
 

1 

I-CONVEX: 
Fast and Accurate de Novo Transcriptome Recovery  

from Long Reads 
Sina Baharlouei1, Meisam Razaviyayn1, Elizabeth Tseng2, David Tse3 

 
Long-read sequencing technologies demonstrate high potential for de novo discovery of 
complex transcript isoforms, but high error rates pose a significant challenge. Existing error 
correction methods rely on clustering reads based on isoform-level alignment and cannot be 
efficiently scaled. We propose a new method, I-CONVEX, that performs fast, alignment-free 
isoform clustering with almost linear computational complexity, and leads to better consensus 
accuracy on simulated, synthetic, and real datasets. 
 
 
Alternative splicing is the process by which a single gene can create different alternative spliced forms 
(isoforms) by using different combinations of exons. The process of identifying isoforms is called 
transcriptome sequencing. Transcriptome sequencing methods fall into two categories: genome-
guided and de novo. Genome-guided methods align reads back to the reference genome to identify 
the exon boundaries. This alignment information is often combined with reference annotations to 
assemble the transcripts. De novo transcriptome sequencing, on the other hand, uses information 
from the reads alone and does not rely on a reference genome. The de novo approach is not biased 
by the reference genome/annotation and thus can be used in applications with the mutated genome, 
such as cancer, or when a high-quality reference genome is not available. 
 
Most transcripts are 1-10 kb long, and different isoforms can share the same subset of exons. Thus, 
accurate characterization of the exon connectivities using short reads (100-250 bp) is computationally 
challenging and in some cases, even statistically impossible1-4. In contrast, the transcriptome 
sequencing problem through long reads is statistically identifiable (Supplementary Note 1). However, 
such a task is computationally challenging due to higher error rates of long reads. To deal with the 
high error rate, various transcriptome sequencing pipelines5-7 have been developed5,8 and used to 
discover novel isoforms9, cancer fusion genes10, and genotypes of immune genes11.  
 
Figure 1a illustrates the process of full-length transcriptome sequencing. Each long read covers a 
transcript completely, with substitution, insertion, and deletion errors distributed randomly. The number 
of reads covering each transcript depends on its abundance in the sequencing library. We define the 
de novo transcriptome recovery as the problem of using the full-length reads with random errors to 
estimate the sequence of the transcripts and their abundances. One solution to this problem is to 
cluster the reads based on their similarity, assuming that each cluster contains reads coming from the 
same isoform and within-cluster differences solely come from sequencing errors. The software ICE5, 
which is based on this clustering viewpoint, performs pairwise alignment among the reads to construct 
a similarity graph and then uses this graph to cluster the reads. While optimal clustering algorithms 
often require solving mathematically non-convex and computationally intractable problems, heuristic 
clustering algorithms such as maximal decomposition can be used in practice5. Unfortunately, these 
heuristics often provide no statistical guarantee for the final clusters. In addition, computing similarity 
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graphs relies on aligners which are subject to parameterization and sensitivity/specificity tradeoffs. 
Another software based on this clustering viewpoint is IsoCon8. IsoCon first creates a nearest neighbor 
graph based on the pairwise edit distance of the reads, then it successively removes and denoises 
nodes with the largest number of neighbors. This procedure is continued until all the reads are 
clustered. While IsoCon demonstrates significantly better recall and precision compared to ICE, it is 
not scalable to large-scale datasets with millions of long reads. 

 
In contrast to ICE and IsoCon, our method I-CONVEX does not require read-to-read alignment. I-
CONVEX consists of two subprograms: scalable pre-clustering of reads (Figure 1b), and alignment-
free isoform recovery via convexification (Figure 1c). We first describe the alignment-free isoform 
recovery step (Figure 1c), which is the core module of I-CONVEX and is based on the following 
observation: When the list of transcripts is known, estimating the abundances is a convex problem 
and can be done efficiently using convex optimization approaches such as the EM algorithm12,13. 
However, the list of transcripts is not known in de novo transcriptome recovery a priori, which makes 
the problem non-convex. A convex reformulation of the problem could be obtained by assuming that 
all sequences are possibly transcripts (with many of the sequences having zero abundances). 
However, this reformulation would grow exponentially with sequence lengths. To overcome this 
exponential increase, we first reduce the size of the problem by partitioning the reads into a small 
number of equivalence classes that share the same (short) prefixes, then we estimate their aggregate 
abundances (Figure 1c). Many of the equivalence classes would have near-zero abundances that are 
then “pruned”. Keeping only the classes with sufficiently large abundance estimates, we further 
partition, or “branch” them by extending the prefixes one base at a time until a maximum length 
threshold is reached. At each step of the algorithm, the abundance of each equivalent class can be 
estimated using the EM algorithm with added sparsity regularization (Supplementary Note 2). The 
computational complexity of the algorithm grows linearly with the number of reads. This alignment-
free isoform recovery step can fully utilize multiple computational cores by processing the reads in 
parallel (Online Methods). The parallelization is achieved without losing any statistical accuracy as 
the parallel version, and the single-core version returns exactly the same output.  
 
To scale I-CONVEX to millions of reads, the first step of I-CONVEX performs a fast pre-clustering 
algorithm on the input reads by constructing a “conservative” similarity graph (Figure 1b). The nodes 
in this graph correspond to the reads, and an edge shows a similarity level higher than a certain 
threshold. A low threshold is chosen to capture any potential similarity among the reads. Thus, each 
connected component (pre-cluster) in this graph contains all the reads coming from a group of similar 
transcripts. To obtain the similarity graph, we use a locality sensitive hashing (LSH) method based on 
the Jaccard similarity14-16 between k-mer signatures. This idea has been used before in Mash15 and 
MHAP16. However, to make the computational complexity of the algorithm linear in the number of 
reads, we adopt the idea of banding technique17 (Supplementary Note 3). In this pipeline, the 
resulting similarity graph may contain a large number of false positive edges since k-mer sharing 
amongst non-homologous transcripts is frequent. To reduce the number of false positives, we trained 
a convolutional neural network to validate and correct the similarity of read pairs (Supplementary 
Note 4). Then, the obtained pre-clusters are processed in parallel by the clustering via convexification 
step (Figure 1c).  
 
We compare the performance and efficiency of I-CONVEX against IsoCon and ICE on simulated and 
real datasets in Figure 2 (see Supplementary Note 5 for the details of the datasets). As can be seen 
in Figure 2a, I-CONVEX can efficiently scale to large size datasets. Figure 2b and Figure 2d compare 
the recall, precision, and F-score for I-CONVEX, ICE, and IsoCon on SIRV and simulated datasets. In 
contrast to ICE and IsoCon, the number of false positives in I-CONVEX output decreases as the 
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number of reads increases. Thus, the F-score of I-CONVEX is enhanced by increasing the number of 
reads, while the other two methods suffer from low F-scores when we increase the sequencing 
coverage. We further evaluate I-CONVEX on the Sequel II dataset (Supplementary Note 5) 
containing approximately 7 million reads. Since the actual transcriptome is not available, we apply 
SQANTI218 to the predicted transcriptome. SQANTI2 outputs the number and percentage of full-splice 
matches (perfect matches to a reference transcript), incomplete-splice matches (possible degraded 
matches to a reference transcript), and novel transcriptome (which are not high-quality transcripts with 
high probability) in the predicted transcripts. As depicted in Figure 2c, I-CONVEX generates fewer 
transcripts (high precision) compared to the IsoSeq3 (a successor of ICE in the PacBio SMRTAnalysis 
software suite), while the majority of them are either full-splice matches or incomplete-splice matches.   
 
From a broader viewpoint, I-CONVEX solves a clustering problem over finite-alphabet sequences. 
The ability of I-CONVEX for fast and accurate clustering of the sequences can be beneficial in various 
other applications. For example, the read or k-mer denoising problems can be viewed as a clustering 
problem where reads/k-mers from identical sequences belong to the same cluster. As another 
example, the reconstruction of antibody repertoire, which is an important step in immunology and drug 
development, can be viewed as a clustering problem19 and the idea behind I-CONVEX could lead to 
linear time algorithms for this purpose. 
 
The I-CONVEX package is available online at https://github.com/sinaBaharlouei/I-CONVEX. We have 
provided the basic instructions to run I-CONVEX in Supplementary Note 6. 
 
Methods 
Methods and any associated references are available in the online version of the paper. 
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Figure 1: I-CONVEX algorithm workflow: (a) Sequencing full-length transcriptome using long reads. The reads cover the full 

transcripts and the number of reads from each transcript is proportional to its abundance in the sequencing library. Different error 
types such as insertion, deletion, and substitution may occur in the reads. The reads are the input to I-CONVEX. (b) Pre-clustering 
stage: First, we use MinHash to obtain the signature matrix. Then, the signature matrix is divided into several bands (e.g., two bands 
with size 3). Two reads are in the same bucket if they are equal in all rows of a band (e.g. R4, R5). Next, a similarity graph is formed 
by connecting reads that are in the same bucket. The edges of this graph are then validated with a neural network to reduce the 
number of false positive edges (red edges). Each connected component of the similarity graph leads to one pre-cluster. (c) An example 
run of Clustering via Convexification. First, the list of all possible short prefixes is considered (e.g. 4ହ =  1024 prefixes of length L = 5 
ranging from 'AAAAA' to 'TTTTT'). The abundances of these prefixes are then estimated by aligning them to the reads and solving a 
maximum likelihood estimation problem through the (sparse) expectation maximization (EM) algorithm13,14 (See Online methods).  I-
Convex only keeps the prefixes with the abundance higher than a specified threshold. Then each length L prefix 'XXXXX' is replaced 
by four extended prefixes 'XXXXXA', 'XXXXXC’, 'XXXXXG',  and 'XXXXXT'. Using the previous alignment of the prefixes to the reads, 
the abundance of these length L+1 prefixes are estimated and the list is filtered and extended to obtain a list of prefixes of length L+2. 
This procedure continues until the complete recovery of all transcripts. 
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Figure 2: Performance Comparison of I-CONVEX, ICE, and IsoCon. (a) Running time of I-CONVEX, ICE, and IsoCon for real and 

simulated read datasets. The insertion/deletion/substitution error is generated according to the identical independent error model. All 
the methods have the same amount of memory (180 GB) and computational resources (16 cores per cluster). ICE and IsoCon could 
not complete the denoising task within 48 hours for the 1M dataset. In addition, IsoCon cannot complete the denoising task for the 
Liver dataset within 48 hours. (b,d) Comparison of the recall, precision, and F-score performed on several simulated datasets with 
known ground-truth. Recall measures the ratio of the actual transcripts detected with an accuracy of larger than 98%. Precision 
measures the number of recovered ground truth transcripts divided by the total number of estimated transcripts. While the recall of 
three methods is close to each other, I-CONVEX demonstrates a better performance in terms of precision. (c) The frequency of Full 
Splice Matches (FSM) and Incomplete Splice Matches (ISM) obtained by running Iso-Seq 3 and I-CONVEX on the Sequel II dataset. 
The “I-CONVEX + Truncation” means pre-clusters with size 1 are thrown away. We could not get the result of IsoCon and ICE on this 
dataset after waiting for more than 48 hours. 
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Methods 

Computing Abundances. The likelihood of observing the set of reads 𝑅 = {𝑟ଵ, 𝑟ଶ, … , 𝑟௡} from a given set 

of transcripts 𝑇 = {𝑡ଵ, 𝑡ଶ, … , 𝑡௡} with abundances 𝜌 =  {𝜌
1

, . . . , 𝜌
𝑚 

} can be computed as18  

𝑃(𝑅; 𝜌, 𝑇) = ෑ 𝑃(𝑟௜ ; 𝜌, 𝑇)

௡

௜ୀଵ

= ෑ ቌ෍ 𝛼௜௝𝜌௝

௠

௝ୀଵ

ቍ

௡

௜ୀଵ

, 

 
where 𝛼௜௝ is the probability of observing the read 𝑟௜ from transcript 𝑡௝. Therefore, the maximum likelihood 

estimation of 𝜌 is given by  

𝜌ොெ௅ = argmax
ఘ

 ෍ 𝑙𝑜𝑔 ቌ෍ 𝛼௜௝𝜌௝

௠

௝ୀଵ

ቍ

௡

௜ୀଵ

 subject to ρ ≥ 0, ෍ ρ௝

௠

௝ୀଵ

= 1 

 
which can be solved through Expectation Maximization (EM) algorithm iteration18: 

𝜌௝ ←
1

𝑛
෍

𝛼௜௝𝜌௝

∑ 𝛼௜௞𝜌௞
௠
௞ୀଵ

௡

௜ୀଵ

 ∀𝑗 = 1, … , 𝑚. 

 
Sparsification of the abundance vector estimation. The abundance of the sequences in the Isoform 
Recovery via Convexification step in I-CONVEX is a sparse vector. Hence, Isoform recovery via 
convexification step (Figure 1c) estimates the abundance vector through 𝑙௤-norm regularization for 

imposing sparsity by solving 

𝜌ොெ௅ = argmax
ఘ

෍ log ቌ෍ 𝛼௜௝𝜌௝

௠

௝ୀଵ

ቍ

௡

௜ୀଵ

 subject to 𝜌 ≥ 0, ෍ 𝜌௝
௤

௠

௝ୀଵ

= 1, 

 
where 𝑞 is some positive constant less than 1. In our experiments, we observe that setting the value of 𝑞 

close to one, e.g. 
ଵ

௤
= 1.03, reduces the number of false positives while does not decrease the number of 

true positives. This modified optimization problem can be solved through the following iterative procedure 
(Supplementary Note 2): 
 

 
𝜌௝ ← ൭

1

𝑛
෍

𝛼௜௝𝜌௝

∑ 𝛼௜௞𝜌௞
௠
௞ୀଵ

௡

௜ୀଵ

൱

ଵ
௤

 ∀𝑗 = 1, … , 𝑚. 
(1) 

 
Parallelization.  Isoform recovery via convexification step (Figure 1c) partitions the reads evenly among 
the cores before running the algorithm. Each core keeps a copy of the estimated prefixes and abundances 
while it computes the parameters 𝛼௜௝ for its own reads. Let us assume that the set of reads 𝑅 =  {𝑟ଵ, … , 𝑟௡} 

is partitioned into subsets 𝑅ଵ, … , 𝑅௖ with 𝑐 being the number of computational cores. At each iteration of the 
algorithm, each core 𝑙 computes local values 

 
𝜌௝

௟ ←
1

𝑛
෍

𝛼௜௝𝜌௝

∑ 𝛼௜௞𝜌௞
௠
௞ୀଵ௜∈ோ೗

 ∀𝑗 = 1, … , 𝑚, 

 

(2) 

and then the consensus abundance value is obtained by 
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 𝜌௝ ← ൭෍ 𝜌௝
௟

௖

௟ୀଵ

൱

ଵ
௤

 ∀𝑗 = 1, … , 𝑚. 

 

(3) 

The above two steps (2, 3)  are equivalent to (1) and return the exact same values for abundances. 
 
Pre-clustering. To reduce the time and memory complexity of the isoform recovery via convexification 
procedure, we propose a fast pre-clustering algorithm (Figure 1b) consisting of three main steps: 
 

1. Fast mapping of reads to buckets based on MinHash and Locality Sensitive Hashing (LSH) 
algorithms. The more similar a pair of reads, the higher the probability of mapping them to the same 
bucket is. 

2. Validating similar candidate pairs with a trained convolutional neural to eliminate false positive pairs 
obtained from the previous step. 

3. Pre-clustering the similarity graph whose vertices are reads and edges show the similarity between 
the reads. 
 

Each of these steps is explained in details below: 
 
Fast mapping of reads to buckets. To measure the proximity of read pairs, a widely used idea is to 
compute the Jaccard similarity of their k-mer set16,17. The k-mer set of a given read is the set of all of its 
consecutive subsequences with length 𝑘. As an example "GCTACCT" consists of {"GCTA", "CTAC", 
"TACC", "ACCT"} 4-mers. For a given dataset containing 𝑁 reads with the average length of 𝐿, it takes 
𝑂(𝑁𝐿) operations to obtain the k-mer representation of all the reads. For convenience, each k-mer is 
hashed to a 32-bit integer number. Having the k-mer set of all the reads in the dataset, we form a 
representation matrix 𝑀 with its columns representing different reads and different rows representing 
different k-mers (that appear in at least one read). Each entry 𝑀௜௝ equals to 1 if and only if the i-th k-mer 

appears in the j-th read, and 0 otherwise. Since computing the Jaccard similarity of read pairs is 
computationally expensive, we compress the reads using MinHash signatures, which are unbiased 
estimators of Jaccard similarity (Supplementary Theorem 2 in Supplementary Note 3). Thus, instead of 
exact computation of Jaccard similarity of all read pairs, we can estimate them by finding the Hamming 
similarity of their MinHash signatures. ℎ << 𝐿 MinHash functions are applied to the representation matrix 
𝑀 to obtain a MinHash signature with length ℎ for each read. Choosing a larger value for ℎ, corresponds to 
a smaller variance of the Jaccard estimator (Supplementary Theorem 3 in Supplementary Note 3). 
Hence a signature matrix 𝑆 with 𝑁 columns and ℎ rows can be formed such that 𝑆௜௝ represents the i-th 

element of the MinHash code corresponding to the j-th read in the dataset. To compute 𝑆௜௝, let 𝒫௜ =

{𝑖ଵ, 𝑖ଶ, . . . , 𝑖௧} be a permutation of {1, 2, . . . , 𝑡} corresponding to the i-th MinHash function, where 𝑡 is the 
number of rows in 𝑀. Let 𝑖௠௜௡ be the smallest integer such that 𝑀[𝑖௠௜௡][𝑗]  =  1. Then, the MinHash value 
of the j-th read with respect to the permutation 𝑃௜ equals 𝑖௠௜௡.   
 
Computing the similarity of two MinHash signatures rather than the original k-mer sets is significantly more 

efficient. However, even after hashing long reads to MinHash signatures, calculating the similarity of all ቀ𝑁
2

ቁ 

pairs of MinHash signatures is still a computationally expensive task. To avoid pairwise comparison of all 
reads, we adopt the locality sensitive hashing (LSH) algorithm. The corresponding MinHash signature of 
each read is divided into 𝑏 bands with size 𝑑 (ℎ =  𝑏𝑑). Accordingly, the first 𝑑 rows of the signature matrix 
form the first band. The second 𝑑 rows of the signature matrix correspond to the second band, and so on. 
If two columns (which correspond to two different reads) are equal in all rows of at least one of these bands, 
they will be mapped to the same bucket, and we call them a candidate similar pair (Figure 1b). Assume 
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𝑠 is the true Jaccard similarity of 𝑆ଵ and 𝑆ଶ. Since MinHash is an unbiased estimator of the Jaccard similarity, 

the probability that 𝑆ଵ and 𝑆ଶ are equal in each row is 𝑠. Thus, the probability of being equal in all 𝑑 rows of 

a band is 𝑠ௗ. Hence 𝑆ଵ and 𝑆ଶ will be mapped to the same bucket with the probability 𝑝 =  1 −  (1 − 𝑠ௗ)௕. 
𝑑 and b can be seen as two hyper-parameters that control the false positive and false negative rates. 
Increasing 𝑑 leads to the decrease in the value of 𝑝. Thus, the number of pairs mapped to the same bucket 
is decreased; and true positive and false positive rates are reduced simultaneously (Supplementary 
Figure 2). The same logic implies that by increasing the number of bands (𝑏), 𝑝 will be increased. Therefore, 
both true positive and false positive rates will be increased. To avoid low true positive rate, we choose small 
values for 𝑑 and 𝑏, and then we eliminate the false similar candidate pairs using a trained convolutional 
neural network. 
 
Validating Candidate Similar Pairs via Convolutional Neural Networks. To validate the candidate pairs 
obtained by applying LSH on the dataset of reads, we designed a Convolutional Neural Network (CNN), 
which takes a pair of sequences and generates the output one if the sequences are similar and zero 
otherwise (Figure 1b). Supplementary Table 1 depicts the architecture of the designed convolutional 
neural network in detail. The training data consists of 100000 pairs of the reads, where half of them are 
similar, and the rest are dissimilar (The details of the training dataset is available in Supplementary Note 

4). We optimize the following objective function applying an Adam optimizer with the step-size 𝛼 = 10−4 
and the momentum 𝛽

ଵ
= 0.9:  

ℓ(𝑦, 𝑦ො) = ෍(𝑦ො௜ − 𝑦௜)ଶ

௡

௜ୀଵ

 

 
Pre-clustering the Similarity Graph. The similarity graph among the reads is an undirected graph in which 
a vertex represents a read in the dataset. We connect two vertices with an edge if and only if their 
corresponding reads are detected as a similar pair by the convolutional neural network introduced in the 
previous step. Ideally, if the LSH algorithm combined with the validation phase by the designed CNN can 
detect all the similar pairs without producing any false edges, each connected component of the similarity 
graph corresponds to one cluster. However, due to the existence of false positives in the graph, each 
connected component may contain more than one actual cluster. In practice, there is typically a large 
connected component containing 10% to 40% of the nodes. For this specific component, we run a fast 
greedy community detection algortihm20 to find the pre-clusters it contains.  
 
Partitioning the reads into pre-clusters has several advantages over running the “isoform recovery via 
convexification” module on the entire dataset. First, this module can be executed on different pre-clusters 
independently and in parallel. Hence, the amount of memory per task, and the entire time needed for the 
transcriptome recovery will be decreased profoundly as a result of parallelization. Second, the time 
complexity of the convexification stage is dependent on the product of the number of transcripts and the 
number of reads. Since the number of transcripts in each pre-cluster is much smaller than the total number 
of transcripts, pre-clustering significantly improves the computational complexity of “isoform recovery via 
convexification” step. 
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