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Abstract 1 

Chronic pain is a highly prevalent and severely disabling disease, which is associated with 2 

substantial changes of brain function. Such changes have mostly been observed when 3 

analyzing static measures of brain activity during the resting-state. However, brain activity 4 

varies over time and it is increasingly recognized that the temporal dynamics of brain activity 5 

provide behaviorally relevant information in different neuropsychiatric disorders. Here, we 6 

therefore investigated whether the temporal dynamics of brain function are altered in chronic 7 

pain. To this end, we applied microstate analysis to eyes-open and eyes-closed resting-state 8 

electroencephalography (EEG) data of 101 patients suffering from chronic pain and 88 age- 9 

and gender-matched healthy controls. Microstate analysis describes EEG activity as a 10 

sequence of a limited number of topographies termed microstates, which remain stable for 11 

tens of milliseconds. Our results revealed that sequences of 5 microstates, labelled with the 12 

letters A to E, described resting-state brain activity in both groups and conditions. Bayesian 13 

analysis of the temporal characteristics of microstates revealed that microstate D has a less 14 

predominant role in patients than in healthy participants. This difference was consistently found 15 

in eyes-open and eyes-closed EEG recordings. No evidence for differences in other 16 

microstates was found. As microstate D has been previously related to attentional networks 17 

and functions, abnormalities of microstate D might relate to dysfunctional attentional processes 18 

in chronic pain. These findings add to the understanding of the pathophysiology of chronic pain 19 

and might eventually contribute to the development of an EEG-based biomarker of chronic 20 

pain. 21 

 22 

 23 

 24 

 25 
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1. Introduction 1 

Chronic pain is a highly disabling disease, which affects 20-30% of the adult population [7; 24]. 2 

Its pathophysiology is not fully understood and treatment is often insufficient [59], imposing a 3 

tremendous burden on patients, health care systems and society [46]. Converging lines of 4 

evidence have shown that chronic pain is associated with extensive changes of brain structure 5 

and function [2; 29]. Understanding these changes promises fundamental insights into the 6 

underlying pathophysiology and might eventually help to establish a much sought-after 7 

biomarker of chronic pain [14; 57]. 8 

Brain function in chronic pain has mostly been assessed using functional magnetic 9 

resonance imaging (fMRI) [2] and electro-/magnetoencephalography (EEG/MEG) [44]. Most 10 

of these studies have analyzed static measures of brain activity during the resting-state, 11 

usually by aggregating a certain feature of brain function across several minutes. However, 12 

brain activity varies over time and it is increasingly recognized that these temporal dynamics  13 

provide behaviorally and clinically relevant information, which complements static measures 14 

[19; 45]. Correspondingly, it has been proposed that the dynamics of brain activity and 15 

connectivity critically shape the perception of pain [28]. By assessing brain activity and 16 

connectivity at ultra-low frequencies below 0.1 Hz, recent fMRI studies have provided support 17 

for this concept in chronic pain (e.g. [3; 5; 10; 58]). However, the temporal dynamics of chronic 18 

pain-related brain activity at frequencies higher than 1 Hz have not been consistently explored 19 

yet.  20 

EEG and MEG are well suited to study such dynamic changes of brain activity at higher 21 

frequencies. One of the best-established methods in this field is microstate analysis (see [25; 22 

34] for reviews), which has revealed that temporal changes of EEG activity do not occur 23 

randomly. Instead, EEG activity switches between a limited number of so-called microstates. 24 

During a microstate, the EEG topography remains stable for tens of milliseconds before 25 

abruptly transitioning to another microstate. EEG resting-state activity is usually well-described 26 

with 4 to 6 microstates, which are remarkably similar across participants. Thus, microstate 27 

analysis quantifies resting-state EEG recordings as sequences of a limited number of 28 
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microstates. The temporal characteristics of these microstates carry important information 1 

about mental processes [6; 34]. Moreover, abnormalities of temporal microstate characteristics 2 

have been observed in different neuropsychiatric disorders (e.g. [12; 38; 48]). During the 3 

writing of this manuscript, a first microstate study in patients suffering from chronic pain was 4 

published. The results showed lower occurrence and time coverage of microstate C in patients 5 

with fibromyalgia [20]. However, these findings need to be replicated and extended to other 6 

chronic pain conditions.  7 

Here, we investigated whether the temporal dynamics of brain activity are changed in 8 

a large cohort of patients suffering from chronic pain. To this end, we applied microstate 9 

analysis to EEG resting-state recordings of 101 patients suffering from different types of 10 

chronic pain and 88 matched healthy control participants. Thereby, the study aimed to further 11 

the understanding of the pathophysiology of chronic pain and to potentially contribute to the 12 

development of a brain-based biomarker of chronic pain.  13 
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2. Materials and methods 1 

2.1. Participants 2 

The current study represents a re-analysis of previously published data obtained at the 3 

Technical University of Munich for the large-scale study of brain dysfunction in chronic pain 4 

[54]. 101 patients (69 women; age = 58.1 ± 13.6 years [mean ± SD]) suffering from different 5 

types of chronic pain and 88 age- and sex-matched healthy controls (60 women, age = 57.5 ± 6 

14.2 years) participated in the study. Inclusion criteria for patients were a clinical diagnosis of 7 

chronic pain, with pain lasting at least 6 months, and a minimum reported average pain 8 

intensity of at least 4 out of 10 during the past 4 weeks (0 = no pain, 10 = worst imaginable 9 

pain). Exclusion criteria for patients were acute changes of the pain condition during the past 10 

3 months (e.g. due to recent injuries or surgeries), major neurological diseases (e.g. epilepsy, 11 

stroke or dementia), major psychiatric diseases aside from depression and severe general 12 

diseases. Patients taking benzodiazepines were also excluded. Other medication was not 13 

restricted and was maintained. In total, 47 patients with chronic back pain, 30 patients with 14 

chronic widespread pain, 6 patients with joint pain and 18 patients with neuropathic pain were 15 

included in the study. Exclusion criteria for healthy participants were a past medical history of 16 

pain lasting more than 6 months, having any pain on the day of testing, surgery or acute injury 17 

during the last 3 months and any neurological or psychiatric diseases. All participants provided 18 

written informed consent. The study was approved by the ethics committee of the Medical 19 

Faculty of the Technical University of Munich and conducted according to the relevant 20 

guidelines and regulations. 21 

 Questionnaires were used to assess pain characteristics and comorbidities on the day 22 

of the recording. All patients completed the following questionnaires: pain characteristics were 23 

assessed by the short-form McGill pain Questionnaire (SF-MPQ) [33], depression by the Beck 24 

Depression Inventory II (BDI-II) [4] and anxiety by the State-Trait Anxiety Inventory (STAI) [52]. 25 

The medication was quantified for all patients using the Medication Quantification Scale (MQS) 26 

[21]. 81 patients additionally completed the painDETECT questionnaire [18] to assess the 27 

neuropathic pain component and 47 patients completed the Pain Disability Index (PDI) [16] 28 
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and  the Veteran’s RAND 12-Item Health Survey (VR-12) [50] to assess pain disability and 1 

quality of life, respectively. All healthy control participants completed BDI-II and STAI 2 

questionnaires to assess potential comorbidities. Detailed characteristics of the participants 3 

can be found in Table 1. 4 

 5 

2.2. Recordings 6 

Brain activity was recorded using electroencephalography (EEG) during the resting-state. 7 

Participants were instructed to stay in a wakeful and relaxed state without performing any 8 

particular task. Two 5-min blocks of continuous resting-state data were recorded, one with 9 

eyes closed and the other with eyes open. The temporal order of the blocks was counter-10 

balanced. During the recording, participants were comfortably seated and listened to white 11 

noise played through headphones to mask any ambient noise. 12 

Data were recorded with 64 electrodes and a BrainAmp MR plus amplifier (Brain 13 

Products, Munich, Germany). The electrodes included all electrodes from the 10-20 14 

international system and the additional electrodes Fpz, CPz, POz, Oz, Iz, AF3/4, F5/6, 15 

FC1/2/3/4/5/6, FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P1/2/5/6/7/8 and 16 

PO3/4/7/8/9/10 (Easycap, Herrsching, Germany). Two electrodes were placed below the outer 17 

canthus of each eye to monitor eye movements. All EEG electrodes were referenced to FCz 18 

and grounded at AFz. For 81 patients and 69 healthy controls, muscle activity was 19 

simultaneously recorded with two bipolar electromyography (EMG) electrode montages and a 20 

BrainAmp ExG MR amplifier (Brain Products, Munich, Germany). EMG electrodes were placed 21 

on the right masseter and neck (semispinalis capitis and splenius capitis) muscles [13]. The 22 

EMG ground electrode was placed at vertebra C2. Data were obtained at a sampling frequency 23 

of 1000 Hz, with 0.1 V resolution and were band-pass filtered online between 0.016 and 250 24 

Hz. Impedances were kept below 20 kΩ. 25 

 26 
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2.3. Preprocessing 1 

Preprocessing was performed with the Brain Vision Analyzer software (Brain Products, 2 

Munich, Germany) on the appended data from the eyes-open and the eyes-closed conditions. 3 

For artifact identification, a high pass filter at 1 Hz and a notch filter at 50 Hz were applied to 4 

remove low frequency drifts and electrical line noise, respectively. Independent Component 5 

Analysis was performed [23]. Components representing eye movements and muscle artifacts 6 

were identified based on their time courses and topographies and subtracted from the raw 7 

unfiltered EEG time series [60]. Signal jumps higher than ± 100 µV and their adjacent time 8 

intervals (200 ms before and after the jump) were marked for rejection. Subsequently, all data 9 

sets were visually inspected and remaining bad intervals were marked for rejection. Finally, 10 

data were re-referenced to the average reference and the reference electrode FCz was added 11 

to the electrode array. 12 

 13 

2.4. Microstate analysis 14 

Microstate analysis was performed using the free academic software Cartool version 3.8 15 

(Brunet et al., 2011), Matlab (Mathworks, Natick, MA) and the Matlab toolbox Fieldtrip [41]. 16 

Analyses were performed separately for the eyes-open and eyes-closed conditions. For all 17 

analyses, the first minute of artifact-free continuous data of each condition was selected. 18 

Subsequently, the selected data segment was band-pass filtered between 1 and 40 Hz and 19 

down-sampled to 125 Hz, in line with previous studies (Britz, Van De Ville and Michel, 2010; 20 

Custo et al., 2017; Tomescu et al., 2018). Eyes-closed data of 1 chronic pain patient and 1 21 

healthy control and eyes-open data of 11 patients and 8 controls had to be excluded from 22 

further analysis because no continuous one-minute artifact-free segment was available. Thus, 23 

final sample sizes were 100 patients and 87 healthy controls for the eyes-closed condition and 24 

90 patients and 80 healthy controls for the eyes-open condition. An overview of the microstate 25 

analysis pipeline can be found in Figure 1.  26 
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 1 

 2 

Figure 1. Microstate analysis. For each participant, the global field power (GFP) is calculated and topographies 3 
at GFP peaks are selected for individual clustering. Topographies at GFP peaks are clustered with a modified k-4 
means clustering, leading to a variable number of individual cluster topographies per individual. Next, individual 5 
cluster topographies are concatenated and clustered on a group level. This resulted in 5 different group cluster 6 
topographies, labelled as microstates A to E. Microstate topographies are then fitted back to the individual EEG 7 
data, resulting in a labelled EEG time series in which each time point is associated to a microstate. From the labelled 8 
EEG time series, the temporal characteristics of microstates are derived. This analysis was performed separately 9 
per group (chronic pain patients and healthy participants) and condition (eyes-open and eyes-closed).  10 
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2.4.1. Definition of microstates  1 

We defined microstates through a well-established two-step clustering procedure using a 2 

modified k-means algorithm [42]. In line with previous studies  [12; 38; 48; 55], this was done 3 

separately for each group and condition.  4 

The first step consisted of a k-means clustering performed at the individual level. For 5 

each participant, EEG topographies at global field power (GFP) peaks were clustered, yielding 6 

a variable number of individual-level topographies. The GFP is a measure of the instantaneous 7 

strength of EEG activity measured over the whole scalp and mathematically defined as the 8 

standard deviation of the signals of all electrodes [39]. EEG topographies were clustered at 9 

GFP maxima since they represent the time points of highest signal-to-noise ratio [39; 42].  10 

The clustering algorithm requires an a priori definition of k, which is the number of 11 

clusters into which the data will be grouped. To select the optimal number of clusters, we 12 

performed the clustering with different numbers of k = 4 to 12 initial clusters, following Cartool’s 13 

default settings for resting-state data. First, an initial number of k topographies was randomly 14 

selected from all GFP-peak topographies of the individual EEG time series. Second, the 15 

selected topographies were spatially correlated with the remaining topographies at GFP peaks, 16 

ignoring polarity. Third, the topographies at GFP peaks were assigned to the cluster with the 17 

highest spatial correlation. If the highest correlation was smaller than 0.5, the topography was 18 

not assigned to any cluster. Fourth, the center of each cluster was computed, resulting in k 19 

new “average” cluster topographies. The new cluster topographies were then again correlated 20 

with the topographies at GFP peaks, closing the loop. The algorithm stopped when the 21 

variance of the clusters converged to a limit. In order to overcome the random selection of the 22 

initial cluster topographies, the clustering was repeated 100 times per set of k clusters and the 23 

set explaining most variance of the data was selected. The optimal number of clusters was 24 

identified for each individual separately according to a meta-criterion with 7 independent 25 

optimization criteria (for more details refer to [6]). This procedure resulted in 4 to 8 topographies 26 

for each participant and condition. The number of individual topographies did not differ 27 

between groups for the eyes-open or the eyes-closed condition (eyes-closed: meanpatients = 28 
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5.020, meancontrols = 4.919, t = -0.727, p = 0.468, BF10 = 0.204, median δ = -0.099, 95% CI = [-1 

0.377, 0.178]; eyes-open: meanpatients = 4.944, meancontrols = 4.912, t = -0.256, p = 0.799, BF10 2 

= 0.171, median δ = -0.036, 95% CI = [-0.326, 0.253]; two-sided independent samples t-tests).  3 

In the second step, a second k-means clustering was performed at group level, 4 

clustering the concatenated individual topographies obtained in the previous step. Cartool’s 5 

default settings for the second clustering were adopted, i.e. an initial number of k = 4 to 15 6 

clusters and 200 k-means initializations. Again, the polarity was ignored and a maximum 7 

correlation higher than 0.5 was needed for cluster assignment. The same meta-criterion as 8 

before was used to identify the optimal number of clusters on a group level. It consistently 9 

revealed an optimal number of 5 group-level topographies for each group and condition. 10 

Each set of 5 group-level topographies (Figure 2) was visually inspected and compared 11 

to topographies reported in the literature. For both groups, the first four topographies closely 12 

resembled the four well-known ‘canonical’ microstates A to D reported previously and were 13 

labeled accordingly [25; 27; 34]. The topography of the fifth microstate closely resembled a 14 

microstate, which has been consistently reported in more recent studies [6; 11; 62], since an 15 

increasing number of studies is now using a data-driven approach to define the optimal number 16 

of microstates. We labeled it with the letter E. Throughout the manuscript, the 5 group-level 17 

topographies are referred to as microstates A to E. Similarities and differences of microstate 18 

topographies between groups were assessed by calculating spatial correlations and 19 

topographic analyses of variance (TANOVA) for all microstates (A to E), respectively. The 20 

spatial correlation is a scalar value computed as the Pearson’s correlation coefficient between 21 

all matched electrodes of two different topographies [39]. TANOVA is a non-parametric 22 

randomization test based on the global map dissimilarity of individual topographies [39]. The 23 

global map dissimilarity is a measure of the difference between two topographies directly 24 

related to the spatial correlation [39]. For each microstate, global map dissimilarity was 25 

computed between the microstate topographies of the patient and control groups using Cartool 26 

[9]. To obtain a p-value, this dissimilarity was compared to a distribution of dissimilarities, which 27 

was generated by randomly shuffling individual topographies between patient and control 28 
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groups and re-computing the dissimilarity between the center topographies of the randomized 1 

groups. The process was repeated 5000 times. This comparison resulted in a p-value per 2 

microstate, which was given by the proportion of permutations in which the dissimilarity was 3 

smaller than the dissimilarity originally observed in the data. For both the eyes-closed and 4 

eyes-open conditions, resulting p-values were corrected for multiple comparisons across the 5 

5 microstate classes using the False Discovery Rate (FDR) [61]. 6 

 7 

2.4.2. Temporal microstate characteristics 8 

Next, we determined the temporal characteristics of the five microstates for both groups. To 9 

this end, individual EEG time series were construed as time series of microstates through a 10 

‘fitting procedure’, i.e. a microstate was assigned to every time point. For each participant, the 11 

EEG topographies of all time points were spatially correlated to the five microstate 12 

topographies of the participant’s group (patients/controls), ignoring polarity. Next, each EEG 13 

time point was assigned to a microstate (A to E). To ensure a certain continuity in the 14 

microstate time series, the relabeling was performed based on two criteria: (1) the correlation 15 

should be high and (2) the majority of the surrounding time points should belong to the same 16 

microstate [9]. To fulfill this compromise between goodness of fit and smoothness, standard 17 

temporal smoothing (window half size = 5 and strength (Besag factor) = 10) was applied [42; 18 

55]. No label was assigned if the highest spatial correlation was smaller than 0.5. On average, 19 

the percentage of unlabeled time points was smaller than 0.2% and no differences existed 20 

between groups in any condition (eyes-closed: meanpatients = 0.077 %, meancontrols = 0.072 %, t 21 

= -0.308, p = 0.758, BF10 = 0.224, median δ = 0.166, 95% CI = [-0.319, 0.235]; eyes-open: 22 

meanpatients = 0.177 %, meancontrols = 0.106 %, t = -0.875, p = 0.383, BF10 = 0.2237, median δ = 23 

-0.124, 95% CI = [-0.416, 0.165]; two-sided independent samples t-tests). 24 

Based on the time series of microstates, four measures were calculated to quantify the 25 

temporal characteristics of each microstate: mean duration, time coverage, frequency of 26 

occurrence and global explained variance (GEV). The mean duration is the average time (in 27 

milliseconds) for which a microstate persists before transitioning to a different microstate. The 28 
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time coverage is the percentage of total time that a microstate is present. The frequency of 1 

occurrence is the number of times that a microstate recurs per second. The global explained 2 

variance is the percentage of global variance that is explained by every microstate.  3 

Finally, we investigated the microstate sequence by examining the transition 4 

probabilities from each microstate to the others [31; 40; 55]. To this end, we computed the 5 

matrix of transition counts among all microstates for each participant and divided it by the 6 

overall count of transitions. 7 

 8 

2.5. Statistical analysis 9 

Group differences of temporal microstate measures (mean duration, time coverage, frequency 10 

of occurrence and global explained variance) and transition probabilities were analyzed in 11 

JASP version 0.13.1 [22] using two-sided independent sample t-tests in both frequentist and 12 

Bayesian frameworks. For the frequentist approach, significance level was set to 0.05. For p-13 

values of temporal measures, FDR correction was performed in Matlab (Mathworks, Natick, 14 

MA) across the 5 microstates and the 4 different temporal measures, resulting in a correction 15 

for 20 statistical tests per condition (eyes-open/eyes-closed). For the transition matrix, FDR 16 

correction was performed across all 20 transitions per condition (eyes-open/eyes-closed). For 17 

the Bayesian analysis, default priors (Cauchy distributions with a scale parameter r = 0.707) 18 

were used. In addition to t-values and FDR-corrected p-values, results are reported using the 19 

two-tailed Bayes factor BF10. Effect size estimates for the BF10 are reported as the median of 20 

the posterior Cohen’s δ distribution together with its 95% credibility interval.  21 

 Finally, we investigated relationships between temporal microstate measures and 22 

clinical parameters, using JASP version 0.13.1 [22]. To this end, temporal microstate 23 

measures of microstate D (mean duration, time coverage, frequency of occurrence, global 24 

explained variance) were selected for a correlation analysis, since they consistently showed 25 

at least moderate evidence for a difference between patients and controls in both conditions 26 

in the previous analysis. Pearson’s correlations were calculated between the microstate 27 

measures and major clinical parameters, which were available for all patients (current pain 28 
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intensity, SF-MPQ total pain score, depression (BDI) and medication (MQS)). Correlations 1 

were again calculated in both frequentist and Bayesian frameworks. In the Bayesian analysis, 2 

default priors (stretched beta priors with width = 1) were used. Results are reported using the 3 

Pearson’s correlation coefficient, its FDR-corrected p-value, its Bayes factor (BF10) and the 4 

95% credibility interval of the correlation coefficient. FDR correction of p-values was performed 5 

in Matlab (Mathworks, Natick, MA) across all 16 performed correlations separately for each 6 

condition (eyes-open/eyes-closed).  7 

 8 

2.6. Data and code availability 9 

Raw and preprocessed EEG data in BIDS format [43] as well as scripts for statistical analyses 10 

are openly available at osf.io.   11 
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3. Results 1 

The current study investigated whether the dynamics of resting-state brain activity are altered 2 

in patients suffering from chronic pain. We performed microstate analysis, which describes the 3 

time course of EEG activity as a sequence of a limited number of short stable topographies 4 

termed microstates. We applied microstate analysis to eyes-open and eyes-closed resting-5 

state EEG activity and compared temporal characteristics of microstates between a large 6 

cohort of patients suffering from chronic pain and age- and sex-matched healthy control 7 

participants. 8 

 9 

3.1. Definition of microstates A to E in patients and controls 10 

We identified microstates using a standard two-step k-means clustering procedure [42]. The 11 

procedure consistently revealed 5 different microstates in both groups and conditions (Fig. 2). 12 

In accordance with previous studies [6; 8; 11; 26; 27; 34; 35; 62], the microstates were labeled 13 

as microstates A to E. Together, the five microstate explained 79.63% and 80.15% of the 14 

variance across individuals in the eyes-closed condition and 80.35% and 79.95% in the eyes-15 

open condition (chronic pain patients and healthy controls, respectively), which is in good 16 

accordance with previous studies [12; 34; 49]. Figure 2 shows the topographies of both groups. 17 

The high similarity of topographies between groups was confirmed by high spatial correlations 18 

(eyes-closed: microstate A: r = 0.95, B: r = 0.93, C: r = 0.97, D: 0.89, E: r = 0.83; eyes-open: 19 

microstate A: r = 0.98, B: r = 0.99, C: r = 0.99, D: r = 0.96, E: r = 0.99). In addition, TANOVAs 20 

revealed subtle group differences between topographies hardly visible to the naked eye (eyes-21 

closed: microstate A: p = 0.014, B: p < 0.001, C: p < 0.001, D: p < 0.001, E: p < 0.001; eyes-22 

open: A:  p = 0.005, B: p = 0.53, C: p < 0.001, D: p < 0.001, E: p = 0.31).  23 

Taken together, the clustering procedures for both groups and conditions resulted in 5 24 

microstate topographies, which were largely similar between groups.    25 
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 1 
Figure 2. Microstate topographies of chronic pain patients and healthy participants for the eyes-closed and 2 
eyes-open conditions. Microstates were labelled with the letters A to E according to previous literature [34]. CP: 3 
Chronic pain; HC: Healthy control. 4 

 5 

3.2. Temporal characteristics of microstates in patients and controls 6 

To investigate the dynamics of brain activity, we next analyzed whether the temporal 7 

characteristics of the 5 microstates differed between patients and healthy controls. To this end, 8 

microstates were back-fitted to the individual EEG time series by correlating microstate 9 

topographies with the EEG topographies at every time point. This allowed to assign each time 10 

point to a microstate, and, thus, to construe the EEG time series as time series of microstates.  11 

We specifically calculated the mean duration, time coverage, frequency of occurrence 12 

and global explained variance of each microstate. This was done for each patient and each 13 

healthy control participant for the eyes-closed (Figure 3) and eyes-open (Figure 4) conditions. 14 

We next compared these temporal microstate characteristics between groups. The results 15 

revealed that all microstate D characteristics differed between patients and healthy 16 

participants. Such differences were consistently found in both conditions. In the eyes-closed 17 

condition, we found very strong evidence for a lower global explained variance of microstate 18 

D in patients compared to controls (Table 2; BF10 > 300, FDR-corrected p-value = 0.001). In 19 

addition, we found moderate evidence for a shorter mean duration, lower time coverage and 20 

lower frequency of occurrence of microstate D (Table 2; 3 < BF10 < 10, FDR-corrected p-values 21 

< 0.05). Similarly, in the eyes-open condition, the data provided moderate evidence for a 22 

shorter mean duration, lower time coverage, lower frequency of occurrence and lower global 23 

explained variance of microstate D in chronic pain patients (Table 3; 3 < BF10 < 10, FDR-24 

corrected p-values < 0.05). For all other microstates, we did not find evidence for group 25 

differences consistent across measures and conditions (Tables 2 and 3).  26 
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 1 

Figure 3. Temporal microstate characteristics in the eyes-closed condition. Mean duration, time coverage, 2 
frequency of occurrence and global explained variance of each microstate were calculated for both chronic pain 3 
patients and healthy controls. Raincloud plots [1] show un-mirrored violin plots displaying the probability density 4 
function of the data, boxplots, and individual data points. Boxplots depict the sample median as well as first (Q1) 5 
and third quartiles (Q3). Whiskers extend from Q1 to the smallest value within Q1 – 1.5* interquartile range (IQR) 6 
and from Q3 to the largest values within Q3 + 1.5* IQR. BF = Bayes Factor in favor of the alternative hypothesis.  7 
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 1 

Figure 4. Temporal microstate characteristics in the eyes-open condition. Mean duration, time coverage, 2 
frequency of occurrence and global explained variance of each microstate were calculated for chronic pain patients 3 
and healthy controls. Raincloud plots [1] show un-mirrored violin plots displaying the probability density function of 4 
the data, boxplots, and individual data points. Boxplots depict the sample median as well as first (Q1) and third 5 
quartiles (Q3). Whiskers extend from Q1 to the smallest value within Q1 – 1.5* interquartile range (IQR) and from 6 
Q3 to the largest values within Q3 + 1.5* IQR. BF = Bayes Factor in favor of the alternative hypothesis.  7 
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We further investigated whether the sequences of microstates differed between 1 

groups. To this end, transition probabilities from each microstate to all other microstates were 2 

calculated for both the eyes-open and the eyes-closed conditions. Mean transition probabilities 3 

for both groups and conditions as well as statistical results are presented in tables 4 and 5. 4 

We found moderate evidence for a lower transition probability from microstates A and B to 5 

microstate D in patients compared to controls in the eyes-open condition (Table 5; 3 < BF10 < 6 

10, FDR-corrected p-values = 0.103). Evidence for differences of all other transition 7 

probabilities was either inconclusive or provided evidence for no group differences (see tables 8 

4 and 5 for details).  9 

In summary, the analysis of the temporal dynamics of microstates revealed a less 10 

predominant role of microstate D in resting-state brain activity of chronic pain patients in both 11 

eyes-open and eyes-closed conditions. No evidence for changes of the temporal 12 

characteristics of microstates other than D was found. 13 

 14 

3.3. Relationships between temporal microstate characteristics and clinical 15 

characteristics 16 

Having observed consistent evidence for changes of microstate D temporal characteristics in 17 

patients with chronic pain, we explored whether microstate D temporal measures were 18 

significantly related to clinical characteristics. To this end, we performed correlation analyses 19 

between the temporal measures of microstate D and clinical parameters of the patients. We 20 

specifically related microstate D characteristics to the current pain intensity, the SF-MPQ total 21 

pain score as well as measures of depression (BDI) and medication (MQS). We only found 22 

moderate evidence for an inverse relation between medication and the frequency of 23 

occurrence of microstate D (Tables 6 and 7; eyes-closed: BF10 = 4.16, FDR-corrected p-value 24 

= 0.074; eyes-open: BF10 = 9.58, FDR-corrected p-value = 0.050). Evidence for an association 25 

between medication and the other microstate D measures was inconclusive (Tables 6 and 7; 26 

1/3 < BF10 < 3). In addition, evidence for an association between the other clinical 27 
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characteristics and microstate D measures was either inconclusive or against an association 1 

in both conditions (Tables 6 and 7).  2 

Taken together, the results did not provide consistent evidence for relationships 3 

between microstate D temporal measures and clinical characteristics.  4 
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4. Discussion 1 

In the present study, we investigated the dynamics of brain function in patients suffering from 2 

chronic pain. To this end, we performed microstate analysis of resting-state EEG recordings 3 

in a large cohort of patients and age- and sex-matched healthy control participants. In both 4 

groups, resting-state brain activity could be described as sequences of 5 microstates labeled 5 

A to E. Analyses of the temporal characteristics of these microstates revealed a decreased 6 

presence of microstate D in patients as compared to healthy participants. These changes were 7 

consistently found in eyes-open and eyes-closed conditions. No evidence for differences in 8 

other microstates was found. Thus, the present findings describe microstate D-specific 9 

changes of the dynamics of brain function in resting-state EEG recordings of patients suffering 10 

from chronic pain.  11 

Our analyses reveal shorter mean duration, lower time coverage, fewer occurrences 12 

and less explained variance of microstate D in patients compared to controls in both eyes-13 

open and eyes-closed recordings. Thus, our findings robustly indicate a decreased presence 14 

of microstate D in resting-state EEG activity in patients suffering from chronic pain. These 15 

findings are in contrast to the only study which applied microstate analysis to resting-state EEG 16 

recordings of patients suffering from chronic pain so far [20]. That study found a lower 17 

occurrence and time coverage of microstate C in eyes-open resting state recordings of 43 18 

patients. This difference between studies might at least in part be due to differences between 19 

patient groups. The previous study included 43 patients suffering from fibromyalgia whereas 20 

the present study included 101 patients suffering from different chronic pain conditions. 21 

Although the heterogeneous sample of the present study reflects clinical reality it might veil 22 

differences between chronic pain conditions. The two studies together might prompt further 23 

studies in larger groups of patients, ideally from different recording sites, to resolve this issue 24 

and to further clarify changes of microstates in chronic pain.  25 

Our observations further complement recent fMRI studies, which have shown changes 26 

of the dynamics of brain function in chronic pain at ultra-low frequencies below 0.1 Hz (e.g. [3; 27 
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5; 10]). They extend this evidence by showing alterations of the dynamics of brain function at 1 

frequencies higher than 1 Hz, in line with the dynamic pain connectome concept [28; 45].     2 

Microstate analysis is an emerging tool for investigating the dynamics of brain activity. 3 

Although the functional interpretation of microstates is not fully clear yet, microstate analysis 4 

has been increasingly used to identify changes of brain dynamics in various neuropsychiatric 5 

diseases [25; 34], which have furthered the understanding of the pathology of these disorders. 6 

Beyond, alterations of microstates’ characteristics might be useful as clinical biomarkers. For 7 

instance, a recent study has identified the dynamics of microstates C and D as a promising 8 

candidate endophenotype for schizophrenia [12]. However, our data did not provide evidence 9 

for a correlation between alterations of microstate D and clinical characteristics. As the brain 10 

processes discriminating chronic pain patients from healthy people differ from those encoding 11 

momentary pain intensity [3; 32; 54; 58; 63], the observed changes might reflect the abnormal 12 

disease state per se rather than its specific characteristics.  13 

Microstate D has been related to attentional brain networks and functions (for reviews 14 

see [34; 51]). In particular, microstate D has been associated with brain activity in fronto-15 

parietal regions [8; 11], the dorsal attentional control network [49] and focus-switching and 16 

attentional reorientation [36]. Interestingly, deficits of cognitive function and particularly of 17 

attentional switching have been extensively reported in patients suffering from chronic pain 18 

[37]. A common hypothesis is that pain competes with other stimuli for limited cognitive 19 

resources, thereby “demanding attention” and potentially impairing higher-order attentional 20 

control mechanisms [17; 30; 56]. Thus, a decreased presence of microstate D might represent 21 

a neurophysiological correlate of altered attentional functioning in chronic pain. However, as 22 

we have not obtained direct measures of attentional functioning, we cannot directly test this 23 

hypothesis in the present study. Future microstate studies on chronic pain might therefore 24 

include tasks and/or questionnaires assessing attentional functions.    25 

Several limitations of the current study need to be discussed. First, the specificity of the 26 

decreased presence of microstate D for chronic pain is unclear. In particular, studies in patients 27 

suffering from schizophrenia [12; 47] and major depressive disorder [38] also showed a 28 
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decreased presence of microstate D. However, investigating symptom- and disease-specificity 1 

of these findings is challenging. Substantial progress in this endeavor requires large samples 2 

of patients suffering from different neuropsychiatric symptoms and diseases, standardized 3 

assessments and, ideally, sharing of data acquired at different sites. As a first step in that 4 

direction, we share data and code of the present study in a standardized format with the 5 

research community. Second, comparisons of microstate topographies showed slight but 6 

statistically significant differences between patients and healthy controls. However, 7 

considering these subtle differences together with the overwhelming similarity of microstate 8 

topographies, the microstates of both groups likely capture the same underlying neural 9 

networks. Third, the causal relationship between altered microstate dynamics and chronic pain 10 

is unclear. First studies have shown that the dynamics of microstates can be changed by 11 

neurofeedback [15] and non-invasive brain stimulation [53]. These approaches might thus be 12 

useful to prove the causal link between changes in microstate dynamics and neuropsychiatric 13 

disorders including chronic pain. Moreover, they highlight the potential utility of microstate 14 

dynamics as targets for neurofeedback- and/or brain stimulation-based treatments of chronic 15 

pain.  16 

In conclusion, our findings provide evidence for altered dynamics of brain function in a 17 

large cohort of chronic pain patients using EEG microstate analysis. We particularly observed 18 

alterations of microstate D. As this microstate has been associated with attentional brain 19 

networks and functions, changes of microstate D might relate to dysfunctional attentional 20 

processes in chronic pain. These results add to the understanding of the pathophysiology of 21 

chronic pain. Moreover, they might be useful for establishing a much sought-after EEG-based 22 

biomarker of chronic pain. 23 

  24 
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Tables 1 

Table 1. Demographic data and questionnaire results. BDI = Beck Depression Inventory; 2 

STAI = State-Trait Anxiety Inventory; SF-MPQ = Short-form McGill Pain Questionnaire; VAS 3 

= Visual Analogue Scale; Avg. pain intensity = average pain intensity in the past 4 weeks; PDI 4 

= Pain Disability Index; PDQ = painDETECT; VR-12 PCS = Veteran’s Rand 12 Physical 5 

Component Summary; VR-12 MCS = Veteran’s Rand 12 Mental Component Summary; MQS 6 

= Medication Quantification Scale. Please note that data for avg. pain intensity in the past 4 7 

weeks, pain duration and PDQ were only available for a subset of 81 patients. Data from PDI, 8 

VR-12 PCS and VR-12 MCS were only available for a subset of 47 patients. 9 

 
Chronic pain patients 

(mean ± SD) 
Healthy controls 

(mean ± SD) 

Number 101 88 

Gender (m/f) 32/69 28/60 

Age (years) 58.2 ± 13.5 57.5 ± 14.3 

BDI 15.8 ± 8.9 3.5 ± 4.5 

STAI - State 39.5 ± 10.6 30.6 ± 6.1 

STAI - Trait 44.0 ± 11.2 30.9 ± 7.1 

SF-MPQ total pain score 27.1 ± 9.4 – 

Current pain intensity (VAS) 5.2 ± 1.9 – 

Avg. pain intensity in the past 4 
weeks (VAS) 

5.6 ± 1.6 – 

Pain duration (months) 121.8 ± 114.4 – 

PDQ 17.4 ± 6.5 – 

PDI 27.4 ± 14.2 – 

VR-12 PCS 31.8 ± 7.8 – 

VR-12 MCS 46.4 ± 11.9 – 

MQS 6.8 ± 8.1 – 

 10 
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Table 2. Group comparisons of temporal microstate measures in the eyes-closed 1 

condition. Results of two-sided independent samples t-test (frequentist and Bayesian 2 

approach). P-values are FDR-corrected. Color coded in red p < 0.05 and BF10 > 3, indicating 3 

at least moderate evidence for the alternative hypothesis and in blue BF10 < 1/3, indicating at 4 

least moderate evidence for the null hypothesis. Median effect sizes (δ) and their respective 5 

95% credible interval (CI) are reported. Mean dur. = mean duration; Time cov. = time coverage; 6 

Freq of occ. = frequency of occurrence; GEV = global explained variance; BF10 = Bayes Factor 7 

in favor of the alternative hypothesis. 8 

 
Microstate 

 
Measure t p BF10 

Median 
effect size 

(δ) 
95% CI 

A Mean dur.  0.413 0.800 0.172 0.056 [-0.21, 0.334] 

Time cov.  0.608 0.679 0.189 0.083 [-0.194, 0.361] 

Freq of occ.  1.138 0.513 0.291 0.155 [-0.122, 0.435] 

GEV  0.212 0.832 0.162 0.029 [-0.248, 0.306] 

B Mean dur.  -1.831 0.228 0.754 -0.251 [-0.533, 0.028] 

Time cov.  -1.072 0.518 0.272 -0.146 [-0.426, 0.131] 

Freq of occ.  -0.298 0.806 0.166 -0.040 [-0.318, 0.236] 

GEV  -0.858 0.560 0.224 -0.117 [-0.396, 0.160] 

C Mean dur.  -0.654 0.679 0.194 -0.089 [-0.367, 0.188] 

Time cov.  -0.864 0.560 0.225 -0.118 [-0.397, 0.159] 

Freq of occ.  1.012 0.521 0.256 0.138 [-0.139, 0.417] 

GEV  -1.303 0.431 0.351 -0.178 [-0.458, 0.100] 

D Mean dur.  2.669 0.041 4.235 0.368 [0.085, 0.654] 

Time cov.  2.706 0.041 4.633 0.373 [0.090, 0.659] 

Freq of occ.  2.551 0.046 3.197 0.351 [0.069, 0.637] 

GEV  4.088 0.001 304.172 0.570 [0.280, 0.863] 

E Mean dur.  0.330 0.806 0.167 0.045 [-0.232, 0.322] 

Time cov.  -1.657 0.283 0.569 -0.226 [-0.508, 0.052] 

Freq of occ.  -1.348 0.431 0.371 -0.184 [-0.465, 0.094] 

GEV  -3.036 0.027 10.900 -0.419 [-0.707, -0.135] 
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Table 3. Group comparisons of temporal microstate measures in the eyes-open 1 

condition. Results of two-sided independent samples t-test (frequentist and Bayesian 2 

approach). P-values are FDR-corrected. Color coded in red p < 0.05 and BF10 > 3, indicating 3 

at least moderate evidence for the alternative hypothesis and in blue BF10 < 1/3, indicating at 4 

least moderate evidence for the null hypothesis. Median effect sizes (δ) and their respective 5 

95% credible interval (CI) are reported. Mean dur. = mean duration; Time cov. = time coverage; 6 

Freq of occ. = frequency of occurrence; GEV = global explained variance; BF10 = Bayes Factor 7 

in favor of the alternative hypothesis. 8 

 
Microstate Measure t p BF10 

Median 
effect size 

(δ) 
95% CI 

A Mean dur.  -1.207 0.458 0.326 -0.171 [-0.465, 0.118] 

Time cov.  0.189 0.939 0.169 0.027 [-0.262, 0.317] 

Freq of occ.  0.943 0.534 0.251 0.134 [-0.156, 0.426] 

GEV  0.128 0.939 0.167 0.018 [-0.271, 0.308] 

B Mean dur.  -1.051 0.603 0.224 -0.114 [-0.406, 0.175] 

Time cov.  0.098 0.939 0.167 0.014 [-0.275, 0.304] 

Freq of occ.  1.317 0.421 0.370 0.187 [-0.103, 0.481] 

GEV  -0.726 0.624 0.212 -0.103 [-0.394, 0.186] 

C Mean dur.  -0.804 0.491 0.277 -0.149 [-0.442, 0.140] 

Time cov.  -1.417 0.395 0.420 -0.202 [-0.496, 0.089] 

Freq of occ.  -0.305 0.939 0.174 -0.043 [-0.333, 0.246] 

GEV  -1.418 0.395 0.421 -0.202 [-0.496, 0.089] 

D Mean dur.  2.828 0.026 6.402 0.407 [0.110, 0.708] 

Time cov.  2.938 0.026 8.501 0.423 [0.126, 0.725] 

Freq of occ.  2.942 0.026 8.595 0.424 [0.127, 0.726] 

GEV  2.922 0.026 8.159 0.421 [0.124, 0.723] 

E Mean dur.  -1.733 0.339 0.664 -0.247 [-0.543, 0.044] 

Time cov.  -1.145 0.461 0.305 -0.163 [-0.455, 0.127] 

Freq of occ.  -0.075 0.939 0.167 -0.011 [-0.300, 0.279] 

GEV  -1.486 0.395 0.461 -0.211 [-0.506, 0.079] 
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Table 4. Group comparisons of transition probabilities between microstates in the eyes-1 

closed condition. Results of two-sided independent samples t-test (frequentist and Bayesian 2 

approach). P-values are FDR-corrected. Color coded in red p < 0.05 and BF10 > 3, indicating 3 

at least moderate evidence for the alternative hypothesis and in blue BF10 < 1/3, indicating at 4 

least moderate evidence for the null hypothesis. Median effect sizes (δ) and their respective 5 

95% credible interval (CI) are reported. Mean trans. prob. = mean transition probability; CP = 6 

chronic pain patients; HC = healthy controls; BF10 = Bayes Factor in favor of the alternative 7 

hypothesis.  8 

 
Mean 
trans. 

prob. CP 

Mean 
trans. 

prob. HC 
t p BF10 

Median 
effect 

size (δ) 
95% CI 

From A to B 0.232 0.221 -0.595 0.920 0.188 -0.081 [-0.359, 0.196] 

From A to C 0.388 0.388 0.005 1.000 0.159 0.001 [-0.276, 0.278] 

From A to D 0.186 0.229 2.110 0.251 1.249 0.289 [0.009, 0.573] 

From A to E 0.188 0.158 -1.808 0.299 0.724 -0.247 [-0.530, 0.032] 

From B to A 0.223 0.224 0.073 1.000 0.160 0.010 [-0.267, 0.287] 

From B to C 0.396 0.393 -0.111 1.000 0.160 -0.015 [-0.292, 0.262] 

From B to D 0.190 0.235 2.310 0.251 1.873 0.317 [0.037, 0.602] 

From B to E 0.187 0.145 -2.346 0.251 2.024 -0.322 [-0.607, -0.041] 

From C to A 0.232 0.251 0.923 0.811 0.237 0.126 [-0.151, 0.405] 

From C to B 0.257 0.231 -1.464 0.362 0.431 -0.200 [-0.481, 0.078] 

From C to D 0.273 0.315 1.576 0.362 0.505 0.215 [-0.063, 0.497] 

From C to E 0.235 0.201 -1.739 0.299 0.648 -0.238 [-0.520, 0.041] 

From D to A 0.165 0.203 2.066 0.251 1.148 0.283 [0.003, 0.567] 

From D to B 0.184 0.190 0.353 1.000 0.169 0.048 [-0.229, 0.326] 

From D to C 0.398 0.411 0.483 0.983 0.177 0.066 [-0.211, 0.344] 

From D to E 0.201 0.182 -0.848 0.828 0.222 -0.115 [-0.394, 0.161] 

From E to A 0.193 0.207 0.726 0.902 0.203 0.099 [-0.178, 0.377] 

From E to B 0.202 0.169 -1.873 0.299 0.810 -0.256 [-0.539,0.023] 

From E to C 0.384 0.368 -0.648 0.920 0.193 -0.088 [-0.366, 0.189] 

From E to D 0.216 0.253 1.489 0.362 0.446 0.203 [-0.075, 0.484] 
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Table 5. Group comparisons of transition probabilities between microstates in the eyes-1 

open condition. Results of two-sided independent samples t-test (frequentist and Bayesian 2 

approach). P-values are FDR-corrected. Color coded in red p < 0.05 and BF10 > 3, indicating 3 

at least moderate evidence for the alternative hypothesis and in blue BF10 < 1/3, indicating at 4 

least moderate evidence for the null hypothesis. Median effect sizes (δ) and their respective 5 

95% credible interval (CI) are reported. Mean trans. prob. = mean transition probability; CP = 6 

chronic pain patients; HC = healthy controls; BF10 = Bayes Factor in favor of the alternative 7 

hypothesis.  8 

 
Mean 
trans. 

prob. CP 

Mean 
trans. 

prob. HC 
t p BF10 

Median 
effect 

size (δ) 
95% CI 

From A to B 0.236 0.245 0.598 0.810 0.196 0.085 [-0.204, 0.376] 

From A to C 0.388 0.341 -1.984 0.202 1.018 -0.283 [-0.580, 0.009] 

From A to D 0.201 0.256 2.675 0.103 4.378 0.384 [0.089, 0.685] 

From A to E 0.169 0.155 -0.756 0.810 0.217 -0.107 [-0.399, 0.182] 

From B to A 0.244 0.243 -0.097 1.000 0.167 -0.014 [-0.303, 0.276] 

From B to C 0.371 0.350 -0.816 0.810 0.226 -0.116 [-0.407, 0.173] 

From B to D 0.194 0.248 2.865 0.103 7.042 0.412 [0.116, 0.714] 

From B to E 0.186 0.156 -1.454 0.462 0.441 -0.207 [-0.501, 0.084] 

From C to A 0.272 0.249 -1.234 0.609 0.336 -0.175 [-0.468, 0.115] 

From C to B 0.264 0.260 -0.209 1.000 0.170 -0.030 [-0.319, 0.260] 

From C to D 0.249 0.294 2.011 0.202 1.070 0.287 [-0.005, 0.584] 

From C to E 0.209 0.194 -0.719 0.810 0.211 -0.102 [-0.393, 0.187] 

From D to A 0.199 0.241 2.070 0.202 1.193 0.296 [0.003, 0.593] 

From D to B 0.210 0.214 0.257 1.000 0.171 0.036 [-0.253, 0.326] 

From D to C 0.371 0.355 -0.686 0.810 0.207 -0.097 [-0.388, 0.192] 

From D to E 0.204 0.186 -0.804 0.810 0.224 -0.114 [-0.406, 0.175] 

From E to A 0.205 0.196 -0.598 0.810 0.196 -0.085 [-0.376, 0.204] 

From E to B 0.188 0.198 0.650 0.810 0.202 0.092 [-0.197, 0.383] 

From E to C 0.386 0.342 -1.921 0.202 0.909 -0.274 [-0.571, 0.018] 

From E to D 0.214 0.259 2.078 0.202 1.210 0.297 [0.004, 0.594] 
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Table 6. Relationships between microstate D temporal measures and clinical 1 

parameters in the eyes-closed condition. Pearson’s correlations (frequentist and Bayesian 2 

approach) were performed for microstate D temporal measures, which had consistently shown 3 

evidence for differences between patients and controls in previous analyses. P-values are 4 

FDR-corrected. Color coded in red p < 0.05 and BF10 > 3, indicating at least moderate evidence 5 

for the alternative hypothesis and in blue BF10 < 1/3, indicating at least moderate evidence for 6 

the null hypothesis. ; BF10 = Bayes Factor in favor of the alternative hypothesis; 95% CI = 95% 7 

credible interval; Mean dur. = mean duration; Time cov. = time coverage; Freq of occ. = 8 

frequency of occurrence; GEV = global explained variance; SF-MPQ = short-form McGill pain 9 

questionnaire; BDI = Beck’s depression inventory; MQS = medication quantification scale. 10 

 Current pain SF-MPQ BDI MQS 

Mean dur. 

Pearson’s r 0.123 0.071 0.061 -0.236 

p 0.504 0.580 0.580 0.074 

BF10 0.260 0.160 0.150 1.974 

95% CI [-0.075, 0.309] [-0.126, 0.261] [-0.136, 0.252] [-0.408, -0.041] 

Time cov. 

Pearson’s r 0.163 0.064 0.079 -0.238 

p 0.282 0.580 0.580 0.074 

BF10 0.456 0.153 0.170 2.064 

95% CI [-0.035, 0.345] [-0.133, 0.255] [-0.118, 0.269] [-0.410, -0.043] 

Freq. of 
occ. 

Pearson’s r 0.236 0.074 0.056 -0.265 

p 0.074 0.580 0.580 0.074 

BF10 1.919 0.136 0.146 4.166 

95% CI [0.039, 0.409] [-0.124, 0.264] [-0.141, 0.247] [-0.434, -0.071] 

GEV 

Pearson’s r 0.116 0.066 0.094 -0.189 

p 0.504 0.580 0.580 0.190 

BF10 0.240 0.155 0.193 0.718 

95% CI [-0.082, 0.302] [-0.131, 0.257] [-0.103, 0.283] [-0.367, 0.008] 
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Table 7. Relationships between microstate D temporal measures and clinical 1 

parameters in the eyes-open condition. Pearson’s correlations (frequentist and Bayesian 2 

approach) were performed for microstate D temporal measures, which had consistently shown 3 

evidence for differences between patients and controls in previous analyses. P-values are 4 

FDR-corrected. Color coded in red p < 0.05 and BF10 > 3, indicating at least moderate evidence 5 

for the alternative hypothesis and in blue BF10 < 1/3, indicating at least moderate evidence for 6 

the null hypothesis. ; BF10 = Bayes Factor in favor of the alternative hypothesis; 95% CI = 95% 7 

credible interval; Mean dur. = mean duration; Time cov. = time coverage; Freq of occ. = 8 

frequency of occurrence; GEV = global explained variance; SF-MPQ = short-form McGill pain 9 

questionnaire; BDI = Beck’s depression inventory; MQS = medication quantification scale. 10 

 Current pain SF-MPQ BDI MQS 

Mean dur. 

Pearson’s r 0.191 0.108 0.177 -0.164  

p 0.279 0.434 0.279 0.279 

BF10 0.648 0.218 0.514 0.427 

95% CI [-0.018, 0.379] [-0.101, 0.304] [-0.032, 0.366] [-0.354, 0.044] 

Time cov. 

Pearson’s r 0.129 0.023 0.124 -0.262 

p 0.394 0.881 0.394 0.099 

BF10 0.272 0.136 0.256 2.861 

95% CI [-0.080, 0.324] [-0.183, 0.227] [-0.085, 0.319] [-0.440, -0.057] 

Freq. of 
occ. 

Pearson’s r 0.168 -0.016 0.048 -0.308 

p 0.279 0.881 0.804 0.051 

BF10 0.449 0.134 0.146 9.589 

95% CI [-0.041, 0.358] [-0.220, 0.190] [-0.159, 0.250] [-0.478, -0.105] 

GEV 

Pearson’s r 0.105 0.017 0.154 -0.220 

p 0.434 0.881 0.301 0.200 

BF10 0.213 0.134 0.366 1.106 

95% CI [-0.104, 0.302] [-0.189, 0.221] [-0.056, 0.345] [-0.402, -0.012] 
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