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The metabolic function of microbial communities emerges through a complex
hierarchy of genome-encoded processes, from gene expression to interactions
between diverse taxa. Therefore, a central challenge for microbial ecology
is deciphering how genomic structure determines metabolic function in com-
munities. Here we show, for the process of denitrification, that community
metabolism is quantitatively predicted from the genes each member of the
community possesses. For each strain in a set of bacterial isolates, the dy-
namics of nitrate and nitrite reduction are quantitatively encoded in the pres-
ence or absence of denitrification genes. We correctly predict metabolite dy-
namics in communities using a consumer-resource model that sums the con-
tribution of each strain. Our results enable predicting metabolite dynamics
from metagenomes, designing denitrifying communities and discovering how
genome evolution impacts metabolism.

Introduction
Microbial metabolism plays an essential role in sustaining life on Earth. Working collectively
in complex communities, microbes are key players in global nutrient cycles (1), wastewater
treatment (2) and human health (3). As such, a key challenge in microbial ecology is under-
standing how emergent community metabolism is determined by the taxonomic and genomic
structure of a community. Addressing this structure-function problem is critical for functionally
interpreting community gene content (4), elucidating the evolutionary principles of community
metabolism (5, 6) and designing synthetic communities (7).

Understanding how community metabolism is genomically encoded requires mapping the
genotypes of each community member to metabolic phenotypes, and then deciphering how
interactions between distinct populations contribute to collective metabolism. Quantitatively
mapping genotypes to metabolic phenotypes for naturally-occurring bacteria is challenging due
to substantial genetic and phenotypic variation in the wild (8). Moreover, interactions within
communities depend on extracellular metabolites (9), abiotic factors (10), cooperation (11) and
higher-order effects (12). While constraint-based models have found some success in predicting
collective metabolism from genomes (13–15), these methods require significant manual refine-
ment (16), complicating the prospect of making predictions from the genomes of non-model
organisms or metagenomes of communities.

Despite the complexities of relating structure to function in microbial communities, se-
quencing surveys have shown that the functional gene content of a community correlates with
local metabolite concentrations and environmental variables (17–19), hinting that genomic
structure might be predictive of metabolic properties at the community-level. In the labora-
tory, enrichment experiments have revealed that taxa with conserved metabolic phenotypes are
assembled to degrade exogenously supplied organic carbon (20, 21). So while it appears that
structure at the genomic level may endow communities with specific functional capabilities, we
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cannot quantitatively predict community metabolic function from genomic structure.
To address this challenge, we posed a prediction problem: can the dynamic flux of metabo-

lites through a microbial community be quantitatively predicted from knowledge of the genomes
of each strain present? Exploiting a library of diverse naturally-isolated and sequenced bacte-
ria, quantitative measurements, modeling of metabolite dynamics, and an interpretable statis-
tical modeling framework, we showed that the flux of metabolites through a community can
be quantitatively predicted from the presence and absence of genes in the relevant metabolic
pathway.

Results
We used denitrification as a model metabolic process for mapping genomic structure to com-
munity metabolic function (Fig. 1A). Denitrification is a form of anaerobic respiration whereby
microbes use oxidized nitrogen compounds as electron acceptors, driving a cascade of four suc-
cessive reduction reactions, NO−

3 → NO−
2 → NO → N2O → N2 (22). As a biogeochemical

process, denitrification is essential to nitrogen cycling at a global scale through activity in soils,
freshwater systems, and marine environments (23), and impacts human health through activity
in wastewater treatment plants (2) and in the human gut (24). The process is performed by
taxonomically-diverse bacteria (25) that are typically facultative anaerobes. The denitrification
pathway is known to be modular, with some strains performing all four steps in the cascade and
others performing one or a nearly arbitrary subset of reduction reactions (26). Denitrification in
nature is therefore a collective process, where a given strain can produce electron acceptors that
can be utilized by other strains (9).

We focused experimentally on the first two steps of denitrification: the conversion of nitrate
(NO−

3 ) to nitrite (NO−
2 ) and subsequently nitric oxide (NO) (Fig. 1A). Nitrate and nitrite are

soluble, enabling high throughput measurements of metabolite dynamics. Rather than working
only with well-studied model organisms, we isolated 61 diverse bacterial strains spanning α-,
β-, and γ-proteobacteria from local soils using established techniques (Materials and Methods).
Each strain was obtained in axenic culture and was characterized as performing one or both of
the first two steps of denitrification in a chemically-defined, electron acceptor-limited medium
containing a single non-fermentable carbon source (succinate). Each of these strains was there-
fore classified into one of three possible phenotypes (Fig. 1A): (1) Nar/Nir strains that perform
both nitrate and nitrite reduction (NO−

3 →NO−
2 →NO), (2) Nar strains that perform only nitrate

reduction (NO−
3 → NO−

2 ), and (3) Nir strains that perform only nitrite reduction (NO−
2 → NO).

In addition to these 61 isolates, our strain library also included the full denitrifier Paracoccus
denitrificans ATCC 19367.
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Figure 1: Characterizing phenotypic variation of bacterial isolates. (A) Genomic structure was
statistically mapped to community metabolic function via a quantitative parameterization of individual
strain phenotypes across a library of natural isolates. (B) Example batch culture metabolite dynamics
for Nar/Nir, Nar, and Nir isolates, along with fits to a consumer-resource model (C). The model is
parameterized by reduction rates rA and rI and yields γA and γI , for growth on nitrate and nitrite
respectively (see Materials and Methods). (D) Phylogenetic tree and normalized consumer-resource
parameters for 62 denitrifying strains. Scale bar indicates estimated number of substitutions per site of
the 16S rRNA gene. Darker colors indicate larger values of the normalized parameters.
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Parameterizing metabolite dynamics
We quantified the denitrification dynamics of each strain in our library in monoculture. To ac-
complish this, strains were inoculated at low starting densities into 96-well plates containing
chemically-defined medium with either nitrate or nitrite provided as the sole electron accep-
tor, and then incubated under anaerobic conditions. Small samples (10 µL) were then taken at
logarithmically-spaced time intervals over a period of 64 h and assayed for nitrate and nitrite
concentrations (Materials and Methods, Fig. S1 and S2). At the end of the time course, optical
density was assayed. The measurement resulted in a time series of nitrate and nitrite produc-
tion/consumption dynamics in batch culture (points, Fig. 1B). For each strain in the library, these
experiments were performed across a range of initial cell densities and nitrate/nitrite concentra-
tions (Materials and Methods). We used these data to parameterize a simple consumer-resource
model (Fig. 1C) describing denitrification dynamics for each strain in monoculture (Supple-
mentary Text, Fig. S3 and S4). The model allowed us to quantitatively describe the phenotype
of each strain in the library in terms of at most four parameters: rA and rI , which capture rates
of nitrate and nitrite reduction, and γA and γI , which describe yields for nitrate and nitrite, re-
spectively. Substrate affinities (K∗) were fixed to a small value since these parameters were not
well constrained by the data (Supplementary Text, Fig. S5). The models for Nar and Nir strains
correspond to setting rI = 0 or rA = 0, respectively. Yields (γ∗) were inferred using endpoint
optical density measurements, and rates (r∗) were inferred by fitting the observed nitrate and
nitrite dynamics to the consumer-resource model (Fig. 1C). Remarkably, with the exception of
a small number of strains that were excluded from the library (Supplementary Text, Fig. S6), a
single set of parameters quantitatively described metabolite dynamics for each strain across a
range of initial cell densities and nitrate/nitrite concentrations (Supplementary Text, Fig. S4).

Fitting our consumer-resource model to data for each strain yielded a quantitative descrip-
tion of the dynamic metabolic phenotype of each strain in the library (Fig. 1B and D). We
observed large variability between taxa, with coefficients of variation for both rates (rA, rI)
and yields (γA, γI) around 60%. We also observed some patterns of phylogenetic conservation;
for example α-proteobacteria produced generally higher yields than β- or γ-proteobacteria, and
a clade of Pseudomonas sp. isolates showed consistently higher rates of nitrite reduction than
most other strains (Fig. 1D). Despite these patterns, the prevalence of each of the three phe-
notypes is not strongly dependent on phylogeny, with each phenotype present across the tree
(Fig. 1D). The latter observation is consistent with pervasive horizontal gene transfer of denitri-
fying enzymes (27,28). Finally, we did not observe a correlation or trade-off between rates and
yields (Fig. S7).

Predicting metabolite dynamics from genomes
Armed with a quantitative parameterization of the metabolite dynamics for all strains in our
library, we next set out to characterize the measured phenotypic variation across strains using
genomic differences between isolates. We first performed whole genome sequencing on all 62
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strains in the library. Then we assembled and annotated each genome (Materials and Methods)
and determined the complement of denitrification genes possessed by each strain, exploiting the
fact that the molecular and genetic basis of denitrification is well-understood (22). We identified
not only the reductases that perform the reduction of the oxidized nitrogen compounds, but also
the sensors/regulators (29) and transporters (30) known to be involved in denitrification (Mate-
rials and Methods). The presence and absence of each gene (or set of genes encoding proteins
that form a complex) in each genome is presented in Fig. 2A. Patterns of gene presence/absence
agree well with known features of the denitrification pathway, including the mutual exclusion
of the two reductases performing nitrite reduction (NirS and NirK) (17, 28). Further, in almost
all cases strains possessing nitrate and/or nitrite reductase performed the associated reactions in
culture (with the only exception being the Nar strain Acidovorax sp. ACV01, which possesses
both nitrate and nitrite reductase). This is in agreement with previous work demonstrating that
bacterial genomes lose nonfunctional content due to streamlining (31).

Next we showed that the presence and absence of denitrification genes in each strain was
sufficient to quantitatively predict metabolite dynamics in monoculture. Specifically, we con-
structed a linear regression where the measured phenotypic parameters of our consumer-resource
model, which faithfully capture the denitrification dynamics for each strain, were predicted on
the basis of gene presence and absence (e.g., Fig. 2B). The regression coefficients for each
gene in the pathway quantify the impact of the presence of the gene on a given phenotypic
parameter. We used L1-regularized regression (LASSO) to avoid overfitting (Supplementary
Text, Fig. S8 to S10), performing independent regressions for each of the phenotypic param-
eters in our consumer-resource model. LASSO yielded sparse regression models, revealing
that presence/absence of a small set of genes is highly predictive of the phenotypic parameters
for all strains in our diverse library (Fig. 2C to J). The in-sample coefficients of determination
(R2

fit) of our regressions were between 0.50 and 0.76 depending on the phenotypic parame-
ter. Crucially, our regression approach generalized out-of-sample, as determined by iterated
cross-validation (Supplemental Text, Fig. S9), albeit with slightly lower predictive power (R̄2

CV

between 0.26 to 0.54). Since, in general, traits may exhibit phylogenetic correlation (8), and our
library contains a few clades comprising very closely related strains (e.g., ENS01–08, PDM20–
23, Fig. 1D), we considered whether our regression utilized phylogenetic correlations in gene
presence/absence and denitrification phenotypic parameters to achieve predictive power. We in-
vestigated this by collapsing clades containing strains with identical 16S rRNA sequences down
to a single randomly-selected representative, and performing regressions again on this reduced
set of strains. For these regressions we found that the predictive power and coefficients were
similar to those for the full dataset (Supplementary Text, Fig. S11), supporting the claim that
our regression is not simply detecting phylogenetic correlations between traits and genotypes.
Altogether these results demonstrate that, across a diverse set of natural isolates, knowledge of
the genes a denitrifying strain possesses is sufficient to accurately predict the rates and biomass
yields of that strain on nitrate and nitrite.

Our regression approach leveraged biological knowledge of the denitrification pathway to
predict metabolite dynamics, in effect presuming that denitrification gene content is the best
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Figure 2: Gene presence/absence predicts metabolite dynamics of individual strains. (A) Denitri-
fication gene presence/absence for 62 denitrifying strains. (B) Observed consumer-resource parameters
for each strain (e.g., nitrate reduction rate rA) were linearly regressed against gene presence/absence via
L1-regularized regression, resulting in regression coefficients βj for each gene j, an intercept β0, and a
noise term εi for each observation i. (C to F) Regression applied to each consumer-resource parameter
resulted in predicted values of the parameters for each strain, which are plotted against observed values.
The in-sample coefficients of determination for these data (R2

fit) and the out-of-sample coefficients of
determination estimated via iterated cross-validation (R̄2

CV) are shown. (G to J) Regressions yielded
estimated coefficients ~β, along with intercepts β0, which are shown in the bar charts. Asterisks indicate
significance level for each regression coefficient (Supplementary Text, Fig. S10).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 30, 2020. ; https://doi.org/10.1101/2020.09.29.315713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.29.315713
http://creativecommons.org/licenses/by-nc-nd/4.0/


genomic feature for prediction. To investigate whether this assumption is correct, we asked
whether other genomic properties could better predict metabolite dynamics. First, we tested the
predictive capability of sets of randomly selected genes. We chose sets of 17 random genes that
were not strongly correlated with any denitrification genes, but retained the same marginal fre-
quency distribution as denitrification genes in the population. We found that regressions using
these randomly-selected genes have, on average, much less predictive power than regressions
using the denitrification genes (Supplementary Text, Fig. S12). We note that this result pro-
vided further evidence that regressions on denitrification gene presence/absence are not simply
detecting phylogenetic correlations, since random genes would be expected to perform equally
well on average if phylogenetic structure dominated the phenotypic parameters. Second, we
tested whether 16S rRNA copy number or genome size improves the predictive ability of den-
itrification gene presence/absence regressions. 16S rRNA copy number has been observed to
correlate positively with maximal growth rate in nutrient rich conditions (32, 33), and smaller
genomes are associated with faster growth (31,33). We found that these predictors do not mean-
ingfully alter the regressions or improve their predictive ability (Supplementary Text, Fig. S13
and S14). In summary, our statistical analyses provided evidence that denitrification gene pres-
ence/absence outperforms arbitrary sets of genes and coarse genomic features.

Why did our sparse regression models select specific genes in the denitrification pathway to
quantitatively predict metabolite dynamics? To address this question we examined the regres-
sion coefficients in the context of what is known about the denitrification pathway. We found
that in many cases the sign and magnitude of the regression coefficients agree qualitatively
with known mechanistic properties of the associated enzymes. Previous comparisons between
membrane-bound and periplasmic nitrate reductases (encoded by narG and napA, respectively)
in multiple bacterial species showed that the membrane-bound enzyme exhibits higher nitrate
reduction activity in vitro than the periplasmic enzyme (Table S1). This accords with the large
positive coefficient for narG we observed in the nitrate reduction rate regression (Fig. 2G). Sim-
ilarly, in the nitrite reduction rate regression we observed a large positive coefficient for the gene
encoding the copper-based nitrite reductase (nirK) (Fig. 2I), which in previous studies showed
markedly higher activity in vitro (Table S2) and in vivo (34) compared to the alternate nitrite
reductase enzyme encoded by nirS. Further, our regression coefficients showed larger contribu-
tions of narG versus napA to yield on nitrate (Fig. 2H), and similarly cnor versus qnor to yield
on nitrite (Fig. 2J). Both these observations are consistent with the fact that the genes encoded
by narG and cnor contribute more to the proton motive force (and therefore to ATP generation)
than their alternatives, napA and qnor, respectively (35). Finally, the transporter encoded by the
gene narK1K2 is a fusion of the nitrate/H+ symporter NarK1 and the nitrate/nitrite antiporter
NarK2, the latter of which is crucial for exchanging nitrate and nitrite between the cytoplasm
and periplasm during denitrification when the membrane-bound nitrate reductase is utilized. In
Paracoccus denitrificans, this fusion has been shown to have substantially higher affinity for
nitrate than NarK2 alone, resulting in higher growth rates under denitrifying conditions (36).
Remarkably this agrees with what we found in the nitrate and nitrite reduction rate regressions,
where we observed large positive contributions of narK1K2 (Fig. 2G and I). Taken together,
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these observations suggest that the regressions exploited mechanistic aspects of the denitrifica-
tion process to predict metabolite dynamics. However, for many coefficients in our regression,
notably regulators, there is no clear interpretation, and definitive proof that these coefficients
are mechanistically informative will require genetic manipulation of diverse bacteria.

We conclude that sparse statistical models quantitatively map the genotype of each strain
in our library to its associated metabolite dynamics via a consumer-resource model. Since the
consumer-resource model quantified the metabolites and growth dynamically over a range of
initial conditions (Fig. S4), this mapping makes no steady state assumptions and works across
a range of environments. Moreover, since our approach utilized genomic variation across a
diverse library of natural isolates rather than only model organisms, and since the regressions
generalized well out-of-sample, we expect the models can predict metabolite dynamics for new
isolates using only genome sequence data.

Predicting metabolite dynamics in communities
We next asked whether knowledge of the consumer-resource phenotypic parameters for indi-
vidual strains permitted quantitative predictions of metabolite dynamics in communities. Since
the phenotypic parameters are sparsely encoded by the genomes of each strain (Fig. 2), predict-
ing community metabolite dynamics from the consumer-resource model would provide a direct
mapping from gene content to community metabolism. To address this question, we extended
to our modeling formalism to N -strain communities by adding the rate contributions of each
strain to the dynamics of nitrate and nitrite (Fig. 3B, Supplementary Text). This model assumes
that strains interact only via cross-feeding and resource-competition for electron acceptors. This
“additive” model also assumes that the rates and yields on nitrate and nitrite for strains in pair
culture are the same as in monoculture. As a result, the model provides predictions for N -strain
community metabolite dynamics without any additional free parameters.

We first tested the ability of this approach to predict metabolite dynamics in all pair combi-
nations of 12 diverse strains from our library (4 Nar/Nir, 4 Nar, 4 Nir). We assembled communi-
ties in 96-well plates containing chemically-defined medium and sampled over a 64 h period to
measure concentrations of nitrate and nitrite (Materials and Methods). Remarkably, we found
that the additive model accurately predicted the metabolic dynamics for most 2-strain commu-
nities (Fig. 3, Fig. S15 and S16). Specifically, the third column of Fig. 3A shows the zero-free-
parameter predictions (lines) of denitrification dynamics in 2-strain communities, which agreed
well with measurements (points). The 2-strain community predictions include non-trivial dy-
namics such as two Nar strains exhibiting faster nitrate reduction as a collective or an increase
in the transient levels of nitrite in a Nar/Nir + Nar community.

We quantified the quality of the additive model predictions by computing a normalized
root-mean-square error (NRMSE, see caption of Fig. 3). NRMSE in the range 0–2 indicates
predictions in 2-strain communities that are similar in quality to the fits of the constituent mono-
cultures. We found that most 2-strain communities have low NRMSE, indicating that our model
successfully predicted metabolite dynamics in most cases, given only knowledge of the mono-
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Figure 3: 2-strain community metabolite dynamics are predictable from single-strain information.
(A) Examples of pair culture dynamics from each combination of the three denitrification phenotypes
(Nar/Nir, purple; Nar, blue; Nir; red). The first two columns of panels show metabolite dynamics for
each of two strains cultured individually, and the third column shows the metabolite dynamics of the two
strains in co-culture. Curves show the predictions of an additive null model (B) that assumes interaction
only via cross-feeding and resource competition. (C) Normalized root-mean-square error (NRMSE)
values quantifying the quality of model predictions for all pairs of 12 strains. NRMSE was computed
as NRMSEij = RMSEij/

√
(RMSE2

i +RMSE2
j )/2, where RMSEij is the root-mean-square error

between model predictions and observed metabolite concentrations of strains i and j in pair culture, and
RMSEi and RMSEj are similarly the RMSEs of strains i and j in monoculture. NRMSE values between
0 and 2 indicate fits of similar quality to the corresponding monocultures.
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culture rates and yields for each strain. The success or failure of the model depended on the
phenotypes of the strains present. The model successfully predicted 2-strain metabolite dynam-
ics for most types of communities (e.g., Nar/Nir + Nar or Nar + Nar) but failed only in the case
where Nar strains were cultured with Nir strains (Fig. 3A and C, Fig. S17). We speculate that
the failure of the model to predict metabolite dynamics in Nar + Nir communities was caused
by excretion of nitric oxide by the Nir strain, which can be cytotoxic to strains that do not
express nitric oxide reductase (37), and may consequently slow Nar strain growth. Although
both Nar/Nir and Nir strains are capable of generating extracellular nitric oxide, Nir isolates
have been observed in a previous study to transiently generate nitric oxide at higher concentra-
tions (26), possibly explaining why the 2-strain additive model fails only to predict Nar + Nir
communities.

We next asked whether information from monocultures also successfully predicted metabo-
lite dynamics in 3-strain communities. We applied the additive model to predicting the nitrate
and nitrite dynamics in 81 random combinations of 3 strains from the 12-strain subset. In com-
munities that did not contain a Nar + Nir pair (e.g., Fig. 4A), we found that prediction accuracy
was high (grey points, Fig. 4B, Fig. S18). This again indicated that in most combinations of phe-
notypes, community dynamics were predictable from consumer-resource parameters for each
strain in the community. However, in communities that contained a Nar + Nir pair, predictions
were relatively poor (yellow points, Fig. 4B, Fig. S18), suggesting that interactions between
Nar and Nir phenotypes that were not captured in the additive model were again driving low
prediction accuracy.

To address the impact of interactions between Nar and Nir strains not accounted for by
our additive model in 3-strain communities, we took a coarse-graining approach. We asked
whether the collective metabolism of Nar + Nir pairs could be treated as modules within 3-
strain communities. To accomplish this we re-fitted nitrate and nitrite reduction rates (rA, rI)
to pair-culture data for each Nar + Nir pair, leaving yields fixed (Fig. 4C, Supplementary Text,
Fig. S19). This resulted in effective nitrate and nitrite reduction rates (r̃A, r̃I) for each Nar + Nir
pair. We then used these rates to make predictions for 3-strain communities that included a Nar
+ Nir pair (e.g., Fig. 4D). For 3-strain communities that included multiple Nar + Nir pairs (e.g.,
Nar + Nar + Nir), we developed simple rules for determining the effective rates from the rates
for each Nar + Nir pair present (Supplementary Text). We found that the metabolite dynamics
in 3-strain communities containing Nar + Nir pairs were quantitatively well-predicted by this
coarse-graining approach (yellow points, Fig. 4B). We conclude that treating Nar + Nir pairs
as effective modules within larger communities recovers the predictive power of the additive
consumer-resource model.

Discussion
Since gene content enabled the prediction of phenotypic parameters that in turn predicted com-
munity metabolism, our results indicate that functional gene content in simple communities
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Figure 4: Predicting metabolite dynamics in 3-strain communities. (A) Metabolite dynamics for
an example 3-strain (Nar/Nir + Nar/Nir + Nar) community. The first three panels show metabolite dy-
namics for each strain cultured individually, and the fourth panel shows the metabolite dynamics of the
3-strain community. Curves show the prediction of the additive null model (Fig. 3B). (B) NRMSE val-
ues quantifying quality of model predictions for 3-strain communities, comparing predictions using only
parameters fit only to monocultures versus predictions that treated Nar + Nir pairs as effective modules.
Mean NRMSE values were compared via t-test (p = 7×10−6). (C) Metabolite dynamics for an example
Nar + Nir pair, where curves in the left panel show the prediction of the additive null model using only
parameters fit to monocultures, and curves in the right panel show an effective refitting of the Nar and Nir
strain reduction rate parameters to the pair culture data. (D) Metabolite dynamics for a 3-strain commu-
nity containing a Nar/Nir strain and the Nar + Nir pair shown in panel C, where again curves in the left
panel show the prediction of the additive null model for which all parameters are fit in monoculture, and
the right panel shows the prediction where the Nar + Nir pair is treated as a module with rate parameters
refit in pair culture.
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can be interpreted in terms of metabolite dynamics at the community-level. This insight could
eventually enable the prediction of metabolite dynamics in complex communities where func-
tional gene content has been assigned to individual genomes (38). Soils and host-associated
communities typically contain thousands of bacterial taxa, so testing the predictive power of
the consumer-resource formalism in communities of many taxa in more complex environments
will be essential. However, micron-scale spatial structure in soils suggests that denitrification
may occur locally, in communities of just a few taxa (39), meaning that the rules of denitrifi-
cation for simple communities could apply to natural contexts. Understanding the ecology of
denitrification in complex contexts is essential for minimizing N2O production from soils (40)
and controlling bacterial nitric oxide production in mammalian hosts (41).

At the cellular level, the apparent mechanistic relevance of the regression coefficients in this
study suggests that a statistical approach, coupled with large-scale culturing and phenotyping
on libraries of isolates (42, 43), could be exploited to discover the salient features of genomes
that determine other metabolic functions. Higher throughput measurements should enable a
more detailed interrogation of genomic features, allowing us to extend our statistical approach
to gene sequences, promoter architecture and synteny. These insights might then be used to
design genomes and communities with predefined metabolic capabilities by the addition or
deletion of specific genes (44).

The evolutionary and ecological basis for our mapping from genomic structure to commu-
nity function remains to be discovered, but our results lend support to the idea that different
genes in the denitrification pathway are adapted to different ecological niches (17, 25). Com-
bining our understanding of how gene content determines phenotype with analyses of horizontal
gene transfer and community assembly in specific niches could yield insights into how evolu-
tionary and ecological processes combine to shape community structure and function.
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