic variants in 351 

risk loci impact putative CRE function. Our findings link the genetic heritability of addiction-352 

associated behaviors to the OCR profiles of neuronal subtypes and brain regions and present 353 

specific hypotheses describing how genetic variants may impact gene regulation in addiction-354 

associated behaviors. These analyses in conjunction suggest that genetic variation-associated 355 

nicotine, alcohol, and cannabis use behaviors may impact putative CREs in different combinations 356 

of excitatory (EXC), D1, and D2 neuronal subtypes. These findings provide a foundation for future 357 

investigations into the cell type-specific genetic mechanisms underlying addiction-related traits. 358 

More broadly, our cross-species integrative computational framework leverages high-resolution 359 

cell-type targeted epigenomics in model organisms to interpret the genetic risk variants of complex 360 

traits in humans. 361 

We initially found that addiction-associated genetic variants were enriched in human 362 

NeuN+ OCRs of the prefrontal cortex and striatum, known areas involved in addiction and reward 363 

circuitry(Volkow et al., 2013; Koob and Volkow, 2016) (Figure 5A). Genetic variants associated 364 

with SmokingInitiation and Cannabis, initiating behaviors of substance use, were 365 

enriched in NeuN+ OCRs of prefrontal areas including DLPFC, VLPFC, and OFC (Figure 1B). 366 

These OCRs were predicted to be active in cortical excitatory neurons of these brain regions 367 

(Figure 3B). Addiction-associated genetic variants that enrich in OCRs of cortical excitatory 368 

neurons in these areas may reduce corticostriatal activation from prefrontal cortex to inhibit 369 
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behaviors predisposing the initiation of substance use(Koob and Volkow, 2010, 2016; Volkow et 370 

al., 2013; Volkow and Morales, 2015). These genetic variants may contribute to reduced prefrontal 371 

self-control reward, leading to behaviors observed in addiction such as impulsivity, reduced 372 

satiety, and enhanced motivation to procure drugs(Volkow et al., 2013; Volkow and Morales, 373 

2015). In addition, we found enrichment of striatal NeuN+ OCRs for genetic variants associated 374 

with SmokingCessation and DrinksPerWeek (Figure 1B). In Figure 3B, we showed that 375 

these genetic variants are predicted to affect open chromatin in both D1 and D2 MSNs, which are 376 

coordinators of mesocorticostriatal dopamine systems(Koob and Volkow, 2010, 2016; Volkow et 377 

al., 2013). Genetic variants affecting open chromatin in these MSN subtypes may predispose 378 

individuals to increased alcohol use (DrinksPerWeek) or decreased nicotine use 379 

(SmokingCessation), perhaps driving the neuroplastic changes in D1 and D2 MSNs 380 

observed in human and rodent drug dependence studies(Volkow et al., 1996, 1997, 2003; Wang et 381 

al., 1997; Fehr et al., 2008; Cheng et al., 2017; Wilar et al., 2019). While drug addiction has been 382 

attributed to various areas of the reward circuit, our investigations into heritable genetic risk for 383 

addiction-associated traits unravel how regulatory DNA sequence variation in OCRs of projection 384 

neurons in implicated areas link genetic risk to neural circuits to behavior.  385 

 Since cell types in the occipital cortex are not clearly defined for their role in the reward 386 

circuit, we conducted ATAC-seq of projection and interneuron subtypes in mouse brain, mapped 387 

OCRs to human orthologs, and analyzed GWAS enrichment of addiction-associated traits. By 388 

leveraging ortholog mapping tools, we retained high-quality cell type-specific measurements 389 

within relevant brain regions of the reward circuit, enabling analysis of cell populations from brain 390 

regions where we lack primary human open chromatin profiles. Across these brain regions, we 391 

found remarkably concordant enrichments of cell type OCRs between mouse and human profiles 392 
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as well as shared enrichments between traits (Figure 5B). Genetic variants associated with both 393 

SmokingInitiation and Cannabis enriched in mouse-human orthologous OCRs of 394 

cortical EXC and PV neurons (Figure 3B), concordant with enrichments in human cortical NeuN+ 395 

OCRs (Figure 1B), which were predicted to include EXC neurons (Figure 4B). Genetic variants 396 

from these two traits showed replicable enrichment in human EXC and IN neuron OCRs via sc-397 

THS-seq of occipital cortex (Figure 1C), providing strong evidence that genetic variation in 398 

cortical excitatory and inhibitory neuron OCRs confers susceptibility to nicotine and cannabis use 399 

behaviors. Within striatal regions, D1 and D2 MSN mouse-human orthologous OCRs enriched for 400 

genetic variants of all measured addiction-associated traits (Figure 2B), with strongest 401 

concordance in human OCRs for genetic variants associated with SmokingCessation and 402 

DrinksPerWeek (Figure 3B, Figure 5B). The enrichments in conserved OCRs of MSN 403 

subtypes in the dorsal striatum and nucleus accumbens unsurprisingly emphasize known roles of 404 

MSNs of both areas to drive and maintain addiction behaviors(Ferguson et al., 2011; Ji et al., 405 

2017).  406 

 In an orthogonal approach to mapping mouse-human orthologous OCRs, we leveraged 407 

machine learning models to learn the regulatory grammar of neuronal subtypes characterized in 408 

mouse and refine human NeuN+ OCRs to the major neuronal subtypes of cortex and striatum for 409 

GWAS enrichment. Refinement of NeuN+ OCRs revealed that addiction-associated traits enriched 410 

for two clusters of cell types and brain regions.  The first group, which displays concordant cortical 411 

excitatory enrichments between human and mouse, consists of SmokingInitiation and 412 

Cannabis (Figure 3B), and the second group, which displays concordant D1 and D2 MSN 413 

enrichments, consists of SmokingCessation and DrinksPerWeek. A draw-back of 414 

assigning human NeuN+ OCR membership to individual cell types lies in the considerably low 415 
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representation of interneurons in both cortical and striatal neuron populations - as low as 12% in 416 

neocortex(Beaulieu, 1993; Lefort et al., 2009) and ~5% in striatum(Tepper and Koós, 2017; 417 

Krienen et al., 2019). NeuN+ open chromatin profiles alone do not always capture OCRs unique 418 

to rare interneurons, some of which had OCRs identified by human single-cell assays and mouse-419 

human orthologs enriched for addiction GWAS variants (Figure 1C, Figure 2B). As a result, we 420 

did not train ML models for PV, SST, or VIP interneurons. However, the striking enrichments of 421 

OCRs from certain interneuron populations for addiction GWAS variants begin to demonstrate 422 

these populations’ roles in the addiction neural circuits(Bracci et al., 2002; Lansink et al., 2010; 423 

Wiltschko et al., 2010; Ribeiro et al., 2018; Jiang et al., 2019; Lee et al., 2020; Schall et al., 2020).  424 

The overall concordance of enrichments across human and mouse-human orthologous 425 

OCRs suggests a conserved regulatory grammar between mouse and human CREs. 426 

Correspondence in the neural circuitry has been well-appreciated between human studies and 427 

rodent models of addiction(Berke and Hyman, 2000; Koob and Volkow, 2016; Farrell et al., 2018), 428 

and our study further demonstrates that mouse-human conserved OCRs may explain considerable 429 

heritability of addiction-associated traits. This makes animal models suitable not only for studying 430 

the neural circuits of addiction but also cell-type-specific gene-regulatory mechanisms of 431 

addiction.  432 

 We used several selection criteria along with ML models to predict the functional impact 433 

of genetic variants that may be agents in addiction-associated traits (Figure 5, Supplemental 434 

Figure 5, Supplemental Table 1). The fine-mapping pipeline described effectively narrows down 435 

a set of 14,790 SNPs to a putatively functional set of 26 candidates that can be experimentally 436 

tested to determine which brain regions and neuronal subtypes they would have function in. The 437 

candidate functional SNPs that our models prioritize demonstrate how a candidate SNP within a 438 
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locus, such as rs7604640 (Figure 4B), might act in different combinations of neuronal subtypes 439 

and brain regions. This pleiotropy adds complexity to discerning which neuronal subtypes have 440 

altered gene regulation in addiction-associated traits. Our approach often reported only one or two 441 

candidates per loci, reflecting the idea that many SNPs in the same loci are significantly associated 442 

with addiction due to LD with the causal SNP and may not influence addiction-associated genetic 443 

predisposition. The candidate SNPs that overlap mouse-human orthologs from the same predicted 444 

cell type raise the idea that altering the conserved regulatory DNA sequence may be a mechanism 445 

of cell type-specific gene regulatory tuning in a population or even across species(Gjoneska et al., 446 

2015). 447 

Our study depends solely on assays of open chromatin as a proxy for putative CREs. 448 

Epigenetic assays for chromatin conformation, histone modifications, and methylation would 449 

further inform how putative CREs regulate nearby gene expression. Furthermore, our predictions 450 

of SNP impact on putative CREs and genes remain to be experimentally validated. While eQTL 451 

studies do not control for inflated associations due to LD and report gene expression differences 452 

from bulk tissue, we do note that our approach prioritizes several SNPs known to be cis-eQTLs in 453 

relevant brain regions, which indirectly affirms our framework’s ability to select SNPs with 454 

functional impacts on gene regulation. In order to validate our predictions, it will be necessary to 455 

further investigate candidate genetic variants such as rs7604640 (Figure 4B) in future studies 456 

using massively parallel reporter assays(Tewhey et al., 2016) or self-transcribing active regulatory 457 

region sequencing(Vockley et al., 2015; Kalita et al., 2018) that can measure regulatory activity 458 

differences between risk and non-risk alleles.  The candidate SNPs we identified provide possible 459 

mechanisms linking differences in genetic make-up with the genes, cell types, and brain regions 460 

that could influence addiction and substance use behaviors (Figure 4).  461 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.318329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

22 

MATERIALS & METHODS 462 

ATAC-seq data processing pipeline: 463 

We processed raw FASTQ files of ATAC-seq experiments with the official ENCODE ATAC-seq 464 

pipeline (Landt et al., 2012) accessed by https://github.com/ENCODE-DCC/atac-465 

seq-pipeline. We ran this pipeline using the mm10 genome assembly for mouse and the hg38 466 

genome for human with the following settings: smooth_win = 150, multimapping = 0, 467 

idr_thresh = 0.1, cap_num_peak = 300,000, 468 

keep_irregular_chr_in_bfilt_peak = true. We grouped biological replicates when 469 

processing data to obtain individual de-duplicated, filtered bam files and reproducible (IDR) peaks 470 

for each condition. Unless otherwise stated, we used the optimal reproducible set of peaks for 471 

downstream analyses. We removed samples that had low periodicity indicated by ENCODE 472 

quality control metrics and reprocessed the remaining replicates with the pipeline.  473 

Publicly available datasets 474 

Fullard et al. NeuN-sorted ATAC-seq of human postmortem brain (Fullard et al., 2018): We 475 

identified OCRs overlapping addiction-related variants through analysis of human postmortem 476 

brain ATAC-seq in which cells were sorted into NeuN-positive and NeuN-negative groups via 477 

fluorescence activated nuclei sorting (FANS); the brain regions we used were dorsolateral 478 

prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (VLPFC), 479 

anterior cingulate cortex (ACC), superior temporal gyrus (STC), inferior temporal gyrus (ITC), 480 

primary motor cortex (PMC), insula (INS), primary visual cortex (PVC), amygdala (AMY), 481 

hippocampus (HIP), mediodorsal thalamus (MDT), nucleus accumbens (NAc), and putamen 482 

(PUT). We downloaded data from the Sequence Read Archive (SRA) through Gene Expression 483 

Omnibus (GEO) accession #GSE96949. We separated samples by cell type and reprocessed them 484 
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with the ENCODE pipeline as detailed above, aligning reads to hg38. We used the “optimal 485 

reproducible peaks” for each cell type and brain region as foregrounds in GWAS LDSC 486 

enrichment with the Honeybadger2 OCR set as the background set (see LDSC Regression GWAS 487 

Enrichment Backgrounds).  488 

Lake et al. human occipital cortex scTHS-seq (Lake et al., 2018): We downloaded BED-formatted 489 

cell type-specific differential OCRs from occipital cortex scTHS-seq of excitatory neurons (EXC), 490 

inhibitory neurons (IN), astrocytes (AST), endothelial cells (END), oligodendrocyte precursor 491 

cells (OPC), oligodendrocytes (OLI), and microglia (MIC) from the GEO subseries #GSE97887. 492 

We used the hg38 OCR coordinates as foregrounds in LDSC regression GWAS enrichment with 493 

the Honeybadger2 OCR set as the background set (LDSC regression GWAS Enrichment 494 

Backgrounds). 495 

Mo et al. mouse INTACT-sorted nuclei ATAC-seq (Mo et al., 2015): We downloaded FASTQ 496 

files of R26-CAG-LSL-Sun1-sfGFP-Myc transgenic mouse lines for cell type-specific ATAC-seq 497 

performed using the INTACT method from the accession #GSE63137. Mo et al. isolated INTACT-498 

enriched nuclei from three cell types: excitatory neurons (EXC, Camk2a-cre), vasoactive intestinal 499 

peptide neurons (VIP, Vip-cre), and parvalbumin neurons (PV, Pvalb-cre). We reprocessed the 500 

data with the Kundaje Lab open chromatin pipeline using the mm10 genome 501 

(https://github.com/kundajelab/atac_dnase_pipelines). We mapped 502 

reproducible mouse ATAC-seq peaks for each cell type to hg38 using halLiftover with the 12-503 

mammals Cactus alignment (Paten et al., 2011; Hickey et al., 2013) followed by HALPER (Zhang 504 

et al., 2020) (Mapping mouse OCR orthologs) to produce a foreground set of orthologous human 505 

sequences for LDSC regression GWAS enrichment (Finucane et al., 2018). We mapped the 506 

ENCODE mm10 DNaseI-hypersensitive peak set(Yue et al., 2014) to hg38 (Mapping mouse OCR 507 
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orthologs) and used successfully mapped hg38 orthologs of mm10 OCRs  a background set for 508 

mouse foreground enrichments. Furthermore, we used this dataset to evaluate differential 509 

accessibility in cSNAIL-INTACT PV and PV-negative ATAC-seq samples and develop machine 510 

learning models of cell type-specific open chromatin (see Methods below). 511 

Human negative control foregrounds (ENCODE Project Consortium, 2012; Thurman et al., 2012; 512 

Davis et al., 2018; Cannon et al., 2019): We downloaded raw ATAC-seq profiles of human adult 513 

female and male stomach ATAC-seq generated by Snyder et al. (ENCSR337UIU, 514 

ENCSR851SBY, respectively), female human embryonic liver DNase-seq generated by 515 

Stamatoyannopoulos et al. (ENCSR562FNN), and human embryonic lung DNase-seq generated 516 

by Stamatoyannopoulos et al. (ENCSR582IPV) from 517 

https://www.encodeproject.org/.  We processed these files using the ENCODE 518 

pipeline as detailed above to obtain optimal reproducible hg38 peaks. We also downloaded BED 519 

files of human adipocyte and preadipocyte ATAC-seq profiles generated by Cannon et al. from 520 

GEO accession number #GSE110734. We mapped these BED coordinates from hg19 to hg38 521 

using liftOver to define negative control foregrounds for human LDSC regression GWAS 522 

enrichment. We merged the human negative control foregrounds and Fullard et al. foregrounds 523 

with the Honeybadger2 OCR set to define the background for human negative control foreground 524 

enrichments. 525 

Human-orthologous negative control foregrounds (Liu et al., 2019a): We also downloaded raw 526 

ATAC-seq data profiled in female mouse kidney, female mouse liver, and male mouse lung 527 

generated by Liu et al. from SRA accession #SRP167062 to define human-orthologous negative 528 

control foregrounds. We processed these files using the ENCODE pipeline as detailed above to 529 

get optimal reproducible peaks. We mapped optimal reproducible peaks from mm10 to hg38 using 530 
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halLiftover with the 12-mammals Cactus alignment followed by HALPER (Mapping mouse OCR 531 

orthologs) to define negative control foregrounds for human-orthologous LDSC GWAS 532 

enrichments. We merged all human orthologous foregrounds with the human orthologs of the 533 

ENCODE mm10 DNaseI-hypersensitive peak set to define a background for human-orthologous 534 

LDSC GWAS enrichments. 535 

Mapping mouse open chromatin region (OCR) orthologs 536 

We employed halLiftover (Hickey et al., 2013) with the 12-mammals Cactus alignment (Paten et 537 

al., 2011) followed by HALPER 538 

(https://github.com/pfenninglab/halLiftover-postprocessing)(Zhang et 539 

al., 2020) to map mm10 mouse reproducible OCRs to hg38 human orthologs in order to perform 540 

LDSC regression GWAS enrichment. The Cactus multiple sequence alignment file (Paten et al., 541 

2011) has 12 genomes, including mm10 and hg38, aligned in a reference-free manner, allowing 542 

us to leverage multi-species alignments to confidently identify orthologous regions across species. 543 

halLiftover uses a Cactus-format multiple species alignment to map BED coordinates of a query 544 

species to orthologous coordinates of a target species, and HALPER constructs contiguous 545 

orthologs from the outputs of halLiftover (Zhang et al., 2020). We ran the orthologFind.py 546 

function from HALPER on the outputs of halLiftover using the following parameters: -547 

max_frac 5.0 -min_frac 0.05 -protect_dist 5 -narrowPeak -548 

mult_keepone. In general, 70% of mouse brain ATAC-seq reproducible peaks were able to be 549 

mapped to confident human orthologs. To map the ENCODE mm10 mouse DHS background, 550 

which does not contain summit information, to hg38 we used the mouse coordinates of position 551 

with the most species aligned in a region to define the summit. Only for the mm10 mouse DHS 552 

background set, for which a significant proportion of regions could not be confidently mapped to 553 
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hg38, we flanked the original assembly coordinates by 300 bp to increase OCR mapping from 554 

54% to 64%. 555 

LDSC Regression GWAS Enrichment Backgrounds: 556 

We found that LDSC regression GWAS enrichment analysis is sensitive to the selected 557 

background set of matched regions. To construct appropriate background sets for each GWAS 558 

enrichment, we used the ENCODE and RoadMap Honeybadger2(Roadmap Epigenomics 559 

Consortium et al., 2015) and Mouse DHS peak sets for the respective human and mouse-based 560 

open chromatin GWAS enrichment. The Honeybadger2 set, downloaded from 561 

https://personal.broadinstitute.org/meuleman/reg2map/, consists of 562 

DNaseI-hypersensitive OCRs across 53 epigenomes consisting of promoter, enhancer, and dyadic 563 

regions. Honeybadger2 is an appropriate epigenetic reference for enrichment of cell type-specific 564 

open chromatin from various foregrounds such as the Fullard et al. and Lake et al. Honeybadger2 565 

regions allow the LDSC algorithm to properly account for the heritability from OCRs of a 566 

particular cell type or regions rather than because they tend to be more conserved, are enriched for 567 

ubiquitously active transcription factor motifs, or other factors distinguishing open chromatin from 568 

heterochromatin. The human orthologs of the ENCODE Mouse DHS peak set, downloaded 569 

through the ENCODE ATAC-seq pipeline at 570 

http://mitra.stanford.edu/kundaje/genome_data/mm10/ataqc/mm10_un571 

iv_dhs_ucsc.bed.gz, is a set of peaks combined from mouse DNaseI-hypersensitivity 572 

OCRs from ENCODE and provides a background for human orthologs of mouse OCRs. The mm10 573 

mouse DHS regions were mapped to hg38 as described in Mapping mouse OCR orthologs. For 574 

each respective foreground-background pairing, the foreground regions were merged with the 575 

background reference to ensure the background always contained the foreground set. The mouse 576 
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background was used to calculate the significance of the relationship between mouse OCRs and 577 

GWAS for addiction-associated traits to control for a possible association between the degree to 578 

which a region is conserved and its likelihood in influencing the predisposition to an addiction-579 

associated trait.  580 

GWAS enrichment with partitioned LD score regression analysis 581 

We computed the partitioned heritability of CREs for GWAS variants using the LDSC regression 582 

pipeline for cell type-specific enrichment as outlined in 583 

https://github.com/bulik/ldsc/wiki/Cell-type-specific-584 

analyses(Bulik-Sullivan et al., 2015b). We downloaded the GWAS summary statistics files and 585 

processed them with the LDSC munge_sumstats function to filter rare or poorly imputed SNPs 586 

with default parameters. We munged the summary statistics files for HapMap3 SNPs excluding 587 

the MHC regions downloaded at 588 

http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.589 

zip. We inspected GWAS file to ensure the effect allele, non-effect allele, sample size, p-value, 590 

and signed summary statistic for each SNP in each GWAS were included and appropriate for 591 

LDSC. The addiction-associated GWAS measure genetic predisposition for age of smoking 592 

initiation (AgeofInitiation)(Liu et al., 2019b), heaviness of smoking 593 

(CigarettesPerDay)(Liu et al., 2019b), having ever regularly smoked 594 

(SmokingInitiation)(Liu et al., 2019b), current versus former smokers 595 

(SmokingCessation)(Liu et al., 2019b) , alcoholic drinks per week (DrinksPerWeek)(Liu 596 

et al., 2019b), cannabis consumption (Cannabis)(Pasman et al., 2018), and risk tolerance 597 

(RiskyBehavior)(Karlsson Linnér et al., 2019). GWAS traits related to addiction include 598 

multisite chronic pain (ChronicPain)(Johnston et al., 2019) and number of coffee cups drank 599 
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per data (CoffeePerDay)(Coffee and Caffeine Genetics Consortium et al., 2015).  Other 600 

addiction-related traits come from underpowered GWAS including opioid dependence 601 

(OpioidDep)(Cheng et al., 2018) , cocaine dependence (CocaineDep)(Cabana-Domínguez et 602 

al., 2019), and diagnosis of obsessive-compulsive disorder (OCD)(International Obsessive 603 

Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative 604 

Genetics Association Studies (OCGAS), 2018). GWAS from strong brain-related traits used are 605 

schizophrenia risk (Schizophrenia)(Schizophrenia Working Group of the Psychiatric Genomics 606 

Consortium, 2014), highest level of educational attainment (EduAttain)(Lee et al., 2018), and 607 

sleep duration (SleepDuration)(Dashti et al., 2019). The non-brain related traits measure 608 

genetic liability for lean body mass (LBM)(Zillikens et al., 2017), bone mineral density 609 

(BMD)(Kemp et al., 2017), and coronary artery disease (CAD)(Howson et al., 2017).  610 

We estimated LD scores for each foreground set and corresponding background set with 611 

the LDSC regression pipeline make_annot and ldsc functions using hg38 1000 Genomes 612 

European Phase 3 European super-population (1000G EUR) cohort plink files downloaded from 613 

https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/. An 614 

example of an ATAC-seq optimal set of reproducible peaks mapped to hg38 in narrowPeak 615 

format is annotated with 1000G EUR LD scores using the following call: 616 

python make_annot.py \ 617 

--bed-file optimal_peak.narrowPeak.gz \ 618 

--bimfile 1000G.EUR.hg38.${chr}.bim \ 619 

--annot-file foreground.${chr}.annot 620 

We downloaded the baseline v1.2 files for cell type-specific enrichment in hg38 621 

coordinates from the same link above as well as the corresponding weights 622 
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`weights.hm3_noMHC’ file excluding the MHC region from 623 

https://data.broadinstitute.org/alkesgroup/LDSCORE/.  HapMap SNPs and 624 

corresponding weights file used in the LDSC analyses only refer to the SNP rsIDs, rather than 625 

genomic coordinates, so only the baseline and LD statistics used to annotate the foreground and 626 

background files must be in hg38 coordinates. In accordance with the LDSC regression script 627 

input format, we created an `enrichment.ldcts’ file listing the annotated 628 

foreground/background pair for each foreground set. We estimated the partitioned heritability 629 

using the ldsc function, which integrates the foreground and background LD score estimates, 630 

munged GWAS SNP data, baseline variant data, and variants weights. The final function call to 631 

GWAS enrichment is as follows: 632 

python ldsc.py --h2-cts $Munged_GWAS \ 633 

 --ref-ld-chr baseline_v1.2/baseline. \ 634 

 --w-ld-chr weights.hm3_noMHC. \ 635 

 --ref-ld-chr-cts enrichment.ldcts \ 636 

 --out $Output_Label 637 

The pipeline produced LD score regression coefficient, coefficient error, and coefficient p-638 

value estimates. We adjusted for multiple testing using the false discovery rate on p-values of the 639 

LD score regression coefficients (alpha = 0.05) on all 18 GWAS traits intersected on within 640 

the same foreground/background set. A significant FDR-value indicates enrichment of the 641 

foreground genomic regions for GWAS SNPs relative to the background. Lastly, we computed 642 

genetic correlations in Supplemental Figure 1A between GWAS of addiction-associated traits 643 

using the pre-munged summary statistics as described by Bulik-Sullivan et al.(Bulik-Sullivan et 644 

al., 2015a)  645 
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Bulk tissue ATAC-seq 646 

To augment and compare to mouse cell type-specific ATAC-seq datasets generated in this study, 647 

we also performed bulk tissue ATAC-seq from cortex (CTX) and dorsal striatum/nucleus 648 

accumbens (CPU) of 7- and 12-week-old C57Bl/6J mice (N = 2 each age) as described in 649 

Buenrostro et al., 2015(Buenrostro et al., 2015) with the following minor differences in buffers 650 

and reagents. We euthanized mice with isoflurane, rapidly decapitated to extract the brain, and 651 

sectioned it in ice-cold oxygenated aCSF (119mM NaCl, 2.5 mM KCl, 1mM 652 

NaH2PO4(monobasic), 26.2mM NaHCO3, 11mM glucose) at 200-micron sections on a vibratome 653 

(Leica VT1200). We further micro-dissected sections for cortex and dorsal striatum on a stereo 654 

microscope and transferred dissected regions into chilled lysis buffer (Buenrostro et al., 2015). We 655 

dounce homogenized the dissected brains in 5mL of lysis buffer with the loose pestle (pestle A) in 656 

a 15mL glass dounce homogenizer (Pyrex #7722-15). We washed nuclei lysate off the pestle with 657 

5mL of lysis buffer and filtered the nuclei through a 70-micron cell strainer into a 50mL conical 658 

tube. We washed the dounce homogenizer again with 10mL of BL buffer and transferred the lysate 659 

through the 70-micron filter (Foxx 1170C02). We pelleted the 20 mL of nuclei lysate at 2,000 x g 660 

for 10 minutes in a refrigerated centrifuge at 4°C. We discarded the supernatant and resuspended 661 

the nuclei in 100-300 microliters of water to approximate a concentration of 1-2 million nuclei/ 662 

mL. We filtered the nuclei suspension through a 40-micron cell strainer. We stained a sample of 663 

nuclei with DAPI (Invitrogen #D1206) and counted the sample to measure 50k nuclei per ATAC-664 

seq transposition reaction. The remaining steps follow the Buenrostro et al., 2015(Buenrostro et 665 

al., 2015) protocol for tagmentation and library amplification. We shallowly sequenced barcoded 666 

ATAC-seq libraries at 1-5 million reads per sample on an Illumina MiSeq and processed individual 667 

samples through the ENCODE pipeline for initial quality control. We used these QC measures 668 
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(clear periodicity, library complexity, and minimal bottlenecking) to filter out low-quality samples 669 

and re-pooled a balanced library for paired-end deep sequencing on an Illumina NextSeq to target 670 

30 million uniquely mapped fragments per sample after mitochondrial DNA and PCR duplicate 671 

removal. These raw sequencing files entered processing through the ENCODE ATAC-seq pipeline 672 

as above by merging technical replicates and grouping biological replicates by brain region for 673 

each pipeline run.  674 

Cre-Specific Nuclear-Anchored Independent Labeling (cSNAIL) virus procedures 675 

The cSNAIL genome (pAAV-Ef1a-DIO-Sun1-Gfp-WPRE-pA) contains loxP sites to invert the 676 

Sun1-Gfp fusion gene and integrate into the nuclear membrane of cells expressing the Cre gene, 677 

allowing these cell populations to be profiled for various genomic assays (Lawler et al, 2020 in 678 

press J. Neuro).  We packaged the cSNAIL genome with AAV variant PHP.eB (pUCmini-iCAP-679 

PHP.eB) in AAVpro(R) 293T cells (Takara, cat #632273). Viviana Gradinaru provided us with 680 

the pUCmini-iCAP-PHP.eB (http://n2t.net/addgene:103005; RRID: Addgene 103005)(Chan et al., 681 

2017). We precipitated viral particles with polyethylene glycol, isolated with ultracentrifugation 682 

on an iodixanol density gradient, and purified in PBS with centrifugation washes and 0.2µM 683 

syringe filtration. We injected each mouse with 4.0 x 1011vg into the retro-orbital cavity under 684 

isoflurane anesthesia. We allowed the virus to incubate in the animal for 3-4 weeks to reach peak 685 

expression. We closely monitored the health of the animals throughout the length of the virus 686 

incubation and did not note any concerns. 687 

cSNAIL nuclei isolation 688 

On the day of the ATAC-seq experiments, we dissected brain regions from fresh tissue and 689 

extracted nuclei in the same manner as described for bulk tissue experiments. Then, we sorted the 690 

nuclei suspension into Sun1GFP+ (Cre+) and Sun1GFP- (Cre-) fractions using affinity purification 691 
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with Protein G Dynabeads (Thermo Fisher, cat. 10004D). A pre-clearing incubation with beads 692 

and nuclei for 10-15 minutes removes effects from non-specific binding events. Next, we 693 

incubated the remaining free nuclei with anti-GFP antibody (Invitrogen, #G10362) for 30 minutes 694 

to bind Sun1GFP. Finally, we added new beads to the solution to conjugate with the antibody and 695 

incubated the reaction for an additional 20 minutes. The pre-clear step and all incubations took 696 

place in wash buffer (0.25M Sucrose, 25mM KCl, 5mM MgCl2, 20mM Tricine with KOH to pH 697 

7.8, and 0.4% IGEPAL) at 4°C with end-to-end rotation. After the binding process, we separated 698 

bead-bound nuclei on a magnet, washed three times with wash buffer, and filtered through a 20µM 699 

filter to ensure purity. We resuspended nuclei in nuclease-free water for input into the ATAC-seq 700 

tagmentation reaction. We performed nuclei quantification and tagmentation in the same manner 701 

described for bulk tissue ATAC-seq above. We list in the table below the number of animals, the 702 

genotypes, and which regions collected for ATAC-seq experiments in this study. N=2 Pvalb-cre 703 

samples from CPU/NAc region had received a sham surgery with saline injection into the external 704 

globus pallidus 5 days before they were sacrificed (Lawler et al, 2020 in press J. Neuro.) N=2 705 

Drd1-cre samples from both CPU and NAc regions had received headcap surgeries 3 weeks before 706 

they were sacrificed. Both Pvalb-cre and Drd1-cre were overall healthy at time of sacrifice. 707 

Genotype Replicates Sex  
(Female /Male) 

Region and Replicate 
per region 

Cell 
type 

C57BL/6 WT N=4 2 F, 2 M CTX= 4, CPU/NAc = 4 bulk 
Pvalb-cre N=5  3 F (CTX) 

1 F, 1 M (CPU/NAc) 
CTX= 3, CPU/NAc = 2  PV 

Sst-cre N=2 1 F, 1 M CTX= 2, CPU/NAc = 2 SST 
Drd1-cre N=2 2 F CPU=2, NAc=2 D1 
Adora2a-cre N=2 2 F CPU=2, NAc=2 D2 

 708 

cSNAIL Cell Type Specificity 709 
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We created a consensus set of non-overlapping IDR peaks from the ATAC-seq pipeline for 710 

cSNAIL ATAC-seq and Mo et al. INTACT samples (Tissue: Ctx, Cpu, and NAc ; Celltype: 711 

EXC, PV, SST, VIP, D1, D2). We extended the peak set 200bp up- and down-stream, count 712 

overlapping fragments with Rsubread v2.0.1 using the de-duplicated BAM files from the 713 

pipeline(Liao et al., 2014), and created with DESeq2 v1.26.0 a variance-stabilized count 714 

matrix aware of experimental Group (combination of Tissue and Celltype) with ~Group 715 

(Love et al., 2014). We plotted the principle component analysis in Supplemental Figure 3A for 716 

the first two components with this variance-stabilized count matrix. We used Deeptools 717 

v3.5.0 to convert the same BAM files to normalized bigWig files and average over replicates 718 

of the same Group(Ramírez et al., 2016), We plotted the tracks using pyGenomeTracks v3.5 719 

around marker genes for each cell type (Slc17a7, Drd1, Adora2a, Pvalb, Sst, Vip)(Ramírez et al., 720 

2018) Supplemental Figure 3B. We computed the mean accessibility for each Group 2kb up- 721 

and down-stream the transcription start sites (TSS) and correlated log10(TSS accessibility + 1) with 722 

gene expression log10(meta gene counts + 1) of Drop-Seq annotated cell types from prefrontal 723 

cortex and striatum(Saunders et al., 2018). We used the Saunders et al. tissue subcluster metagene 724 

profiles (sum of gene expression in all cells) and summed subclusters to cluster-level metagene 725 

profiles. Most tissue cluster metagene profiles corresponded to cSNAIL ATAC-seq celltype and 726 

tissue profiles, with the exception of cSNAIL cortical PV+ samples were matched to Saunders et 727 

al. cortical MGE+ interneuron clusters. 728 

 729 

Convolutional Neural Network models for CRE cell type classification 730 

We trained a set of convolutional neural network (CNN) models to learn the regulatory grammar 731 

of a given cell type from the DNA sequences underlying the cell type’s OCRs. The models take in 732 
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one-hot encoded 501bp genomic sequences, where positives are centered on the IDR peak summits 733 

that are annotated to be in introns and distal intergenic regions and negatives are approximately 734 

ten times the number of positives sequences that are G/C-matched and not overlapping IDR peaks, 735 

to predict 1 for an OCR or 0 for negative sequence. We excluded promoters (defined as within 736 

5,000bp from the TSS) and exons since distal sequences have been shown to confer more cell type-737 

specificity and be more predictive of expression levels of regulated genes (Roadmap Epigenomics 738 

Consortium et al., 2015). We constructed the negative set by first building a sequence repository 739 

$BGDIR according to 740 

https://bitbucket.org/CBGR/biasaway_background_construction/src/741 

master/ from the mouse mm10 genome using 501bp sequences. Then we used the 742 

biasaway(Worsley Hunt et al., 2014; Khan et al., 2020) command-line interface-generated 743 

negative sequences with the matching nucleotide distribution along a sliding window along the 744 

501bp IDR peak sequence:  745 

biasaway c --foreground $FGFASTA --nfold 10 --deviation 2.6 --step 746 

50 --seed 1 –winlen 100 --bgdirectory $BGDIR 747 

We employed a 5-fold cross validation chromosome hold-out scheme to train 5 models per set of 748 

IDR peaks to ensure stable and consistently learned regulatory patterns. A model for training a  749 

fold does not see sequences during training from the validation set for that fold, and no models see 750 

the test set until final model performance evaluation. Sequences from these chromosomes were 751 

used as the validation set for each fold: 752 

fold1: {chr6, chr13, chr21} 753 

fold2: {chr7, chr14, chr18} 754 

fold3: {chr11, chr17, chrX} 755 
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fold4: {chr9, chr12} 756 

fold5: {chr10, chr8}. 757 

We used sequences from chromosomes {chr1, ch2, chr19} for the test set.  758 

 We trained the models with Keras v2.3.0-tf (https://keras.io/) implemented 759 

through Tensorflow v2.2.0 and used stochastic gradient descent (SGD) with Nesterov 760 

momentum to minimize the binary cross entropy loss and learn model parameters. All models used 761 

the same CNN architecture with five consecutive Conv2D layers (conv_width = 11, 762 

conv_height = 4, conv_filters = 200, stride = 1), one MaxPooling2D layer 763 

(max_pool_size = 26, max_pool_stride = 26), one Dense layer (dense_filters 764 

= 300), one Dropout layer (proportion_dropout = .1), and a final output Dense layer 765 

(activation = ‘sigmoid’). All Conv2D and Dense used the ‘relu’ activation and L2 766 

regularization (l2_reg = 1e-10), unless otherwise stated. We applied the One-Cycle-Policy 767 

(OCP) with linear cyclical learning rate and momentum between a base and max rates as described 768 

previously (Smith, 2018) to train each fold with batch size= 2000, epochs = 23, 769 

num_cycles = 2.35, base_learning_rate = 1e-2, max_learning_rate = 770 

1e-1, base_momentum = .85, max_momentum = 0.99. These parameters robustly and 771 

efficiently trained models across folds to accurately predict positive OCRs of all cell types against 772 

an approximately 1:10 positive:negative class imbalance. We computed classifier performance 773 

metrics including weighted accuracy (using threshold = 0.5), weighted f1_score (using threshold 774 

= 0.5), area under receiver operating characteristic (auROC), and area under precision-recall curve 775 

(auPRC). We provide the scripts and .h5 files with Keras model architectures and weights on the 776 

GitHub page 777 

https://github.com/pfenninglab/addiction_gwas_enrichment.  778 
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 779 

Machine learning cell type-specific prioritization of Fullard et al. NeuN+ ATAC-seq peaks 780 

We used CNN model scores to classify whether a peak from Fullard et al. NeuN+ open chromatin 781 

data is active in a neuronal subtype {EXC, D1, D2}. We took NeuN+ IDR “optimal peaks” 782 

from regions significantly enriched for addiction-associated traits {OFC, VLPFC, DLPFC, 783 

ACC, STC, PUT, NAc, Figure 1A}, extracted 501bp DNA sequences of each centered on the 784 

summit, and scored each peak with cell type-specific machine learning models trained with the 785 

appropriate tissue context (e.g. score cortical NeuN+ peaks with a model trained with cortical EXC 786 

cell type). We averaged scores across model folds from the same cell types and classified NeuN+ 787 

peaks with scores greater than 0.5 as active in that cell type. We defined these ML-prioritized 788 

peaks as foregrounds for LDSC regression GWAS enrichment analyses as described above. We 789 

created a consensus set of peaks merging all model-prioritized peaks and the Honeybadger2 set of 790 

OCRs to be the matched background, and we performed GWAS enrichment and computed FDR 791 

on all 18 GWAS traits (only enrichments for addiction-associated GWAS shown, Figure 3).  792 

 793 

Addiction-associated GWAS processing and cell type-specific candidate selection 794 

We collected the addiction-associated SNPs by submitting the summary statistics files for the 795 

seven addiction-associated traits{AgeofInitiation (Liu et al., 2019b), 796 

CigarettesPerDay (Liu et al., 2019b), SmokingInitiation (Liu et al., 2019b), 797 

SmokingCessation (Liu et al., 2019b), DrinksPerWeek (Liu et al., 2019b), Cannabis 798 

(Pasman et al., 2018), RiskyBehavior (Karlsson Linnér et al., 2019)} to the FUMA webserver 799 

(Watanabe et al., 2017). FUMA computed LD R2 based on the 1000 Genomes European (1000G 800 

EUR) super-population reference (1000 Genomes Project Consortium et al., 2015) via PLINK 801 
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(Purcell et al., 2007), linked GWAS-significant lead SNPs to off-lead SNPs in LD with the lead, 802 

and annotated functional consequences of genetic variants via ANNOVAR based on ENSEMBL 803 

build 85 human gene annotations (Wang et al., 2010) (Figure 1A). ANNOVAR functional gene 804 

annotations for a SNP are as defined in the primary publication and online: 805 

https://annovar.openbioinformatics.org/en/latest/user-806 

guide/gene/. The aggregate of 14,790 unique SNPs span 215 genomic loci. We limited 807 

ourselves SNPs that overlapped Fullard et al. NeuN+ OCRs (Fullard et al., 2018) since nucleotide 808 

variants in these peaks may disrupt epigenomic DNA sequences measured by ATAC-seq. We also 809 

limited ourselves SNPs that are fine-mapped and predicted to be causal by CAUSALdb using the 810 

European LD structure and an ensemble of statistical fine-mapping tools (FINEMAP, 811 

CAVIARBF, PAINTOR) (Chen et al., 2015; Benner et al., 2016; Kichaev et al., 2017; Wang et 812 

al., 2020). Combining these two filtering heuristics, being in NeuN+ OCRs and fine-mapped 813 

putatively causal, narrowed us down to 170 SNPs over 54 loci to be further refined for cell type-814 

specific activity.  815 

We further filtered the 170 SNPs to only those overlapping OCRs from cortical and striatal  816 

brain regions are enriched for addiction-associated variants { OFC, DLPFC, VLPFC, ACC, 817 

STC, PUT, NAc} (Figure 1A), and scored the filtered SNPs with ML models trained on mouse 818 

cortical or striatal cell type-specific ATAC-seq. We inputted DNA sequences of 501 bp centered 819 

at the SNP location for both the effect and non-effect allele into the ML models for predicting cell 820 

type-specific OCR activity and, for each cell type, computed the average cell type score 821 

(prediction) across models from different folds for each of the effect and non-effect alleles. To 822 

predict a measure of functional impact of the effect allele, we computed a SNP delta score 823 

(scoreeffect -scorenon-effect). Most SNPs reported by GWAS are not expected to be the 824 
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causal variant for a trait, so the distribution of cell type-specific model scores on the full list of 825 

14,790 SNPs can be used to define a null distribution. From the 170 SNPs, we predict whether a 826 

SNP might have functional impact in cell type if either allele has a score > 0.5 and if the  delta 827 

score magnitude is > 0.05, the standard deviation of null delta scores. To accompany cell type-828 

specific activity predictions, we downloaded SNPs that are reported cis expression quantitative 829 

trait loci (eQTL) in human cortex, frontal cortex (DLPFC), ACC, caudate, putamen, and NAc from 830 

the GTEX Consortium from https://www.gtexportal.org/home/datasets(GTEx 831 

Consortium, 2013, 2015). We identified genes for which at least one of the 170 SNPs is 832 

an eQTL and plotted them as arcs in Figure 4B and Supplemental Figure 4. Locus plots are 833 

generated with pyGenomeTracks v3.5  tools (Ramírez et al., 2018).  834 

For Figure 4A, we compared SNP scores of the effect allele across each model and grouped 835 

them by whether they overlapped a cortical or striatal NeuN+ OCR, NeuN- OCR, both, or neither, 836 

depending on whether the model was for EXC or D1/D2 cell types, respectively. We computed 2-837 

tailed t-tests between groups and corrected for multiple comparisons with the family-wise 838 

Bonferroni method for N=18 tests from three models and (4 choose 2) six possible comparisons 839 

per model. * P < 0.05/N, ** P < 0.01/N, *** P < 0.001/N. 840 

 841 

DATA AVAILABILITY 842 

Code used to run intermediate and final analyses reported in this paper are available on the GitHub 843 

page: https://github.com/pfenninglab/addiction_gwas_enrichment. 844 

Sequencing output files for data generated in this study are deposited on the GEO at accession 845 
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XXXXX. Questions and comments about data and analyses may be directed to the corresponding 846 

author.  847 
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Figure 1. Substance use and risky behavior GWAS risk variants enrich within reward 1151 

region- and cell type-specific epigenomic profiles. 1152 

Partitioned LDSC regression (GWAS enrichment) finds enrichment of substance use and risky 1153 

behavior traits in region-specific and cell type-specific open chromatin profiles of human 1154 

postmortem brain. (A) Pie chart of ANNOVAR-annotated(Wang et al., 2010) SNP function of 1155 

addiction-associated trait lead and off-lead SNPs in LD R2> 0.8. Dark colors indicate un-1156 

transcribed/non-coding annotations, light for transcribed/exonic annotations. SNP annotation 1157 

labels are according to ANNOVAR using ENSEMBL build 85 gene annotations (Methods). (B) 1158 

GWAS enrichment false-discovery rates in ATAC-seq of 14 postmortem human brain regions 1159 

coupled with NeuN-labeled fluorescence activated nuclei sorting(Fullard et al., 2018). Brain 1160 

regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to 1161 

caudal. Sorted cell types within each brain region are denoted by shape (blue triangle for 1162 

NeuN+/neuronal, red circle for NeuN-/glial). FDR-adjustment was performed across all 1163 

enrichments on the Fullard et al. dataset for Figure 1A and Figure 3: Cell type-specific machine 1164 

learning models refine human NeuN+ enrichments for substance use genetic risk GWAS. 1165 

(A) Scheme to predict cell type-specific activity of NeuN+ ATAC-seq peaks enriched from brain 1166 

regions assayed in Fullard et al. (Fullard et al., 2018) using ML models trained on mouse cell-type 1167 

specific ATAC-seq peaks. ML-predicted OCRs are input into GWAS enrichment. (B) Partitioned 1168 

LD score regression of addiction associated traits in Fullard et al. NeuN+ OCRs predicted to be 1169 

cell type-specific by machine learning models of open chromatin. Cell types are colored by the 1170 

source mouse cell type-specific OCRs from Error! Reference source not found.A. Original 1171 

enrichments from Figure 1A are reproduced in black. Bolded points are significant for FDR < 0.05.  1172 
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 1173 

Figure 4: Machine learning (ML) models for predicting cell type-specific open chromatin 1174 

predict activity of addiction GWAS SNPs 1175 

(A) Cell type-activity prediction scores from the effect allele of genome-wide significant lead 1176 

SNPs and off-lead SNPs in LD R2
 > 0.8. Activity scores for SNPs are stratified by overlap with 1177 

Fullard et al. (Fullard et al., 2018) cortical or striatal NeuN+ and NeuN- peaks. Significance 1178 

symbols denote Bonferroni-adjusted p-values from 2-tailed t-tests for N=18 possible pairwise 1179 

comparisons, N.S. not significant, * P < 0.05/N, ** P < 0.01/N, *** P < 0.001/N. (B) Locus plot 1180 

candidate SNP with predicted function SNP impact in EXC, D1, and D2 cell types. Genome tracks 1181 

from top to bottom: NeuN+ MACS2 ATAC-seq foldchange signal of regions enriched in Figure 1182 

1A, SNP tracks showing SNP filtering criteria down to candidate functional SNP (Methods), gene 1183 

annotation tracks from GENCODE GRCh38, eQTL link tracks of FDR-significant GTEX cis-1184 

eQTL from cortical and striatal brains, and mouse-human orthologous putative CREs mapped from 1185 

cSNAIL ATAC-seq. NeuN+ ATAC-seq tracks and eQTL links are colored by source brain region 1186 

as cortical (teal) or striatal (blue). Cell types colors label cortical excitatory neurons (EXC; red), 1187 

D1 medium spiny neurons (D1; blue), or D2 medium spiny neurons (D2; green). 1188 

 1189 

Figure 5 Summary of LDSC GWAS enrichments in human and mouse-human orthologous 1190 

bulk tissue and cell type open chromatin 1191 

(A) Schematic of human NeuN-labeled bulk tissue and occipital cortex cell types from Figure 1 1192 

for which addiction-associated genetic variants were significantly enriched (FDR < 0.05) in OCRs. 1193 

Brain regions are labelled by the cell type that enriched (NeuN+ : blue box/shading; NeuN- : red 1194 

box/shading) spatially along with the trait(s) for which OCRs were found significantly enriched 1195 
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with risk variants. Occipital cortex cell types from Figure 1C (same color scheme) are listed along 1196 

with the trait(s) for which OCRs were found significantly enriched with risk variants. (B) 1197 

Schematic of addiction-associated genetic variants that share enrichments from human brain 1198 

regions and neuronal subtypes in both human and mouse-human orthologous open chromatin. 1199 

Brain graphic adapted from Fullard et al.(Fullard et al., 2018)  1200 

 1201 

Supplemental Figure 1. Shared and unique genetic architecture of genetic risk variants of 1202 

addiction-associated traits. 1203 

(A) LDSC genetic correlation (rg) matrix of seven addiction-associated traits. FDR-significant 1204 

correlations at shown in bold, non-significant in gray (FDR < 0.05). (B) Upset plot of genomic 1205 

loci shared or unique to each addiction-associated trait. Genomic loci are identified by shared 1206 

GWAS-significant SNPs and genomic region overlap. 1207 

 1208 

 1209 

Supplemental Figure . (C) GWAS enrichment false-discovery rates in single cell THS-seq OCRs 1210 

of major cell clusters in occipital cortex(Lake et al., 2018). Cell types in brain regions that are 1211 

enriched at FDR < 0.05 are plotted with bigger shapes and with black outlines. Traits assessed are 1212 

age of smoking initiation (AgeofInitiation), average number of cigarettes per day for ever smokers 1213 

(CigarettesPerDay), having ever regularly smoked (Smoking Initiation), current versus former 1214 

smokers (SmokingCessation), number of alcoholic drinks per week (DrinksPerWeek)(Liu et al., 1215 

2019b), lifetime cannabis use (Cannabis)(Pasman et al., 2018), and risky behavior 1216 

(RiskyBehavior)(Karlsson Linnér et al., 2019). OFC: orbitofrontal cortex, VLPFC: ventrolateral 1217 

prefrontal cortex, DLPFC: dorsolateral prefrontal cortex, ACC: anterior cingulate cortex, INS: 1218 
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insula, STC: superior temporal gyrus, ITC: inferior temporal gyrus, PMC: primary motor cortex, 1219 

PVC: primary visual cortex, AMY: amygdala, HIPP: hippocampus, MDT: mediodorsal thalamus, 1220 

NAc: nucleus accumbens, PUT: putamen, Ast: astrocyte, End: endothelial, Ex: excitatory neuron, 1221 

In: inhibitory neuron, Mic: microglia, Oli: oligodendrocyte, Opc: oligodendrocyte precursor.  1222 

 1223 

Figure 2: Cell type-specific enrichment of substance use traits are conserved in mouse-1224 

human orthologous open chromatin regions. 1225 

(A) Experimental design to map human orthologous regions from mouse ATAC-seq of bulk cortex 1226 

(CTX), dorsal striatum (CPU), and nucleus accumbens (NAc) of cre-dependent Sun1-GFP Nuclear 1227 

Anchored Independent Labeled (cSNAIL) nuclei of D1-cre, D2-cre, PV-cre, and SST-cre mice. 1228 

cSNAIL ATAC-seq experiments report enriched (+) nuclei populations. (B) Partitioned LD score 1229 

regression finds enrichment of substance use and risky behavior traits for brain region and cell 1230 

type specific ATAC-seq open chromatin profiles of mouse brain. Replication of enrichment is 1231 

shown using INTACT-enriched OCRs from Mo et al(Mo et al., 2015) of cortical excitatory 1232 

(EXC+), vasoactive intestinal peptide interneuron (VIP+), and parvalbumin interneuron (PV+). 1233 

Enrichments that are enriched at FDR < 0.05 are plotted with black outlines. FDR-adjusted p-value 1234 

was performed across all mouse-human ortholog GWAS enrichment across Figure 2. 1235 

 1236 

Figure 3: Cell type-specific machine learning models refine human NeuN+ enrichments for 1237 

substance use genetic risk GWAS. 1238 

(A) Scheme to predict cell type-specific activity of NeuN+ ATAC-seq peaks enriched from brain 1239 

regions assayed in Fullard et al. (Fullard et al., 2018) using ML models trained on mouse cell-type 1240 

specific ATAC-seq peaks. ML-predicted OCRs are input into GWAS enrichment. (B) Partitioned 1241 
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LD score regression of addiction associated traits in Fullard et al. NeuN+ OCRs predicted to be 1242 

cell type-specific by machine learning models of open chromatin. Cell types are colored by the 1243 

source mouse cell type-specific OCRs from Error! Reference source not found.A. Original 1244 

enrichments from Figure 1A are reproduced in black. Bolded points are significant for FDR < 0.05.  1245 

 1246 

Figure 4: Machine learning (ML) models for predicting cell type-specific open chromatin 1247 

predict activity of addiction GWAS SNPs 1248 

(A) Cell type-activity prediction scores from the effect allele of genome-wide significant lead 1249 

SNPs and off-lead SNPs in LD R2
 > 0.8. Activity scores for SNPs are stratified by overlap with 1250 

Fullard et al. (Fullard et al., 2018) cortical or striatal NeuN+ and NeuN- peaks. Significance 1251 

symbols denote Bonferroni-adjusted p-values from 2-tailed t-tests for N=18 possible pairwise 1252 

comparisons, N.S. not significant, * P < 0.05/N, ** P < 0.01/N, *** P < 0.001/N. (B) Locus plot 1253 

candidate SNP with predicted function SNP impact in EXC, D1, and D2 cell types. Genome tracks 1254 

from top to bottom: NeuN+ MACS2 ATAC-seq foldchange signal of regions enriched in Figure 1255 

1A, SNP tracks showing SNP filtering criteria down to candidate functional SNP (Methods), gene 1256 

annotation tracks from GENCODE GRCh38, eQTL link tracks of FDR-significant GTEX cis-1257 

eQTL from cortical and striatal brains, and mouse-human orthologous putative CREs mapped from 1258 

cSNAIL ATAC-seq. NeuN+ ATAC-seq tracks and eQTL links are colored by source brain region 1259 

as cortical (teal) or striatal (blue). Cell types colors label cortical excitatory neurons (EXC; red), 1260 

D1 medium spiny neurons (D1; blue), or D2 medium spiny neurons (D2; green). 1261 

 1262 
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Figure 5 Summary of LDSC GWAS enrichments in human and mouse-human orthologous 1263 

bulk tissue and cell type open chromatin 1264 

(A) Schematic of human NeuN-labeled bulk tissue and occipital cortex cell types from Figure 1 1265 

for which addiction-associated genetic variants were significantly enriched (FDR < 0.05) in OCRs. 1266 

Brain regions are labelled by the cell type that enriched (NeuN+ : blue box/shading; NeuN- : red 1267 

box/shading) spatially along with the trait(s) for which OCRs were found significantly enriched 1268 

with risk variants. Occipital cortex cell types from Figure 1C (same color scheme) are listed along 1269 

with the trait(s) for which OCRs were found significantly enriched with risk variants. (B) 1270 

Schematic of addiction-associated genetic variants that share enrichments from human brain 1271 

regions and neuronal subtypes in both human and mouse-human orthologous open chromatin. 1272 

Brain graphic adapted from Fullard et al.(Fullard et al., 2018)  1273 

 1274 

Supplemental Figure 1. Shared and unique genetic architecture of genetic risk variants of 1275 

addiction-associated traits. 1276 

(A) LDSC genetic correlation (rg) matrix of seven addiction-associated traits. FDR-significant 1277 

correlations at shown in bold, non-significant in gray (FDR < 0.05). (B) Upset plot of genomic 1278 

loci shared or unique to each addiction-associated trait. Genomic loci are identified by shared 1279 

GWAS-significant SNPs and genomic region overlap. 1280 

 1281 

 1282 

Supplemental Figure 2. Sensitivity of partitioned LDSC regression for cell type- and region-1283 

specific in the GWAS trait enrichment requires well-powered GWAS in relevant cell types. 1284 
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GWAS enrichment plots with false-discovery rates in ATAC-seq of 14 postmortem human brain 1285 

regions coupled with NeuN-labeled fluorescence activated nuclei sorting(Fullard et al., 2018). 1286 

Regions are stratified by cortical and subcortical regions, with cortical regions ordered frontal to 1287 

caudal. Sorted cell types within each brain region are denoted by shape (blue triangle for 1288 

NeuN+/neuronal, red circle for NeuN-/glial). Cell types in brain regions that are enriched at FDR 1289 

< 0.05 are plotted with bigger shapes and with black outlines. (A) GWAS enrichment of addiction- 1290 

or substance use-associated traits: multi-site chronic pain (ChronicPain)(Johnston et al., 2019), 1291 

cocaine dependence (CocaineDep)(Cabana-Domínguez et al., 2019) , opioid dependence 1292 

(OpioidDep)(Cheng et al., 2018), diagnosis of obsessive-compulsive disorder (OCD)(International 1293 

Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD 1294 

Collaborative Genetics Association Studies (OCGAS), 2018), and cups of coffee drank per day 1295 

(CoffeePerDay)(Coffee and Caffeine Genetics Consortium et al., 2015). The GWAS for OCD, 1296 

opioid dependence, and cocaine dependence are reportedly underpowered to detect genetic 1297 

liability for these traits (Ncase< 5,000). (B) GWAS enrichment in well-powered brain-related traits 1298 

show cell type- and region-specific enrichment: educational attainment (EduAttain)(Lee et al., 1299 

2018), schizophrenia risk (Schizophrenia)(Schizophrenia Working Group of the Psychiatric 1300 

Genomics Consortium, 2014), habitual sleep duration (SleepDuration)(Dashti et al., 2019). (C) 1301 

GWAS enrichment in non-brain associated traits do not show cell type- or region-specific 1302 

enrichment: heel bone-mineral density (BMD)(Kemp et al., 2017), coronary artery disease 1303 

(CAD)(Howson et al., 2017), and lean body mass (LBM)(Zillikens et al., 2017).  1304 

 1305 

Supplemental Figure 3. Cell type specificity of cSNAIL ATAC-seq in mouse cortex and 1306 

striatum 1307 
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(A) Principle component plots of chromatin accessibility counts from cre-dependent Sun1-GFP 1308 

Nuclear Anchored Independent Labeled (cSNAIL) ATAC-seq from cre-driver lines (Methods). 1309 

Major axes of variation separate cell types by tissue source (PC1) and cell type versus bulk ATAC-1310 

seq (PC2). (B) Normalized coverage track plots around marker genes demarcating cell type-1311 

specificity of cSNAIL ATAC-seq samples. (C) Density correlation plot of normalized chromatin 1312 

accessibility log counts around the transcription start site (TSS) with matched pseudo-bulk cell 1313 

type log gene counts from Drop-seq of mouse cortex and striatum(Saunders et al., 2018). Drop-1314 

seq cell types meta-gene profiles report sum gene counts for cell clusters from frontal cortex and 1315 

striatum. Pearson’s and Spearman’s correlation are denoted with R and ρ, respectively. (D) 1316 

Pairwise correlation matrix of TSS chromatin accessibility log counts with Drop-seq pseudo-bulk 1317 

log gene counts from cortical and striatal cell clusters.  1318 

 1319 
 1320 

Supplemental Figure 4. GWAS enrichment in addiction- and non-addiction-related traits 1321 

using mapped mouse orthologs of tissue- and cell type-specific open chromatin regions. 1322 

GWAS enrichment plots with false-discovery rates in human orthologous regions mapped from 1323 

mouse ATAC-seq of bulk cortex (CTX), dorsal striatum (CPU), and nucleus accumbens (Nac) or 1324 

cre-dependent Sun1-GFP Nuclear Anchored Independent Labeled (cSNAIL) nuclei of D1-cre, D2-1325 

cre, and PV-cre mice. cSNAIL ATAC-seq experiments report both enriched (+) and de-enriched 1326 

(-) nuclei populations. Enrichments that are enriched at FDR < 0.05 are plot with black outlines. 1327 

Replication of enrichment is shown using INTACT-enriched OCRs from Mo et al(Mo et al., 2015) 1328 

of cortical excitatory (EXC+), vasoactive intestinal peptide interneuron (VIP+), and parvalbumin 1329 

interneuron (PV+). (A) GWAS enrichment of addiction- or substance use-associated traits: multi-1330 

site chronic pain (ChronicPain), cocaine dependence (CocaineDep), opioid dependence 1331 
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(OpioidDep), diagnosis of obsessive-compulsive disorder (OCD), and cups of coffee drank per 1332 

day (CoffeePerDay). The GWAS for OCD, opioid dependence, and cocaine dependence are 1333 

reportedly underpowered to detect genetic liability for these traits (Ncase< 5,000). (B) GWAS 1334 

enrichment in well-powered brain-related traits show cell type- and region-specific enrichment: 1335 

educational attainment (EduAttain), schizophrenia risk (Schizophrenia), habitual sleep 1336 

duration (SleepDuration). (C) GWAS enrichment in non-brain associated traits do not show 1337 

cell type- or region-specific enrichment: heel bone-mineral density (BMD), coronary artery disease 1338 

(CAD), and lean body mass (LBM). (D) Heatmap of LDSC regression coefficients of GWAS 1339 

enrichment for all measured GWAS in non-brain OCRs from human or mouse-human mapped 1340 

orthologs. Tissues for which OCRs are significantly enriched (FDR < 0.05) with GWAS variants 1341 

are outlined with a bolded box. 1342 

 1343 

Supplemental Figure 5. ML model performance and selection of candidate functional SNPs. 1344 

(A) Performance metrics for machine learning (ML) models evaluated on the test sets of IDR peaks 1345 

or 10x nucleotide-distribution matched negatives. Five-fold cross validation scheme was used to 1346 

train on IDR peaks of each cell type and tissue.  Performance metrics are reported for accuracy 1347 

and F1-score (using threshold = 0.5) and area under the receiver-operator-characteristic (auROC) 1348 

and the precision-recall curve (auPRC) (Methods). Models were trained on IDR peaks of mouse 1349 

cortical excitatory and striatal D1 and D2 medium spiny neurons. (B) Selection criteria from 1350 

addiction-associated trait SNPs to candidate SNPs with functional impact in gene-regulatory 1351 

function.  1352 

 1353 
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Supplemental Figure 6. Locus plots of addiction-associated SNPs predicted to act in striatal 1354 

and cortical cell types. 1355 

(A-D) Locus plot of candidate SNP with predicted function SNP impact in D1 or D2 cell types. 1356 

Genome tracks from top to bottom: NeuN+ MACS2 ATAC-seq foldchange signal of regions 1357 

enriched in Figure 1A, SNP tracks showing SNP filtering criteria down to candidate functional 1358 

SNP (Methods), gene annotation tracks from GENCODE GRCh38, eQTL link tracks of FDR-1359 

significant GTEX cis-eQTL from cortical and striatal brains, and mouse-human orthologous 1360 

putative CREs mapped from cSNAIL ATAC-seq. NeuN+ ATAC-seq tracks and eQTL links are 1361 

colored by source brain region as cortical (teal) or striatal (blue). Cell types colors label cortical 1362 

excitatory neurons (EXC; red), D1 medium spiny neurons (D1; blue), D2 medium spiny neurons 1363 

(D2; green). Panels A and C report SNPs that are known eQTLs in striatal brain tissues. (A) 1364 

rs11191352 (SmokingInitiation), (B) rs10742814 (DrinksPerWeek), (C) rs9844736 1365 

(RiskyBehavior, SmokingInitiation), (D) Two SNPs ~400bp apart, rs6870603 and rs7712167 1366 

(SmokingInitiation). 1367 

 1368 

Supplemental Table 1. Addiction-associated genetic variants annotated with cell type and 1369 

brain region functional markers 1370 

Addiction-associated genetic variants from the seven GWAS explored in this study further 1371 

annotated by FUMA(Watanabe et al., 2017), CAUSALdb(Wang et al., 2020), overlap with NeuN+ 1372 

OCRs (Fullard et al., 2018), and ML model open chromatin prediction of the risk and non-risk 1373 

alleles as well as ML model delta SNP scores. Several tabs report FUMA annotations, CAUSAL 1374 

db annotation, SNP overlap with Fullard et al. NeuN+/NeuN- peaks, CNN scores for effect allele, 1375 

CNN scores for non-effect allele, CNN delta SNP scores. All tabs contain unique identifying 1376 
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columns according to FUMA outputs. Additional columns report HaploReg annotations from these 1377 

SNPs where available data exists.  The SNP positions are mapped to report hg38 coordinates and 1378 

GenomicLocus report overlapping loci across. SNP overlaps with NeuN peaks are indicated as 0 1379 

for no overlap and 1 for overlap within IDR peaks. CNN scores are reported average across all 1380 

folds and tissues from the same cell type and tissues. CNN scores range from 0 to 1, with scores 1381 

larger than 0.5 are predicted active in that cell type. Delta SNP scores, instead, are normally 1382 

distributed and centered at 0. 1383 
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