

1

I-CONVEX:
Fast and Accurate de Novo Transcriptome Recovery

from Long Reads
Sina Baharlouei1, Meisam Razaviyayn1, Elizabeth Tseng2, David Tse3

Long-read sequencing technologies demonstrate high potential for de novo discovery of
complex transcript isoforms, but high error rates pose a significant challenge. Existing error
correction methods rely on clustering reads based on isoform-level alignment and cannot be
efficiently scaled. We propose a new method, I-CONVEX, that performs fast, alignment-free
isoform clustering with almost linear computational complexity, and leads to better consensus
accuracy on simulated, synthetic, and real datasets.

Alternative splicing is the process by which a single gene can create different alternative spliced forms
(isoforms) by using different combinations of exons. The process of identifying isoforms is called
transcriptome sequencing. Transcriptome sequencing methods fall into two categories: genome-
guided and de novo. Genome-guided methods align reads back to the reference genome to identify
the exon boundaries. This alignment information is often combined with reference annotations to
assemble the transcripts. De novo transcriptome sequencing, on the other hand, uses information
from the reads alone and does not rely on a reference genome. The de novo approach is not biased
by the reference genome/annotation and thus can be used in applications with the mutated genome,
such as cancer, or when a high-quality reference genome is not available.

Most transcripts are 1-10 kb long, and different isoforms can share the same subset of exons. Thus,
accurate characterization of the exon connectivities using short reads (100-250 bp) is computationally
challenging and in some cases, even statistically impossible1-4. In contrast, the transcriptome
sequencing problem through long reads is statistically identifiable (Supplementary Note 1). However,
such a task is computationally challenging due to higher error rates of long reads. To deal with the
high error rate, various transcriptome sequencing pipelines5-7 have been developed5,8 and used to
discover novel isoforms9, cancer fusion genes10, and genotypes of immune genes11.

Figure 1a illustrates the process of full-length transcriptome sequencing. Each long read covers a
transcript completely, with substitution, insertion, and deletion errors distributed randomly. The number
of reads covering each transcript depends on its abundance in the sequencing library. We define the
de novo transcriptome recovery as the problem of using the full-length reads with random errors to
estimate the sequence of the transcripts and their abundances. One solution to this problem is to
cluster the reads based on their similarity, assuming that each cluster contains reads coming from the
same isoform and within-cluster differences solely come from sequencing errors. The software ICE5,
which is based on this clustering viewpoint, performs pairwise alignment among the reads to construct
a similarity graph and then uses this graph to cluster the reads. While optimal clustering algorithms
often require solving mathematically non-convex and computationally intractable problems, heuristic
clustering algorithms such as maximal decomposition can be used in practice5. Unfortunately, these
heuristics often provide no statistical guarantee for the final clusters. In addition, computing similarity

1 Department of Industrial and Systems Engineering, University of Southern California.
2 Pacific Biosciences, Menlo Park, California, United States of America.
3 Department of Electrical Engineering, Stanford University.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

graphs relies on aligners which are subject to parameterization and sensitivity/specificity tradeoffs.
Another software based on this clustering viewpoint is IsoCon8. IsoCon first creates a nearest neighbor
graph based on the pairwise edit distance of the reads, then it successively removes and denoises
nodes with the largest number of neighbors. This procedure is continued until all the reads are
clustered. While IsoCon demonstrates significantly better recall and precision compared to ICE, it is
not scalable to large-scale datasets with millions of long reads.

In contrast to ICE and IsoCon, our method I-CONVEX does not require read-to-read alignment. I-
CONVEX consists of two subprograms: scalable pre-clustering of reads (Figure 1b), and alignment-
free isoform recovery via convexification (Figure 1c). We first describe the alignment-free isoform
recovery step (Figure 1c), which is the core module of I-CONVEX and is based on the following
observation: When the list of transcripts is known, estimating the abundances is a convex problem
and can be done efficiently using convex optimization approaches such as the EM algorithm12,13.
However, the list of transcripts is not known in de novo transcriptome recovery a priori, which makes
the problem non-convex. A convex reformulation of the problem could be obtained by assuming that
all sequences are possibly transcripts (with many of the sequences having zero abundances).
However, this reformulation would grow exponentially with sequence lengths. To overcome this
exponential increase, we first reduce the size of the problem by partitioning the reads into a small
number of equivalence classes that share the same (short) prefixes, then we estimate their aggregate
abundances (Figure 1c). Many of the equivalence classes would have near-zero abundances that are
then “pruned”. Keeping only the classes with sufficiently large abundance estimates, we further
partition, or “branch” them by extending the prefixes one base at a time until a maximum length
threshold is reached. At each step of the algorithm, the abundance of each equivalent class can be
estimated using the EM algorithm with added sparsity regularization (Supplementary Note 2). The
computational complexity of the algorithm grows linearly with the number of reads. This alignment-
free isoform recovery step can fully utilize multiple computational cores by processing the reads in
parallel (Online Methods). The parallelization is achieved without losing any statistical accuracy as
the parallel version, and the single-core version returns exactly the same output.

To scale I-CONVEX to millions of reads, the first step of I-CONVEX performs a fast pre-clustering
algorithm on the input reads by constructing a “conservative” similarity graph (Figure 1b). The nodes
in this graph correspond to the reads, and an edge shows a similarity level higher than a certain
threshold. A low threshold is chosen to capture any potential similarity among the reads. Thus, each
connected component (pre-cluster) in this graph contains all the reads coming from a group of similar
transcripts. To obtain the similarity graph, we use a locality sensitive hashing (LSH) method based on
the Jaccard similarity14-16 between k-mer signatures. This idea has been used before in Mash15 and
MHAP16. However, to make the computational complexity of the algorithm linear in the number of
reads, we adopt the idea of banding technique17 (Supplementary Note 3). In this pipeline, the
resulting similarity graph may contain a large number of false positive edges since k-mer sharing
amongst non-homologous transcripts is frequent. To reduce the number of false positives, we trained
a convolutional neural network to validate and correct the similarity of read pairs (Supplementary
Note 4). Then, the obtained pre-clusters are processed in parallel by the clustering via convexification
step (Figure 1c).

We compare the performance and efficiency of I-CONVEX against IsoCon and ICE on simulated and
real datasets in Figure 2 (see Supplementary Note 5 for the details of the datasets). As can be seen
in Figure 2a, I-CONVEX can efficiently scale to large size datasets. Figure 2b and Figure 2d compare
the recall, precision, and F-score for I-CONVEX, ICE, and IsoCon on SIRV and simulated datasets. In
contrast to ICE and IsoCon, the number of false positives in I-CONVEX output decreases as the

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

number of reads increases. Thus, the F-score of I-CONVEX is enhanced by increasing the number of
reads, while the other two methods suffer from low F-scores when we increase the sequencing
coverage. We further evaluate I-CONVEX on the Sequel II dataset (Supplementary Note 5)
containing approximately 7 million reads. Since the actual transcriptome is not available, we apply
SQANTI218 to the predicted transcriptome. SQANTI2 outputs the number and percentage of full-splice
matches (perfect matches to a reference transcript), incomplete-splice matches (possible degraded
matches to a reference transcript), and novel transcriptome (which are not high-quality transcripts with
high probability) in the predicted transcripts. As depicted in Figure 2c, I-CONVEX generates fewer
transcripts (high precision) compared to the IsoSeq3 (a successor of ICE in the PacBio SMRTAnalysis
software suite), while the majority of them are either full-splice matches or incomplete-splice matches.

From a broader viewpoint, I-CONVEX solves a clustering problem over finite-alphabet sequences.
The ability of I-CONVEX for fast and accurate clustering of the sequences can be beneficial in various
other applications. For example, the read or k-mer denoising problems can be viewed as a clustering
problem where reads/k-mers from identical sequences belong to the same cluster. As another
example, the reconstruction of antibody repertoire, which is an important step in immunology and drug
development, can be viewed as a clustering problem19 and the idea behind I-CONVEX could lead to
linear time algorithms for this purpose.

The I-CONVEX package is available online at https://github.com/sinaBaharlouei/I-CONVEX. We have
provided the basic instructions to run I-CONVEX in Supplementary Note 6.

Methods
Methods and any associated references are available in the online version of the paper.

Author Contributions
M.R and D.T proposed the clustering via convexification procedure of I-CONVEX (Figure 1c); M.R.
implemented the clustering via convexification process (Figure 1c). S.B designed and implemented
the pre-clustering process (Figure 1b) and tuned it with the convexification procedure. S.B and E.T
tested the algorithm on different datasets and analyzed the results. All authors contributed in writing
the manuscript.

Competing Financial Interests
The authors declare no competing financial interests.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

Figure 1: I-CONVEX algorithm workflow: (a) Sequencing full-length transcriptome using long reads. The reads cover the full

transcripts and the number of reads from each transcript is proportional to its abundance in the sequencing library. Different error
types such as insertion, deletion, and substitution may occur in the reads. The reads are the input to I-CONVEX. (b) Pre-clustering
stage: First, we use MinHash to obtain the signature matrix. Then, the signature matrix is divided into several bands (e.g., two bands
with size 3). Two reads are in the same bucket if they are equal in all rows of a band (e.g. R4, R5). Next, a similarity graph is formed
by connecting reads that are in the same bucket. The edges of this graph are then validated with a neural network to reduce the
number of false positive edges (red edges). Each connected component of the similarity graph leads to one pre-cluster. (c) An example
run of Clustering via Convexification. First, the list of all possible short prefixes is considered (e.g. 4ହ = 1024 prefixes of length L = 5
ranging from 'AAAAA' to 'TTTTT'). The abundances of these prefixes are then estimated by aligning them to the reads and solving a
maximum likelihood estimation problem through the (sparse) expectation maximization (EM) algorithm13,14 (See Online methods). I-
Convex only keeps the prefixes with the abundance higher than a specified threshold. Then each length L prefix 'XXXXX' is replaced
by four extended prefixes 'XXXXXA', 'XXXXXC’, 'XXXXXG', and 'XXXXXT'. Using the previous alignment of the prefixes to the reads,
the abundance of these length L+1 prefixes are estimated and the list is filtered and extended to obtain a list of prefixes of length L+2.
This procedure continues until the complete recovery of all transcripts.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

Figure 2: Performance Comparison of I-CONVEX, ICE, and IsoCon. (a) Running time of I-CONVEX, ICE, and IsoCon for real and

simulated read datasets. The insertion/deletion/substitution error is generated according to the identical independent error model. All
the methods have the same amount of memory (180 GB) and computational resources (16 cores per cluster). ICE and IsoCon could
not complete the denoising task within 48 hours for the 1M dataset. In addition, IsoCon cannot complete the denoising task for the
Liver dataset within 48 hours. (b,d) Comparison of the recall, precision, and F-score performed on several simulated datasets with
known ground-truth. Recall measures the ratio of the actual transcripts detected with an accuracy of larger than 98%. Precision
measures the number of recovered ground truth transcripts divided by the total number of estimated transcripts. While the recall of
three methods is close to each other, I-CONVEX demonstrates a better performance in terms of precision. (c) The frequency of Full
Splice Matches (FSM) and Incomplete Splice Matches (ISM) obtained by running Iso-Seq 3 and I-CONVEX on the Sequel II dataset.
The “I-CONVEX + Truncation” means pre-clusters with size 1 are thrown away. We could not get the result of IsoCon and ICE on this
dataset after waiting for more than 48 hours.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

References

1. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10,
1177-1184 (2013).

2. Kannan, S., Hui, J., Mazooji, K., Pachter, L. & Tse, D. Shannon: An Information-Optimal de Novo
RNA-Seq Assembler. Preprint at https://www.biorxiv.org/content/10.1101/039230v1 (2016).

3. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying
mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621-628 (2008).

4. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev.
Genet. 10, 57-63 (2009).

5. Gordon, S.P. et al. Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule
mRNA Sequencing. PLoS ONE 10, e0132628 (2015).

6. Wang, B. et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read
sequencing. Nat. Commun. 7, 11708 (2016).

7. Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics
pipelines. Exp Mol Med 50, 96 (2018).

8. Sahlin, K., Tomaszkiewicz, M., Makova, K.D. & Medvedev, P. Deciphering highly similar multigene
family transcripts from Iso-Seq data with IsoCon. Nat. Commun. 9, 4601 (2018).

9. Abdel-Ghany, S.E. et al. A survey of the sorghum transcriptome using single-molecule long reads.
Nat. Commun. 7, 11706 (2016).

10. Weirather, J.L. et al. Characterization of fusion genes and the significantly expressed fusion
isoforms in breast cancer by hybrid sequencing. Nucleic Acids Res. 43, e116–e116 (2015).

11. Westbrook, C.J. et al. No assembly required: Full-length MHC class I allele discovery by PacBio
circular consensus sequencing. Human immunology 76, 891-896 (2015).

12. Roberts, A. & Pachter, L. Streaming Fragment Assignment for Real-Time Analysis of Sequencing
Experiments. Nat. Methods 10, 71-73 (2013).

13. Trapnell, C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).

14. Broder, A.Z. On the Resemblance and Containment of Documents. Compression and Complexity
of SEQUENCES 1997, 21-29 (1997).

15. Ondov, B.D. et al. Mash: fast genome and metagenome distance estimation using MinHash.
Genome Biol. 17, 1–14 (2016).

16. Berlin, K. et al. Nat. Assembling Large Genomes with Single-Molecule Sequencing and Locality-
Sensitive Hashing. Biotechnol. 33, 623–630 (2015).

17. Gionis, A., Indyk, P. & Motwani, R. Similarity Search in High Dimensions via Hashing. Vldb. Vol.
99. No. 6. (1999).

18. Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for
quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–
411 (2016).

19. Safonova, Y. et al. IgRepertoireConstructor: a novel algorithm for antibody repertoire construction
and immunoproteogenomics analysis. Bioinformatics 31, i53–i61 (2015).

20. Clauset, A., Newman, M.E.J. & Moore, C. Finding community structure in very large networks. Phy.
Rev. E 70, 066111 (2004).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Methods

Computing Abundances. The likelihood of observing the set of reads 𝑅 = {𝑟ଵ, 𝑟ଶ, … , 𝑟௡} from a given set

of transcripts 𝑇 = {𝑡ଵ, 𝑡ଶ, … , 𝑡௡} with abundances 𝜌 = {𝜌
1

, . . . , 𝜌
𝑚

} can be computed as18

𝑃(𝑅; 𝜌, 𝑇) = ෑ 𝑃(𝑟௜ ; 𝜌, 𝑇)

௡

௜ୀଵ

= ෑ ቌ෍ 𝛼௜௝𝜌௝

௠

௝ୀଵ

ቍ

௡

௜ୀଵ

,

where 𝛼௜௝ is the probability of observing the read 𝑟௜ from transcript 𝑡௝. Therefore, the maximum likelihood

estimation of 𝜌 is given by

𝜌ොெ௅ = argmax
ఘ

 ෍ 𝑙𝑜𝑔 ቌ෍ 𝛼௜௝𝜌௝

௠

௝ୀଵ

ቍ

௡

௜ୀଵ

 subject to ρ ≥ 0, ෍ ρ௝

௠

௝ୀଵ

= 1

which can be solved through Expectation Maximization (EM) algorithm iteration18:

𝜌௝ ←
1

𝑛
෍

𝛼௜௝𝜌௝

∑ 𝛼௜௞𝜌௞
௠
௞ୀଵ

௡

௜ୀଵ

 ∀𝑗 = 1, … , 𝑚.

Sparsification of the abundance vector estimation. The abundance of the sequences in the Isoform
Recovery via Convexification step in I-CONVEX is a sparse vector. Hence, Isoform recovery via
convexification step (Figure 1c) estimates the abundance vector through 𝑙௤-norm regularization for

imposing sparsity by solving

𝜌ොெ௅ = argmax
ఘ

෍ log ቌ෍ 𝛼௜௝𝜌௝

௠

௝ୀଵ

ቍ

௡

௜ୀଵ

 subject to 𝜌 ≥ 0, ෍ 𝜌௝
௤

௠

௝ୀଵ

= 1,

where 𝑞 is some positive constant less than 1. In our experiments, we observe that setting the value of 𝑞

close to one, e.g.
ଵ

௤
= 1.03, reduces the number of false positives while does not decrease the number of

true positives. This modified optimization problem can be solved through the following iterative procedure
(Supplementary Note 2):

𝜌௝ ← ൭

1

𝑛
෍

𝛼௜௝𝜌௝

∑ 𝛼௜௞𝜌௞
௠
௞ୀଵ

௡

௜ୀଵ

൱

ଵ
௤

 ∀𝑗 = 1, … , 𝑚.
(1)

Parallelization. Isoform recovery via convexification step (Figure 1c) partitions the reads evenly among
the cores before running the algorithm. Each core keeps a copy of the estimated prefixes and abundances
while it computes the parameters 𝛼௜௝ for its own reads. Let us assume that the set of reads 𝑅 = {𝑟ଵ, … , 𝑟௡}

is partitioned into subsets 𝑅ଵ, … , 𝑅௖ with 𝑐 being the number of computational cores. At each iteration of the
algorithm, each core 𝑙 computes local values

𝜌௝

௟ ←
1

𝑛
෍

𝛼௜௝𝜌௝

∑ 𝛼௜௞𝜌௞
௠
௞ୀଵ௜∈ோ೗

 ∀𝑗 = 1, … , 𝑚,

(2)

and then the consensus abundance value is obtained by

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

 𝜌௝ ← ൭෍ 𝜌௝
௟

௖

௟ୀଵ

൱

ଵ
௤

 ∀𝑗 = 1, … , 𝑚.

(3)

The above two steps (2, 3) are equivalent to (1) and return the exact same values for abundances.

Pre-clustering. To reduce the time and memory complexity of the isoform recovery via convexification
procedure, we propose a fast pre-clustering algorithm (Figure 1b) consisting of three main steps:

1. Fast mapping of reads to buckets based on MinHash and Locality Sensitive Hashing (LSH)
algorithms. The more similar a pair of reads, the higher the probability of mapping them to the same
bucket is.

2. Validating similar candidate pairs with a trained convolutional neural to eliminate false positive pairs
obtained from the previous step.

3. Pre-clustering the similarity graph whose vertices are reads and edges show the similarity between
the reads.

Each of these steps is explained in details below:

Fast mapping of reads to buckets. To measure the proximity of read pairs, a widely used idea is to
compute the Jaccard similarity of their k-mer set16,17. The k-mer set of a given read is the set of all of its
consecutive subsequences with length 𝑘. As an example "GCTACCT" consists of {"GCTA", "CTAC",
"TACC", "ACCT"} 4-mers. For a given dataset containing 𝑁 reads with the average length of 𝐿, it takes
𝑂(𝑁𝐿) operations to obtain the k-mer representation of all the reads. For convenience, each k-mer is
hashed to a 32-bit integer number. Having the k-mer set of all the reads in the dataset, we form a
representation matrix 𝑀 with its columns representing different reads and different rows representing
different k-mers (that appear in at least one read). Each entry 𝑀௜௝ equals to 1 if and only if the i-th k-mer

appears in the j-th read, and 0 otherwise. Since computing the Jaccard similarity of read pairs is
computationally expensive, we compress the reads using MinHash signatures, which are unbiased
estimators of Jaccard similarity (Supplementary Theorem 2 in Supplementary Note 3). Thus, instead of
exact computation of Jaccard similarity of all read pairs, we can estimate them by finding the Hamming
similarity of their MinHash signatures. ℎ << 𝐿 MinHash functions are applied to the representation matrix
𝑀 to obtain a MinHash signature with length ℎ for each read. Choosing a larger value for ℎ, corresponds to
a smaller variance of the Jaccard estimator (Supplementary Theorem 3 in Supplementary Note 3).
Hence a signature matrix 𝑆 with 𝑁 columns and ℎ rows can be formed such that 𝑆௜௝ represents the i-th

element of the MinHash code corresponding to the j-th read in the dataset. To compute 𝑆௜௝, let 𝒫௜ =

{𝑖ଵ, 𝑖ଶ, . . . , 𝑖௧} be a permutation of {1, 2, . . . , 𝑡} corresponding to the i-th MinHash function, where 𝑡 is the
number of rows in 𝑀. Let 𝑖௠௜௡ be the smallest integer such that 𝑀[𝑖௠௜௡][𝑗] = 1. Then, the MinHash value
of the j-th read with respect to the permutation 𝑃௜ equals 𝑖௠௜௡.

Computing the similarity of two MinHash signatures rather than the original k-mer sets is significantly more

efficient. However, even after hashing long reads to MinHash signatures, calculating the similarity of all ቀ𝑁
2

ቁ

pairs of MinHash signatures is still a computationally expensive task. To avoid pairwise comparison of all
reads, we adopt the locality sensitive hashing (LSH) algorithm. The corresponding MinHash signature of
each read is divided into 𝑏 bands with size 𝑑 (ℎ = 𝑏𝑑). Accordingly, the first 𝑑 rows of the signature matrix
form the first band. The second 𝑑 rows of the signature matrix correspond to the second band, and so on.
If two columns (which correspond to two different reads) are equal in all rows of at least one of these bands,
they will be mapped to the same bucket, and we call them a candidate similar pair (Figure 1b). Assume

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

𝑠 is the true Jaccard similarity of 𝑆ଵ and 𝑆ଶ. Since MinHash is an unbiased estimator of the Jaccard similarity,

the probability that 𝑆ଵ and 𝑆ଶ are equal in each row is 𝑠. Thus, the probability of being equal in all 𝑑 rows of

a band is 𝑠ௗ. Hence 𝑆ଵ and 𝑆ଶ will be mapped to the same bucket with the probability 𝑝 = 1 − (1 − 𝑠ௗ)௕.
𝑑 and b can be seen as two hyper-parameters that control the false positive and false negative rates.
Increasing 𝑑 leads to the decrease in the value of 𝑝. Thus, the number of pairs mapped to the same bucket
is decreased; and true positive and false positive rates are reduced simultaneously (Supplementary
Figure 2). The same logic implies that by increasing the number of bands (𝑏), 𝑝 will be increased. Therefore,
both true positive and false positive rates will be increased. To avoid low true positive rate, we choose small
values for 𝑑 and 𝑏, and then we eliminate the false similar candidate pairs using a trained convolutional
neural network.

Validating Candidate Similar Pairs via Convolutional Neural Networks. To validate the candidate pairs
obtained by applying LSH on the dataset of reads, we designed a Convolutional Neural Network (CNN),
which takes a pair of sequences and generates the output one if the sequences are similar and zero
otherwise (Figure 1b). Supplementary Table 1 depicts the architecture of the designed convolutional
neural network in detail. The training data consists of 100000 pairs of the reads, where half of them are
similar, and the rest are dissimilar (The details of the training dataset is available in Supplementary Note

4). We optimize the following objective function applying an Adam optimizer with the step-size 𝛼 = 10−4
and the momentum 𝛽

ଵ
= 0.9:

ℓ(𝑦, 𝑦ො) = ෍(𝑦ො௜ − 𝑦௜)ଶ

௡

௜ୀଵ

Pre-clustering the Similarity Graph. The similarity graph among the reads is an undirected graph in which
a vertex represents a read in the dataset. We connect two vertices with an edge if and only if their
corresponding reads are detected as a similar pair by the convolutional neural network introduced in the
previous step. Ideally, if the LSH algorithm combined with the validation phase by the designed CNN can
detect all the similar pairs without producing any false edges, each connected component of the similarity
graph corresponds to one cluster. However, due to the existence of false positives in the graph, each
connected component may contain more than one actual cluster. In practice, there is typically a large
connected component containing 10% to 40% of the nodes. For this specific component, we run a fast
greedy community detection algortihm20 to find the pre-clusters it contains.

Partitioning the reads into pre-clusters has several advantages over running the “isoform recovery via
convexification” module on the entire dataset. First, this module can be executed on different pre-clusters
independently and in parallel. Hence, the amount of memory per task, and the entire time needed for the
transcriptome recovery will be decreased profoundly as a result of parallelization. Second, the time
complexity of the convexification stage is dependent on the product of the number of transcripts and the
number of reads. Since the number of transcripts in each pre-cluster is much smaller than the total number
of transcripts, pre-clustering significantly improves the computational complexity of “isoform recovery via
convexification” step.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317594doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.317594
http://creativecommons.org/licenses/by-nc-nd/4.0/

