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Abstract 

Purpose: To create a realistic in-silico head phantom for the second Quantitative Susceptibility 

Mapping (QSM) Reconstruction Challenge and for future evaluations of processing algorithms 

for QSM.  

Methods: We created a digital whole-head tissue property phantom by segmenting and post-

processing high-resolution (0.64mm isotropic), multi-parametric MRI data acquired at 7T from a 

healthy volunteer. We simulated the steady-state magnetization at 7T using a Bloch simulator 

and mimicked a Cartesian sampling scheme through Fourier-based processing.  Computer code 

for generating the phantom and performing the MR simulation was designed to facilitate flexible 

modifications of the phantom in the future, such as the inclusion of pathologies, as well as the 

simulation of a wide range of acquisition protocols. Specifically, the following parameters and 

effects were implemented: repetition time and echo time, voxel size, background fields, and RF 

phase biases. Diffusion weighted imaging phantom data is provided allowing future 

investigations of tissue microstructure effects in phase and QSM algorithms. 

Results: The brain-part of the phantom featured realistic morphology with spatial variations in 

relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the 

phantom’s properties, including the possibility of generating phase data with non-linear 

evolution over echo time due to partial volume effects or complex distributions of frequency 

shifts within the voxel.  

Conclusion: The presented phantom and computer programs are publicly available and may 

serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility 

reconstruction algorithms. 
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1 Introduction 

Quantitative Susceptibility Mapping (QSM) has proven to be a valuable tool for assessing iron 

concentrations in the deep gray matter (DGM) (1–3), estimating vessel oxygenation and 

geometry (4,5), differentiating blood and calcium products (6,7), and studying demyelinating 

lesions in the white matter (WM) (8–11). However, several recent methodical investigations 

have suggested that study outcomes may depend on the particular processing algorithms chosen 

for QSM (12–14). QSM typically involves the following steps in the order of application: coil 

combination (12); phase unwrapping (14); multi-echo combination (12); background field 

removal (14); and, finally, the estimation of susceptibility maps (13,15–17). Processing artifacts 

and inaccuracies at any of these five processing stages can propagate into the computed 

susceptibility maps.  

    The first QSM Reconstruction Challenge (RC1) in 2016 (18) aimed to provide initial insights 

on the accuracy of various proposed algorithms for estimating susceptibility from background-

corrected frequency maps, i.e., the last processing step of QSM. One of the key conclusions of 

RC1 was that the choice of the algorithm and the used parameter settings can have a substantial, 

non-negligible effect on the appearance and accuracy of computed susceptibility maps. However, 

upon completion of the challenge, it was also recognized that the particular gold-standard 

(reference) susceptibility maps used for evaluating the challenge submissions limited the 

interpretability of the challenge outcomes. The reference maps were generated from multiple 

acquisitions in which the subject had rotated the head towards 12 different orientations. From 

these data, two reference maps were created, one calculated with the susceptibility tensor 

imaging (STI) (19) technique and one by Calculation Of Susceptibility through Multiple 

Orientation Sampling (COSMOS) (20). Meanwhile, only one of the 12 field-maps was provided 

to the challenge participants. The rationale of this approach was that RC1 would yield the most 

objective and meaningful results if algorithms were evaluated using real-world in vivo data. 

However, at the completion of RC1, it was observed (21) that a non-negligible discrepancy 

existed between the provided frequency map and the frequency map obtained when the field 

perturbation was forward-simulated based on the provided reference susceptibility maps. It was 

speculated that a part of the discrepancies were related to unaccounted microstructure effects on 

in vivo brain phase images (22). Current single-orientation QSM algorithms assume that 
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frequency contrast is caused entirely by variations in bulk magnetic susceptibility and all other 

contrast mechanisms are neglected. Consequently, the discrepancy between the provided field 

map and the gold standard susceptibility reference rendered it challenging or even impossible to 

achieve a reconstruction from the field map that was close to the reference used. It turned out 

that the best performing RC1 submissions, i.e. those with the smallest error metrics, were over-

regularized and had a non-natural appearance.  

The goal of the second reconstruction challenge (RC2) in 2019 was to address the identified 

limitations of RC1 and provide more meaningful insights on the current state-of-the-art in QSM 

algorithms to identify their strengths and limitations in different scenarios and inform and 

coordinate future methodological research efforts. During the planning phase for RC2, the 

challenge committee concluded that the systematic evaluation of the accuracy and robustness of 

QSM methods should focus on synthetic (in silico) phantoms with realistic forward simulations 

rather than on real-world data. The challenge was designed with two stages: Stage 1 mimicked 

the clinical setting in which the ground-truth was unknown to participants; in Stage 2 the ground-

truth was made available and, thus, allowed for systematic parameter optimisations to obtain the 

best possible quality metrics that can be obtained with each reconstruction algorithm. The results 

of RC2 were reported in a separate manuscript (23).  

 In this paper, we present the modular framework designed to generate the realistic digital 

head phantoms for RC2. Methodological researchers may use the RC2 phantom in their studies 

to evaluate existing and future QSM algorithms and compare their results to RC2 submission. 

The comparison of their metrics to those of RC2 submissions will facilitate the objective 

evaluation of methodological improvements and algorithm performance across labs. As more 

advanced physical models are incorporated into the QSM algorithms, researchers may extend the 

phantom according to their needs. Code and data are freely available and have been designed to 

facilitate adding new features to the phantom, such as calcifications and hemorrhages or 

microstructure effects. The software package may also be used to optimize acquisition protocols, 

prepare and test complete QSM reconstruction pipelines. In combination with other software, the 

package will allow evaluating the effect of image distortions or blurring on QSM.  
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2 Methods  

2.1 Design considerations  

2.1.1 Limitations of previous evaluation strategies 

In the literature, most QSM algorithms were evaluated based on their visual appearance 

(5,24,25), based on the root-mean-squared-error (RMSE) of reconstructions of simple digital 

piece-wise constant phantoms consisting of geometrical shapes (25–30), or simplistic head 

phantoms (22,31). Evaluation of the susceptibility quantification accuracy and precision typically 

relied on phantoms made of agar or aqueous solutions with varying concentrations of contrast 

agents such as Gadolinium (20,26,32–35) or iron oxide particles (5,28,36–38). Such 

measurements have been of great importance to establish that QSM linearly maps the magnetic 

susceptibility property and that measurements across different platforms can be compared.  In 

vivo, QSM accuracy has often been evaluated (27,31) by using previously published iron 

concentrations in the deep grey matter nuclei (39) as a surrogate gold standard. This approach 

suffers from the large variability in iron concentrations across subjects. 

A major limitation of most previously used digital phantoms and liquid or gel phantoms 

was that they had piece-wise constant susceptibility distributions, which are particularly easy to 

invert for methods with total variation regularization (“inverse crime”). To address this 

limitation, validation has also been performed by injecting gadolinium into tissue samples (20) or 

using air bubbles or glass beads (40). In the first case experiments, however, the ground truth is 

again not available as the agents diffuse within the tissue. Therefore, it has to be reverted to 

visual inspection. In vivo, as an alternative to visual inspection, maps have been compared to a 

COSMOS reconstruction of the same subject (28–30,41,42) due to their reduced level of 

streaking artifacts, similar as in RC1. However, using a COSMOS solution as gold standard 

implicitly assumes that the measured phase satisfies COSMOS’s field model. Specifically, 

COSMOS assumes that (i) susceptibility is isotropic throughout the brain; (ii) that the dipole 

model with the sphere of Lorentz approximation can be used throughout the brain (22); and (iii) 
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that microstructure-related frequency effects (43) and chemical exchange (44,45) do not exist. 

Since these assumptions are simplistic, COSMOS does not generate an appropriate ground truth 

susceptibility map for single-orientation QSM and, hence, cannot be considered a good gold 

standard method.  

2.1.2 Design considerations for RC2 

This RC2 committee’s decision to employ a digital phantom resulted from the realization 

that a true gold standard technique for in vivo QSM did not exist. Without a gold standard 

technique, it was not possible to obtain a meaningful in vivo reference susceptibility map 

through measurements. The committee had also discussed the design of real-world test objects 

(phantoms) that are consistent with the QSM phase model (33,34). Based on the committee 

members’ experience with phantom design and a literature research of previously used 

phantoms, it was concluded that the inclusion of sufficiently complex morphology and fine-scale 

susceptibility features would be prohibitively challenging. It was unanimously concluded that it 

would be most reasonable to focus the committee’s efforts on a digital phantom that could be 

adapted and extended to the community’s evolving needs in the future. For real-world data, 

available references usually represent only approximations of the ground truth (gold standard). 

On the contrary, in silico phantoms provide a genuine ground truth. In silico phantoms also 

allow for a controlled investigation of the effect of deviations from the underlying QSM model 

on the reconstruction performance. Besides the ability to model different biophysical phase 

contributions, digital models also allow a controlled inclusion of measurement-related phase 

errors. For example, field measurements close to the brain surface are affected by nuisances, 

such as signal drop-out and the non-linearity of the phase evolution due to the non-negligible 

higher order spatial terms inside the pixel (46) that make the measured field deviate from the 

actual voxel-average field. Similar limitations are present when developing background field 

removal methods. Despite this known limitation, only a few methods have the possibility to 

explicitly account for field map uncertainty (27,32), while remaining methods address this 

problem by increasing the brain mask erosion (24,26,47).  

As a first step toward a future systematic evaluation of all above-mentioned experimental 

aspects influencing QSM reconstruction quality, the RC2 in-silico phantoms enforced 

consistency of the provided frequency map with the physical model used by current QSM 
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algorithms. Also, the RC2 phantoms were designed to feature a realistic brain morphology and 

naturally varying susceptibility distribution within anatomical regions. 

2.2 Data acquisition                    

We acquired MRI data from a human volunteer (F, 38 years) who gave informed consent, and 

the experiment was approved by the local Medical Ethical Committees (Amsterdam University 

Medical Centre and Radboud University Medical Centre). We used a 7T scanner to obtain 

relaxation rate maps and a 3T scanner to obtain DTI data and bone-air tissue interfaces. For 

generating the brain phantom, we acquired inherently co-registered quantitative maps of R1 (48), 

R2
*,  and M0 maps using the MP2RAGEME (49) sequence on a 7T (Philips Achieva) scanner. 

The main sequence parameters were TR/TI1/TI2=6.72/0.67/3.86 s. The first and second inversion 

times were acquired with TE1=3ms and TE1/2/3/4=3/11.5/20/28.5ms and flip angles α1/α2 = 7/6 o, 

respectively. The acquisition was performed sagittally with FOV=205x205x164 mm3 and matrix 

size = 320x320x256, resulting in an isotropic resolution of 0.64mm and its total acquisition time 

was of 16min 30secs.  

For generating a bone and air model, we acquired T1w (0.93 mm isotropic) data at very short 

echo time using the PETRA (50) sequence with the following parameters at 3T (Siemens 

PrismaFIT): TR1/TR2/TI1/TI2=3/2250/1300/900 ms; flip angle=6°, TE=0.07 ms; matrix size = 

320x320x320; total acquisition time 5min 57secs.  

To add microstructure effects to the phantom, we acquired DTI data using two simultaneous 

multi-slice EPI-based datasets with opposed phase encoding directions. The main sequence 

parameters were TR/TE=3520/74 ms, SMS factor 3, in-plane acceleration 2, matrix size = 

140x140x93 and FOV=210x210x139.5 mm3, resulting in 1.5mm isotropic image resolution. The 

diffusion-weighted parameters were b=0/1250/2500 s/mm² and 12/90/90 directions, respectively, 

resulting in a total acquisition time of 12 min 10 secs. Diffusion data was processed using fsl 

software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), eddy_correct and top up were used to undistort 

the DWI data. Data was coregistered to the 7T anatomical space and FMRIB Diffusion Toolbox 

was used to extract tensor information (FA, fractional anisotropy, main eigenvector orientation). 
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2.3 Tissue segmentation 

Figure 1 shows a pictorial representation of the pipeline used for the segmentation. The 7T T1 

maps, derived from the MP2RAGE dataset, were segmented into 28 tissue classes, including left 

and right splitting, using the cbstools atlas based pipeline 

(https://www.cbs.mpg.de/institute/software/cbs-tools(51)). Classes were then re-clustered into 16 

tissue clusters: CSF (initially split into 4 classes); grey matter (initially split into 8 classes, left 

and right cortical, cerebellar, amygdala and hippocampus); caudate; putamen; thalamus; white 

matter (encephalus, cerebellum and brain stem); and large blood vessels. Deep grey matter 

structures not clearly distinguishable on T1 maps (red nucleus, substantia nigra, globus pallidus 

and dentate nucleus) were manually segmented using the active contours function implemented 

in ITKSnap (version 3.6) (52) on R2* and 𝜒 maps. A calcification present in the subject’s 

interhemispheric fissure was identified and segmented using the M0 map. An initial vein-and-

artery mask was computed based on Frangi filtered R2* maps as described in (53). The region 

outside the brain was segmented into bone, air and tissue using a model-based segmentation 

approach with deformable surface meshes (54) using the PETRA sequence as input. The 

resulting segmentations of nasal cavities and auditory canals were refined manually using 

ITKSnap for the computation of realistic background fields (see below).  

    After the combination of the individual tissue brain masks into a piece-wise constant whole-

head phantom, we used R2* and R1 maps to correct the label boundaries in various brain regions 

using customized thresholds (see Table S1 in the Supplementary Material). The initial tissue 

segmentations were based on one single quantitative parameter (R1 for tissues compartments, 

R2* for veins), and because smooth surfaces had been enforced in some regions this resulted in 

segmentation mismatches that benefited from this second processing iteration.  

2.4 Susceptibility map                                                               

  The susceptibility map was simulated by assigning tissue-typical susceptibility values taken 

from literature (55,56),  𝜒
𝑡𝑖𝑠𝑠𝑢𝑒

 (see Table 1), to the various tissue segments. We modulated the 

susceptibility values in each region using the image intensities on R1 and R2* maps according to 

the following equation: 
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𝜒(𝑟)𝑡𝑖𝑠𝑠𝑢𝑒 = �̅�𝑡𝑖𝑠𝑠𝑢𝑒 + 𝑎𝑡𝑖𝑠𝑠𝑢𝑒(𝑅2
∗(𝑟)−�̅�2𝑡𝑖𝑠𝑠𝑢𝑒

∗ ) + 𝑏𝑡𝑖𝑠𝑠𝑢𝑒(𝑅1 (𝑟)−�̅�1𝑡𝑖𝑠𝑠𝑢𝑒)  [Eq. 1] 

where �̅�2𝑡𝑖𝑠𝑠𝑢𝑒
∗  and �̅�1𝑡𝑖𝑠𝑠𝑢𝑒 are the mean apparent transverse and longitudinal magnetization 

rates of that given tissue segment class. There were three main motivations for using such an 

expression to compute our ground truth susceptibility map: 

- Modulation avoided that susceptibility values were constant throughout anatomical 

regions (piece-wise constant). Absence of modulation would be both unrealistic and 

advantageous to algorithms with gradient-based regularization terms. 

- From a practical perspective, R1 and R2* were the only two “bias field” free maps 

available at high resolution that could be used to create a anatomically valid intensity 

modulation; 

- Both transverse and longitudinal relaxation rates, like magnetic susceptibility, are known 

to have a linear dependence on the concentration of paramagnetic and diamagnetic 

perturbers when dealing with simple liquid solutions. The main difference to 

susceptibility is that relaxation rates are agnostic to the sign of the magnetic perturber; 

particularly in brain tissues, both R1 and R2* have been shown to have a linear 

dependence on the concentrations of iron and myelin (57).  

While it is reasonable to assume that the susceptibility map (assuming any other tissue properties 

constant) could be given by a linear combination of these two maps, the main aim was to 

introduce a realistic texture. To obtain proportionality parameters, 𝑎𝑡𝑖𝑠𝑠𝑢𝑒 and 𝑏𝑡𝑖𝑠𝑠𝑢𝑒 , resulting in 

realistic susceptibility variations, Eq.1 was inverted for each brain tissue class using as 𝜒(𝑟)𝑡𝑖𝑠𝑠𝑢𝑒 

the HEIDI susceptibility map calculated from the original data. The coefficients �̅�𝑡𝑖𝑠𝑠𝑢𝑒, 𝑎𝑡𝑖𝑠𝑠𝑢𝑒 

and 𝑏𝑡𝑖𝑠𝑠𝑢𝑒 used for the two phantoms in the QSM challenge 2.0 can be seen in Table 1 and 

Figure 2. Note that having different proportionality parameters for each tissue (in addition to a 

different mean value per tissue type), results in a susceptibility map that cannot be derived 

simply from the magnitude signal variations. Because the measured relaxation rates of blood 

(both in arteries and veins) are prone to errors (due to inflow effects on R1 and flow effects on 

R2* maps), the proportionality values were relatively small for the blood pool, rendering these 

compartments piece-wise constant. Bone, calcification and other non-brain tissue compartments 

were made piece-wise constant (the lack of a susceptibility map outside the brain prencented the 

derivations of 𝑎𝑡𝑖𝑠𝑠𝑢𝑒 and 𝑏𝑡𝑖𝑠𝑠𝑢𝑒). Close to air-tissue boundaries, where strong field gradients are 

present, tissue R2* values are overestimated (see R2* maps in Fig.1 over the ear canals) (58). A 
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low-pass filtered version of the gradient of the acquired field map was used to differentiate 

regions where the R2* values could be trusted from those where they were unreliable. In the 

latter regions, we forced 𝑎𝑡𝑖𝑠𝑠𝑢𝑒 = 0 (ignore R2* contribution when generating the susceptibility 

phantom). To avoid discontinuities between high (>0.08ppm/mm) and low (<0.3ppm/mm) field 

gradient regions, a smooth transition was created by mixing the two combinations (from full 

Eq.1 and 𝑎𝑡𝑖𝑠𝑠𝑢𝑒 =0, respectively). Please refer to provided code for more details on the 

implementation.  

    To avoid unrealistically sharp edges of magnetic susceptibility at the interfaces between tissue 

regions, we have introduced partial voluming in those transitions. Note that transitions between 

brain tissues tend not to be sharp (for example, grey matter layers on the white matter side are 

highly myelinated (59), as are the outer parts of the thalamus), while between tissues and blood, 

CSF, air, bone and muscle the interfaces will be sharp. The probability of a voxel being a given 

tissue, Ptissue, was computed by smoothing each binary brain tissue mask using a 3D Gaussian 

kernel with a full-width at half maximum (FWHM) of 1.2 voxels. This smoothing was not 

applied to veins or non-brain tissue masks. The probability was computed as 𝑃𝑡𝑖𝑠𝑠𝑢𝑒(𝑟) =

𝑆𝑡𝑖𝑠𝑠𝑢𝑒(𝑟)/ ∑ 𝑆𝑡𝑖𝑠𝑠𝑢𝑒(𝑟)16
𝑡𝑖𝑠𝑠𝑢𝑒=1 , where 𝑆𝑡𝑖𝑠𝑠𝑢𝑒 is either the smoothed or unsmoothed mask of a 

given compartment depending on it being a brain tissue or non-brain tissue. Note that transitions 

between brain tissues tend not to be sharp (for example, grey matter layers on the white matter 

side are highly myelinated, as are the outer parts of the thalamus), while between tissues and 

blood, CSF, air, bone and muscle they will be sharp. The susceptibility phantom was then given 

by: 

𝜒(𝑟) = ∑ 𝑃𝑡𝑖𝑠𝑠𝑢𝑒(𝑟)16
𝑡𝑖𝑠𝑠𝑢𝑒=1 𝜒(𝑟)𝑡𝑖𝑠𝑠𝑢𝑒      [Eq2] 

The importance of moving from a piece-wise constant (where a 𝑎𝑡𝑖𝑠𝑠𝑢𝑒 and 𝑏𝑡𝑖𝑠𝑠𝑢𝑒 are set to 

zero) to a contrast-modulated (where 𝑃𝑡𝑖𝑠𝑠𝑢𝑒 is simply a binary mask) or the probabilistic 

formalism of the susceptibility distribution can be appreciated in Figure 3. Yellow arrows 

highlight the transition between grey and white matter that becomes smoother, and green arrows 

smoothing out small segmentation errors within the thalamus. On the other hand, Figure 3 shows 

that most vessel structures have remained sharp with only some minor reduction in susceptibility 

value. R2
* maps tend to enlarge venous structures due to blooming artifacts. By not smoothing 

the blood compartment mask when computing the final susceptibility map, this effect was not 

further extended. On the other hand, because neighboring tissues have been smoothed into the 
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blood compartment, the blood partial volume in blood vessels is reduced resulting in a lower 

susceptibility the smaller the vessel is, mimicking a realistic scenario. 

     

2.5 Data Simulation 

Spoiled gradient recalled echo data can be simulated using the steady state equation: 

𝑆 = 𝑀0(𝑟)𝑠𝑖𝑛(𝛼)
(1−𝑒−𝑇𝑅.𝑅1)

1−𝑐𝑜𝑠(𝛼)𝑒−𝑇𝑅.𝑅1
𝑒−𝑇𝐸.𝑅2

∗+𝑖(𝜙0(𝑟)+𝑇𝐸.𝛥𝜔𝜒)     [Eq. 3] 

Here, 𝜙0 is an initial phase distribution originated from the transceiver phase, and 𝛥𝜔𝜒 is the 

frequency shift directly attributed to magnetic susceptibility. To simulate S for given repetition 

times (TR), echo times (TE), and flip angles (𝛼), we used the M0, R1 and R2* maps derived from 

the MP2RAGEME (49,60) sequence, 𝜙0(𝑟) is the TE=0 phase (a manually selected 3D second 

order polynomial ensuring 2𝜋 phase variation inside the brain region was used), and the 

frequency shift, Δ𝜔(r), was calculated according to  

Δ𝜔(r) = D(𝑟)  ⊗  𝜒(r),          [Eq.4] 

where D(r) is the magnetic field dipole along the z-direction with Lorentzian correction. The 

convolution was performed in k-space using the formulation proposed in (61,62). To avoid 

aliasing artifacts associated with the Discrete Fourier Transform (circular convolution), which 

would appear as unrealistic background fields, we padded the phantom with zeros along each 

dimension (factor of 2) before evaluating Eq. 4. Such a formulation of the signal equation, 

explicitly neglects chemical shift (associated with spins from, for example, fat) and any chemical 

exchange effects on the frequency. Furthermore, because no gradient waveform was defined 

explicitly, image distortion effects were not simulated, and the impact of blood flow on phase 

data was not accounted for.  

    A digital phantom enables simulating the MR signal with and without background fields 

(fields generated by tissues and other sources located outside the brain). The latter effectively 

mimics “perfect” background-field correction. Using the whole-head susceptibility phantom 

allowed the creation of realistic background fields. To create a phantom without background 

fields, named hereafter “local field”, all voxels outside the brain were set to zero and the 

susceptibility distribution within the brain was demeaned: 
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{𝜒(𝑟) = 𝜒(𝑟) − 𝜒(𝑀𝑎𝑠𝑘) 𝑖𝑛𝑠𝑖𝑑𝑒 𝑀𝑎𝑠𝑘

𝜒(𝑟) = 0 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑀𝑎𝑠𝑘
      [Eq.5] 

    Also relevant, but not pursued for the QSM challenge purposes, field shimming was simulated 

by fitting the frequency map with second and third-order Legendre polynomials. 

 

2.5.1 Simulation of different acquisition protocols  

For the demonstration of the acquisition protocol simulation with the code described in 

supplemental material, we chose two example protocols designed for different applications:  

(P1) A protocol optimal for the quantification of deep grey matter susceptibility. In this 

case, the longest TE should be at least that of the T2
* of the region with the highest iron 

concentration which was the globus pallidum in the generated phantom (14ms). 

(P2) A protocol optimal for the observation of cortical grey/white matter contrast in both 

the magnitude and phase data. In this case, the longest TE was chosen to be close to that of the 

T2* of cortical GM (33ms) (63). 

For the sake of simplicity, both protocols had the same echo spacing of 8ms as the original 

volunteer dataset. The TR of the acquisition was chosen as short as possible assuming a readout 

acquisition window of 8ms (P1: TR = 16ms; P2: TR = 40ms). We neglected dead times 

associated with phase encoding preparation, flow compensation, rewinding, rf excitation, 

saturation, and crushers. The flip angle was chosen at the Ernst angle for the GP (T1=1100ms; 

α=8) and such that T1-weighted contrast on magnitude images was maximized between WM 

(T1=1100ms) and cortical GM (T1=1900ms; α=23) in protocols P1 and P2, respectively. This 

resulted in the following protocols: 

Protocol 1: TE1/TE2= 4/12ms; 

Protocol 2: TE1/TE5= 4/36ms. 

We mimicked k-space sampling by cropping the Fourier spectrum of the original 0.65mm 

resolution data to an effective spatial resolution of 1mm isotropic. We applied the same approach 

to down-sample the ground-truth susceptibility map. In the case of the susceptibility maps, the 

sharp edges between structures as well as the orders of magnitude larger susceptibility 

differences between air/bone and tissue resulted in severe Gibbs ringing artefacts, which were 

removed using sub-voxel shifts (64). This step was repeated in all three spatial directions. 
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Further processing consisted of spatial unwrapping of echo differences using SEGUE (65), 

combination of resulting field maps using the optimum weights (12,41), and (when necessary) 

removal of background fields using the Laplacian Boundary Value (LBV) method (26). 

 

2.5.1 QSM reconstruction optimization 

To demonstrate the applicability of the current framework for the QSM challenge or for QSM 

reconstruction optimization purposes, we performed a simulation with only local fields (see Eq. 

5). The protocol used was that of the QSM challenge (TR = 50ms; TE1/2/3/4= 4/12/20/28ms; 

α=15,  (23)). QSM reconstructions using TKD (66), closed form L2 (67),  FANSI (68) and 

iLSQR (69) as implemented in the SEPIA toolbox (70) were performed with varying 

regularization parameters. The reconstructions were evaluated using the reconstructions metrics 

created for the challenge (see Table 2). For a more detailed description refer to Supporting 

Information (Section 2). 

2.5.2 Adding microstructural effects to the obtained contrast 

Microstructural effects are known to affect the observed phase. One of the driving factors of the 

microstructural effects is white matter fiber orientation. The provided data and code include a 

simple first-order approximation of these microstructure effects which is echo-time independent. 

Wharton et al (22) demonstrated that the typical impact at 7T for a protocol with echo times of 7 

and 13 ms was given by: 

Δ𝜔 = Δ𝜔𝜒 − 5 ∗ (𝑠𝑖𝑛2(𝜃) − 2/3)𝐹𝐴𝑛𝑜𝑟𝑚  − 3      [Eq.7] 

 

where FAnorm is the fractional anisotropy (FA) divided by 0.59 (the average anisotropy observed 

in a human optic nerve) and θ is the angle between the white matter fiber and the static magnetic 

field. Both of these quantities can be derived from the acquired diffusion data. Such a correction 

to the frequency shift was only applied within the segmented white matter mask. 

3 Results 
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3.1 Simulations of different acquisition protocols 

Figure 4 shows Phantom 1 with the two different sequence parameters created by the proposed 

simulation toolbox (See Supporting Information Section 1 or data sharing collection for code). 

The top row shows an example slice of the simulated data from the P2 protocol aimed at 

computing QSM in cortical grey and white matter. In this case, the longer echo time matched the 

T2* of those grey matter resulting in both significant signal decay in deep gray matter and a large 

number of phase wraps close to tissue air boundaries. The flip angle used (23 degrees) was set to 

increase T1 contrast in grey vs white matter boundaries at short echo times as can be clearly 

appreciated on the top left figure. Such information can be used to inform the QSM algorithm 

regarding expected morphological features. The bottom row shows the images associated with 

the P2 protocol, aimed at measuring the susceptibility values in deep grey matter regions. The 

echo time range is smaller, so that the magnitude signal in the globus pallidus has not yet 

disappeared at the last echo time and the tissue contrast in the magnitude data is considerably 

weaker because of the smaller flip angle (8 degrees). From the data shown in Figure 4 it can be 

expected that P1 will benefit more from a morphological informed reconstruction than P2, and 

that the use of non-linear fit (71) for the calculation of the field map will also be particularly 

relevant as noise will dominate the later echoes in P1.  

    In Figure 5 we compared the field map obtained with the P1 simulation from the whole head 

phantom to a field map obtained directly from the susceptibility brain phantom via Eq. 5 (ground 

truth field map). When carrying out the signal simulation with the whole-head phantom, both the 

base resolution and the 1mm resolution field maps are dominated by the background components 

arising from the air/bone/tissue interfaces, as can be seen in the transverse slice above the 

sphenoid sinus (first column, as pointed by the black arrow). The differences to the ground-truth 

field map (second column) are to a large extent explained by the quadratic field used to represent 

the procedure of shimming. Once LBV was applied to the total field to obtain the tissue-specific 

field contributions (third column), the original resolution field map (top row) showed localized, 

smoothly varying differences relative to the ground truth, which have been described previously 

(72). Both the base resolution and 1mm resolution look at first sight to have very similar 

properties, yet the nRMSE from the down-sampled dataset (bottom row) demonstrated additional 

deviations from the ground truth (nRMSE was 40% higher than that of the high-resolution 
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dataset). This discrepancies are both due to incomplete background field removal (see grey 

arrows) and due to errors around veins. In such regions, the field map measured from the GRE 

data naturally deviates from the mean field in that pixel because of the reduced signal in veins 

(once partial volume is introduced by the reduced resolution, the field estimation is biased 

towards the tissue compartments).    

To disentangle the effects of background field correction and MRI signal simulation on 

the deviations observed relative to the ground truth, we repeated the signal simulation with the 

local fields. In that case, the slowly varying smooth deviations disappeared and the high-

resolution phantom did not demonstrate substantial deviations relative to the ground truth. The 

differences in the field computed at base resolution without background fields (top right panel) is 

at the numerical precision level, yet the nRMSE is still not negligible (nRMSE = 27) because of 

the errors present in the calcification region without signal exists and its immediate surrounding 

where spatial unwrapping fails. 

    To further investigate the sources of errors discussed in the previous paragraph, Figure 6 

evaluates the phase evolution in three voxels, two in the surrounding of the calcification and one 

in the white matter. Figure 6c shows in the case of an homogeneous tissue region, there is a 

perfect match between low resolution and high resolution phase evolutions as well as the fitted 

frequency (based on the 5 echo simulation) and the ground truth frequency (computed from the 

susceptibility map). Figure 6b shows that in a region closer to the calcification that is also the 

case for the high-resolution data (light grey lines), while in the case of the low-resolution data 

(dark grey) there is a larger error both in respected to fitted frequency (dashed line) and ground 

truth frequency evolution. Also, it is clear that the phase evolution in Fig. 6b in the low 

resolution data is no longer linear, as is predicted from theory due to partial volume effects and 

the varying intravoxel frequency gradients (46). In a pixel immediately close to the vicinity of 

the calcification the errors are further enhanced now also for the high resolution data where 

unwrapping errors can introduce errors on the fitted frequency (the data is still fitted accordingly, 

but it does not correspond to the ground truth field). Figure 6e shows the mean squared 

difference map associated with the frequency fit on the low resolution data, it is clearly visible 

that these errors are predominantly found in regions of rapidly changing magnetic fields - around 

the calcification and close to tissue/air/bone interfaces, and surrounding vessels.  
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3.2 Evaluation of QSM reconstructions 

Figure 7 shows the reconstructions with minimum RMSE for the 4 algorithms tested. It can be 

seen that the direct methods (TKD and closed-form L2) still have some broad striking artifacts in 

regions surrounding both the calcification and deep gray matter regions while in the iterative 

methods these were reduced. It is interesting to note that the total variation (TV) regularized 

nature of FANSI clearly contributed to a better reconstruction of the superior cerebellar vein 

when compared to iLSQR. Please refer to the accompanying manuscript reporting the QSM 2.0 

challenge results to see how these remaining artifacts were addressed by newer and more 

thoroughly optimized algorithms (23). 

3.3 Comparison of simulations including microstructure to real data 

Figure 8 shows an example of the originally acquired and the simulated magnitude and phase 

data, respectively. The magnitude data (first column) shows similar high resolution features at 

the matched echo time despite the acquisition protocols not being identical (the simulations only 

support multi-echo gradient echo acquisitions rather than MP2RAGEME as used for data 

acquisition). It can be visually observed that the simulated data suffers from reduced bias field 

inhomogeneity, this is a result of a bias field correction applied to the computed M0 map 

obtained from the MP2RAGEME. This choice was justified by two factors: (a) the magnitude 

bias field observed after SENSE (73) reconstruction does not reflect the local SNR but a mix of 

the volume and surface coil sensitivities as well as the transmit coil inhomogeneities; (b) we 

wanted to separate the physical simulation from the interaction with the hardware. In the non-

background field phase data, the background field associated with nasal sinus and ear canals is 

weaker on the simulated data than on the measured data (as can be appreciate by the larger 

number of phase wraps on the latter). This can be attributed to two features, the imperfect bone 

air segmentation or an underestimation of the susceptibility differences between tissue and bone 

or air. The latter is also supported by observing on the third column (after background field 

removal) that the field surrounding the calcification is smaller in the simulations than that what is 

observed in the experimental data.  
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When comparing grey-white matter contrast on both the phase data (second column) and tissue 

frequency (third column), it can be see that the simulation better visually approximate the 

acquired data when the microstructural correction term (middle row) is added to the simulated 

data as expressed in Equation 7. This data can now be used to test how different reconstruction 

pipelines are biased due to microstructural effects. Note that, because our susceptibility phantom 

is based on reported values of susceptibility rather than this particular subject susceptibility 

values, no quantitative evaluation of the similarity can be performed. 

4 Discussion 

In this paper and the accompanying shared dataset and code (described in greater detail in the 

Supporting Information), we have presented and disseminated a realistic human brain phantom 

that can be used by both the QSM and the MRI communities to simulate multi-echo GRE data 

and evaluate QSM pipelines in a controlled manner.  

    The data and code provided allow users to: 

- create new susceptibility phantoms, with different levels of spatial modulation of each 

compartment – this can be simply performed by changing the values presented on Table 1 which 

control both the mean value and spatial modulation present within each tissue; 

- create realistic gradient echo multi-echo data at 7T and, to some extent, also at other fields (it 

should be noted unlike susceptibility, relaxation times are field dependent and their field 

dependence is tissue dependent). 

- assess the impact of protocol changes (as well as nuisance factors such as RF phase, B0 

shimming and noise) on the quality of the obtained QSM maps,  

- assess the impact of changing some of the background field removal and QSM algorithm 

specific options while having a ground-truth to test it against. 

    This digital phantom will be important for QSM users and researchers deciding on acquisition 

protocols. Protocol considerations such as impact of the number of echo times and its range, as 

well as the degree of T1 weighting and resolution on the ability to accurately measure QSM in a 

given brain region can be quickly tested in this framework. This would allow for example to 

extend the analysis done by Karsa et al (74) on the effects of field of view and anisotropic voxels 
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sizes, or the analysis by Biondetti et al on the effects of Laplacian based single echo vs multiple 

echoes techniques (75). 

 

   While the simulation framework is useful for optimizing protocols, the simulation in its current 

form is a static one. Consequently flow artifacts (which build up when large number of echoes 

are used), respiration related B0 fluctuations (76) and spatial distortions associated with the 

readout bandwidth are not considered. The latter two would be relatively straightforward to 

implement. Spatial distortions associated with different readouts can be obtained in 

computationally efficient manner by using our provided phantom data in, for example, freely 

available software packages such as JEMRIS, http://www.jemris.org/ (77).  Wave Caipi (78) and 

3D EPI (79,80) have been used for QSM, but not much research has been done to quantify the 

impact of their bluring or distortions on the performance of neither the background field removal 

nor the susceptibility maps. Respiration artifacts would simply require a library of respiration 

fields over time as acquired with field cameras (81). Flow artifacts would be more complex to 

simulate because the current vessel segmentation does not distinguish arteries and veins and it 

would be difficult to have a local flow velocity and pulsatility estimation. 

    The  dipole model used in QSM assumes a sphere of Lorentz approximation (61), which does 

not hold true, particularly in white matter. The phantom released for the RC2 purposes, explicitly 

circumvented this limitation by ensuring perfect consistency with the QSM model in Eq. 4, i.e. 

no microstructural effects were present. With the released phantom dataset, we include diffusion 

data (both raw data on the 1.5mm space and its derivatives co-registered to the phantom space 

after distortion correction). These data can be used to either compute the frequency perturbation 

as shown in Figure 8, or the Hollow Cylinder Model can be used to explicitly introduce the echo-

time varying perturbation similarly to what has been recently done in the context of myelin water 

imaging (22,82–85) and study the bias introduced by this effects on the reconstructed QSM 

maps. A critical challenge for more advanced modelling is the resolution of the diffusion 

acquisition, despite using state-of-the-art hardware and MR sequences. Here we have simply 

interpolated our 1.5mm DWI to the anatomical space and expect this to be sufficient to develop 

and validate QSM methods that account for microstructural effects in white matter (86).  
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    QSM is gaining interest in the context of neurological disorders such as multiple sclerosis, PD 

and AD and other clinical applications such as hemorrhages or tumor imaging with iron oxide 

nanoparticles (87). For the latter applications, relaxation and susceptibility values in the form of, 

e.g., lesions in strategic locations can be easily added to the current phantom. Simulated data 

might be also relevant in the case of group studies of diseases, where differences in the deep grey 

matter nuclei were found (88,89) and the optimum QSM reconstruction parameters might 

improve the limits to detect those changes. Such question can be readily addressed with the 

digital phantom by changing the parameters of Eq. 1 for a given set of structures and test the 

QSM pipeline that can better quantify those changes. 

5 Conclusion: 

The presented realistic and modular phantom aims to enable researchers to optimize 

reconstruction as well as acquisition parameters. As such, the phantom served as a ground-truth 

for the QSM RC2. Its modular design allows adding microstructure effects a posteriori (22) as 

well as the inclusion of new nuisances such as hemorrhages or fine vessels with realistic 

relaxation and susceptibility properties. We foresee that this brain model will be an important 

tool for the evaluation of various processes associated with QSM processing and interpretation. 

 

Data Availability Statement 

The code used to create the phantom, as well as to generate the various simulations and figures 

described in this paper can be found on the data sharing collection: 

https://doi.org/10.34973/m20r-jt17 
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Tables 

Table 1 

 
Model 1 Model 2 

Label Name 

mean 

susceptibility 

(ppm) 

atissue 

(ppm/Hz) 

btissue 

(ppm/Hz) 

mean 

susceptibility 

(ppm) 

atissue 

(ppm/Hz) 

btissue 

(ppm/Hz) 

Caudate 0,044+*Ͳ† -0,012 1,118 0,044 -0,011 1,230 

Globus Pallidus 0,131+ -0,026 0,843 0,121 -0,023 0,927 

Putamen 0,038+ -0,025 1,852 0,043 -0,022 2,038 

Red Nucleus 0,100+ -0,044 1,780 0,090 -0,040 1,958 

Dentate Nucleus 0,152+ -0,064 1,708 0,162 -0,058 1,879 

Substantia Nigra 

& Sub-Thalamic 

Nucleus 

0,111+ -0,075 1,491 0,121 -0,068 1,640 

Thalamus 0,020+ -0,086 1,275 0,025 -0,078 1,402 

White Matter -0,030+ -0,078 1,147 0,005 -0,070 1,262 

Grey Matter 0,020* -0,095 1,402 0,020 -0,085 1,543 

Cerebro Spinal 

Fluid 
0,019+ -0,006 0,067 0,019 -0,006 0,073 

Blood 0,190 -0,058 0,047 0,170 -0,052 0,052 

Fat 0,019† 0,000 0,000 0,019 0,000 0,000 

Bone -2,100† 0,000 0,000 -2,100 0,000 0,000 

Air 9,200† 0,000 0,000 9,200 0,000 0,000 

Muscle 0,000 0,000 0,000 0,000 0,000 0,000 

Calcification -3,300† -0,012 0,000 0,019 -0,011 0,000 

  

Table 1 Parameters used to create the two magnetic susceptibility head models released in the 

QSM challenge. The values in the three columns correspond to the parameters described in 

equation 1, the assumed mean magnetic susceptibility of the tissue, and the R2* (atissue) and R1 

(atissue) modulation terms, respectively. Model 1 values were chosen from literature (+ (55), * (22)    

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2020.09.29.316836doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.316836
http://creativecommons.org/licenses/by-nc-nd/4.0/


† (56)) and doing the fitting described in Eq. 1. Model 2 mean susceptibility values were adhoc 

modification of those found in literature, while the R1 and R2* modulation were changed by plus 

and minus 10% respectively.  

Metric Name Description 

nRMSE 

Whole-brain root-mean-squared error after demeaning, i.e. the 

subtraction of the mean within the mask; relative to the ground-truth 

times 100; 

rmse_detrend_Tissue 

nRMSE relative to ground-truth (after demeaning and detrending) in grey 

and white matter mask. Detrending was performed by compensating the 

estimated the slope of a linear fit of the reconstructed QSM voxel values 

against those of the ground truth in the tissue ROI. The reconstruction was 

then divided by this factor to ensure proportionality errors (measured by 

other metrics such as DeviationFromLinearSlope) do not affect the RMSE 

calculation; 

rmse_detrend_blood 
RMSE relative to ground-truth (after detrending) using a one pixel dilated 

vein mask; 

rmse_detrend_DGM 

RMSE relative to ground-truth (after detrending) in a deep gray matter 

mask (substantia nigra & sub-thalamic nucleus, red nucleus, dentate 

nucleus, putamen, globus pallidus and caudate); 

DeviationFromLinearSlope 
Absolute difference between the slope of the average value of the 6 deep 

gray matter regions vs the prescribed mean value and 1.0. 

CalcStreak 

Estimation of the impact of the streaking artifact in a region of interest 

surrounding the calcification by means of the standard deviation of the 

difference map between reconstruction and the ground-truth. The region 

of interest where this was measured was a hollow rectangular prism, with 

its inner boundary being 2 voxels away from the edge of the calcification 

and the outer boundary 6 voxels away from the inner boundary. 

CalcMoment 

volumetric susceptibility moment of the reconstructed calcification, 

compared to the ground-truth (computed in the high resolution phantom 

to be -49.8 ppm). This metric has been suggested to be more robust in 

regions of punctuated large susceptibility sources where there is no signal 

in the region of the perturber (40). 
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Table 2 Metrics provided with toolbox and challenge for optimization and evaluation of QSM 

reconstruction. Note that all the RMSE metrics were multiplied by 100 

Supporting Information Table S1: Supplementary Information Table S1. Ad-hoc segmentation 

correction based on relaxometry values. Note that this corrections were only applied in regions 

where the magnetic field gradient, as computed from the multiecho data, was expected not to 

corrupt the R2* values; 

Supporting Information:  

The document has two sections. The first section outlines the main functionalities provided in the 

data sharing collection: 

- creation of a realistic magnetic susceptibility phantom; 

- simulation of a GRE data with a specific protocol; 

- evaluation of a QSM reconstruction using provided phantom; 

- adding microstructural information; 

Finally it presents a detailed description of the file structure of the Data Sharing Collection 

associated with this publication. 

The second section describes the methods and results of a preliminary evaluation of the QSM 

challenge dataset and the derived metrics as a mean to optimise 4 different reconstruction 

pipelines. 
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Figures 

 

Figure 1 Diagram representing the process used to obtain the head segmentation: R1 map 

(obtained from the MP2RAGEME) was used to create an atlas-based segmentation using CBS 

tools; R2* were processed with a Frangi filter for vein segmentation; A semi-manual approach 

using ITK snap was used for segmentation of the deep gray matter nuclei based on the R2* and a 
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susceptibility map computed using HEIDI, and the M0 map were  used to segment the 

calcification. Finally, PETRA data was used to obtain air, bone, and tissue masks using a CT-

based deep learning algorithm followed by manual ITK-snap. Then, the various tissue 

segmentations were fine-tuned using denoised R1 and R2* maps using manually defined 

thresholds. The various masks were combined to generate a whole-head segmentation with 16 

different tissue types. 

 

Figure 2 View of three slices in sagittal, coronal and axial directions of the two digital phantoms 

created for the QSM challenge 2.0. Top and Bottom maps were obtained using the parameters 

described on Table 1 for Model 1 and 2 respectively. 
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Figure 3 Intermediate stages of the of the creation of the in silico susceptibility head phantom: 

(a) traditional piece-wise constant approach, (b) modulated model as described in Eq. 1 with the 

values presented in Table 1 and (c) finally adding the probabilistic modulation described in Eq. 2 

and masking regions of error bound R2*. Green and yellow arrows highlight transitions between 

tissue types that get improved via the probabilistic approach applied to the tissue compartments. 

Note that the probabilistic smoothing was only applied to the brain tissues, as a result, veins 

remain shape in the susceptibility map only with a reduced magnetic susceptibility. Blue arrow 

highlights regions where the large field gradient masking approach was able to avoid abnormally 

large susceptibility values.  
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Figure 4 Transverse slices of the simulated data of Model 1 using Protocol 1 (top row) and 

Protocol 2 (bottoms row). First two columns show magnitude and phase images, respectively, at 

the first echo time (where the different T1-weighting is clearly visible) and the last two columns 

show the magnitude and phase images associated with the last echo time of the respective 

protocol. 
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Figure 5 Transverse slices through derived field-maps associated with Protocol 1 data computed 

at the base resolution (top row) and after down-sampling to 1mm (bottom row), black arrows 

highlight large background fields induced by air-tissue interfaces. The first and fifth columns 

shows the field extracted from the complex signal when the whole-head and the brain-only 

models were used, respectively, to compute the frequency shift. The third column shows the 

local field computed after background field removal. The second, fourth and sixth columns show 

the differences relative to the corresponding ground-truth field distributions. Grey arrows 

highlight the incomplete background field removal that is exacerbated upon downsampling. The 

ground-truth field maps were computed using the forward dipole formulation (Eq. 4) on the 

whole head (second column) and brain tissues alone (fourth and sixth columns) susceptibility 

models. It is clear that the nRMSE, once the down-sampling is performed, is dominated by 

partial volume effects in and around veins (noise pattern on both bottom 4th and 6th column) and 

imperfect background field removal. 
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Figure 6 (a) Coronal view of the susceptibility phantom with three locations highlighted (square: 

region in the middle of white matter; cross and plus: two regions close to the calcification). 

(b,c,d) Plots of the unwrapped phase at the three locations (b – cross, c –square and d - plus) as a 

function of echo time. Unwrapped phase on the high-resolution data (light grey) and low-

resolution data (dark grey) are shown using the respective markers, while dashed lines 

corresponds to the fitted frequency for each point at each resolution and the continuous line 

shows the ground frequency evolutions. (e) Mean squared difference map across echo times 

between fitted phase (dashed line in panel b-d) and measured phase (after unwrapping) on the 

coronal slice, highlighting tissue bone interfaces as well as regions surrounding the calcification. 
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Figure 7 Examples of the optimum nRMSE reconstructions in three orthogonal planes obtained 

from the 1mm dataset based on SIM2 (see figure 2) with peak SNR 100 used for the QSM 2.0 

challenge. The sagittal and coronal were chosen to cross the calcification region to highlight 

remaining streaking artifacts. The 4 different rows correspond to the 4 different reconstruction 

pipelines tested.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2021. ; https://doi.org/10.1101/2020.09.29.316836doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.316836
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 8 Shows the impact of adding a microstructure correction term to the simulated field 

map. First and second column show the simulated magnitude and phase data using whole brain 

susceptibility model at TE=20ms, while the third column shows the computed tissue frequency 

map (after brain masking and background field removal). First row shows the simulated data 

using Protocol 1 without the addition of the microstructure effects. The second row shows the 

impact of adding the microstructural effects as described in equation 7 (first column) both on the 

third echo time and the computed tissue frequency map. The third row shows, for visual 

comparison purposes, the experimental data acquired at 7T.  
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