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Abstract 
The retina is a complex tissue containing multiple cell types that is essential for vision. 

Understanding the gene expression patterns of various retinal cell types has potential applications 

in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells 

have begun to yield insights into the transcriptomics of developing retinal cell types in humans 

through single cell RNA-sequencing studies. Previous methods of gene reporting have relied 

upon techniques in vivo using microarray data, or correlational and dimension reduction methods 

for analyzing single cell RNA-sequencing data in silico. Here, we present a bioinformatic 

approach using Boolean implication to discover retinal cell type-specific genes. We apply this 

approach to previously published retina and retinal organoid datasets and improve upon 

previously published correlational methods. Our method improves the prediction accuracy and 

reproducibility of marker genes of retinal cell types and discovers several new high confidence 

cone and rod-specific genes. Furthermore, our method is general and can impact all areas of gene 

expression analyses in cancer and other human diseases. 

 

Significance Statement 

Efforts to derive retinal cell types from pluripotent stem cells to the end of curing retinal disease 

require robust characterization of these cell types’ gene expression patterns. The Boolean method 

described in this study improves prediction accuracy of earlier methods of gene reporting, and 

allows for the discovery and validation of retinal cell type-specific marker genes. The invariant 

nature of results from Boolean implication analysis can yield high-value molecular markers that 

can be used as biomarkers or drug targets. 
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Introduction 

Characterization of retinal cell types is an important field of study with wide applications in 

ophthalmology and regenerative medicine. With the advent of single cell RNA-sequencing 

(scRNA-seq), methods for gene reporting in silico can yield valuable insights into genes that are 

important in determining cell fate.1 Human pluripotent stem cells (hPSCs) can be used to 

generate retinal cell types in vitro with potential applications to cure age-related macular 

degeneration, retinitis pigmentosa and other retina-related causes of blindness. However, gene 

reporting and characterization of these cell types is difficult as they differentiate asynchronously 

in complex cultures.2 Furthermore, there is a lack of human datasets. We propose using Boolean 

implication analysis to improve the prediction accuracy of existing correlational methods for in 

silico gene reporting. 

Previous Methods In Vivo and In Vitro 

One of the most common methods to study the effect of key genes on retinal development is the 

use of genetically modified “knockout” murine models, which are frequently used to validate 

differentially expressed genes from microarray data.3-20 Fluorescent gene reporter lines are 

widely used to check for gene expression in single cells, or purified populations of a single cell 

type.2, 21-25 Bulk RNA sequencing (RNA-seq) has helped define the transcriptomes of larger 

populations of retinal cell types.3, 9, 14, 17, 21, 24, 26-35 To study the characteristics of isolated cells or 

droplets, flow cytometry was formerly a major method.36, 37 Single-cell RNA sequencing 

(scRNA-seq) is increasingly common today and is one the most detailed methods to profile 

transcriptomes of retinal cell types and subtypes.2, 8, 13, 22, 38-48  
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Most studies on retinal cell types have relied upon murine models, but many increasingly study 

human donor retinas6, 30, 31, 48-50, especially in order to profile retinal disease.31, 43, 50-53 Glaucoma, 

age-related macular dystrophy and retinal light damage have also been studied in murine 

models.7, 14, 29, 34, 35, 54, 55 Some studies have grown cell lines in vitro from fetal retina49, 56, 

whereas other have used human pluripotent, induced pluripotent or embryonic stem cells to 

generate purified cell populations or retinal organoids.2, 3, 8, 28, 38, 57-59 In order to study the 

development of retinal cell types over time, the lineage of stem cell progeny58 and time course 

data from different time points (using PCR and RNA-seq) have been investigated.39, 41, 54 

Previous Methods In Silico 

Differential expression analysis is the most common method to identify retinal cell type-specific 

genes and biomarkers from microarray, RNA-seq and scRNA-seq data.10, 13, 14, 17, 24, 29-31, 39, 41, 46, 

47, 53, 56, 59 In single-cell analysis, dimension reduction through Principal Component Analysis to 

reduce the size of data and allow visualization is often performed before hierarchical clustering 

identify cell clusters.2, 7, 30, 41, 42, 49, 56, 60 Cell clusters can be assigned to different cell types or 

subtypes based on the expression of key marker genes.48 AI-guided identification of cell clusters 

has recently been investigated.61   

 

scRNA-seq data provides opportunities for in depth analysis of the transcriptome of individual  

cells, and subsequent characterization of cell types, subtypes and regions of retina. However, 

scRNA-seq data is highly noisy, and contains large numbers of zeroes, among which true and 

false negatives are indistinguishable. Many of these zeroes are dropouts, caused by a failure to 

capture or amplify a transcript.62  
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Most studies up to date have been highly dependent on cell clustering, which is not always 

achievable, especially in datasets containing immature or developing cells.1 Pseudo-time 

analysis, which aims to sort cells by their developmental stage, has been applied to retinal 

organoids, and takes into account transitory states rather than discrete clusters.38 However, this 

approach is hindered by asynchronous differentiation of cell types in retina.63 Correlational 

methods for ranking gene expression are also widely used, bypassing the need to discover cell 

clusters and identifying co-expressed genes in complex cultures, including developing retinal 

organoids.2, 8, 23, 27, 49, 64 

 

Identifying relationships between genes has led towards broader goals of graph47, 60 and network-

based analysis.9, 10, 17, 25, 27, 31, 60, 65 Gene expression networks can be used to identify transitions 

between phenotypes and disease states, paving the way for clinical target identification. 

Correlational analysis is traditionally used to derive co-expression networks, and knockout 

murine models are used to directly investigate the effect of one gene’s absence of others. 

However, the symmetric nature of correlation can lead to loss of valuable information and does 

not provide insight into the expression of genes over time. Bayesian networks of gene regulation 

and expression in the retina mainly identify transcription factors and their targets.60, 66  

Hence, the motivation of our work was to develop a universally applicable state of the art 

method that filtered out noise, could be applied to a wide variety of datasets and lent insight into 

gene expression over differentiation. 
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A Boolean Approach 

Boolean logic is a simple mathematical relationship between two values such as high/low or 1/0. 

We propose using Boolean implication (“if-then” relationships) to study the dependency between 

genes from scRNA-seq data. Research by Sahoo et al. has shown that analysis of Boolean 

implication relationships is better at filtering out noise than correlational approach.67 Analysis of 

Boolean implication lends insight into asymmetric relationships disregarded by correlation.  

 

While Boolean implication, like correlation, does not imply causation, asymmetric Boolean 

relationships can be thought of in terms of subsets. For example, the relationship Gene A high ⇒ 

Gene B high indicates that all cells with Gene B high are a subset of those with Gene A high. 

This allows for analysis of developmentally regulated genes using Boolean implication, first 

pioneered in the MiDReG tool published by Sahoo et al 2010.68 

 

In previous research, Boolean methods have led to the discovery of prognostic biomarkers for 

bladder and colon cancer.69-71 These methods have also led to characterization of hematopoietic 

stem cells and identification of B and T cell precursors.72, 73 Our methods have not previously 

been applied to stem cell-derived retinal cell types, but have yielded insights into changes in 

transcriptional profiles of healthy retina and retinoblastoma.74 

 

The StepMiner and BooleanNet algorithms were developed for microarray data by Sahoo et al. 

2008 to identify Boolean implication relationships between genes, but have since been applied to 

a wide variety of high-throughput data, such as RNA-seq, and scRNA-seq.68, 75, 76 
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Methods 

Data Normalization and Annotation 

We applied log2(v+1) transformation to TPM values from the 546 sequenced cells of the Phillips 

2018 dataset (GSE98556, n = 546), as the log transformed RNA-seq data is closer to a normal 

distribution. Cells were annotated with clinical characteristics, and data were uploaded to 

Hegemon. In the Hegemon online tool, scatter plots between genes are generated, with each 

point representing the expression level of the genes in a single cell.67-71 

 

Discovering Boolean Implications 

StepMiner Algorithm 

The StepMiner algorithm identifies thresholds to convert continuous expression values into 

discrete values by fitting a step function to sorted values. A step can be defined as the sharpest 

increase in sorted gene expression values over an interval. Having identified a threshold t, gene 

expression values greater than t + 0.5 are considered high, and those below t - 0.5 are considered 

low. Those between t + 0.5 and t - 0.5 are considered intermediate. These thresholds are used to 

divide the plot into four quadrants.67, 77 

BooleanNet Algorithm 

The BooleanNet algorithm identifies the type of Boolean implication relationship by identifying 

the sparse quadrant(s) using a statistic S and likelihood error rate p. There are six types of 

Boolean implication relationship: high ⇒ high, low ⇒ low, high ⇒ low, low ⇒ high, equivalent 
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and opposite. The first four are asymmetric and have only one sparse quadrant. The latter two are 

symmetric and have two sparse quadrants. Further information can be found in Fig. S1.67, 77 

Thresholds for Analysis 

Thresholds for S and p are applied to adjust the sensitivity of the analysis. While S > 3 and          

p < 0.1 are generally considered for microarray data, we decreased the threshold for S to 2.5 and 

increased the threshold for p to 0.25 for rods and 0.35 for all other analysis to account for the 

larger amount of noise in scRNA-seq data. 

 

Boolean Approach to In Silico Gene Reporting of Retinal Cell Types 

We propose using the method described in Fig. 1 for in silico gene reporting of retinal cell types. 

We require two or more known genes for each cell type called “bait genes”. We searched for 

genes which had a low ⇒ low or equivalent Boolean relationship with the first bait gene and high 

⇒ high or equivalent Boolean relationship with the second bait gene.  

 

This specific combination of Boolean relationships is akin to searching for genes which have an 

impact on cell fate. If a gene passes this analysis, the set of cells where Gene X is low is a subset 

of the cells where the first bait gene is low, and the set of cells where Gene X is high is a subset 

of the cells where the second bait gene is high. This method can allow us to infer genes which 

are expressed after the first bait gene, and before the second bait gene. Hence, the choice of bait 

genes plays an important role in determining the results. We chose bait genes which led to 

shorter gene lists compared to SRCCA, with a greater number of known markers of five retinal 

cell types. These were selected and verified from previous literature on rod and cone 
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photoreceptors6, 78, retinal progenitor cells (RPCs)79, 80, retinal ganglion cells (RGCs)23, 24 and 

retinal pigment epithelium (RPE)81-84. 

 

More than two bait genes can be considered by searching for high ⇒ high, low ⇒ low or 

equivalent Boolean relationships in two out of three bait genes instead of one out of two. This 

allows for combination of multiple cell type-specific marker genes in the analysis. 

Spearman’s Rank Correlation Coefficient 

Spearman’s rank correlation coefficient (SRCC) is a nonparametric measure of the association 

between two ranked variables. We reviewed and reproduced the approach of Phillips et al. 2018, 

called Spearman’s rank correlation coefficient analysis (SRCCA). The correlation coefficient 

between bait genes and all other genes are found and ranked. Then, the intersection between the 

top 200 correlating genes with each bait gene is taken.2 

 

We combined both methods by taking the interaction of gene lists derived from both methods, 

hence filtering the list of correlating genes using Boolean implication as shown in Fig. 1. All 

analysis was performed using the Hegemon website, in Python 3 using the HegemonUtil tools 

and in R version 4.0.1. 

 

Quantification of Results 

Results were independently validated through differential expression. We evaluated whether 

genes were differentially expressed between rods and cones, and between photoreceptors and 

non-photoreceptor retinal cell types.  
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We selected and processed several validation datasets. Two were bulk RNA-seq datasets 

containing purified retinal cell types from Mus musculus: Hartl 2017 (GSE84589, n = 14) and 

Sarin 2018 (GSE98838, n = 22).40, 46 The third was a similar human retina scRNA-seq dataset, 

Voigt 2020 (GSE130636 and GSE142449, n = 20,797).48 

 

Using validation datasets with purified cell types, we checked for differential expression between 

retinal cell types by performing a one-tailed Welch’s t-test between the groups of cells to 

determine whether there was a statistically significant difference between the means of the two 

groups. Using this method, we could evaluate the proportion of genes which were specific to the 

cell type in question, expressed equally throughout the retina, and expressed in a different, non-

target cell type. 

 

To evaluate the reproducibility of the genes, we directly repeated the analysis in GSE130636 and 

GSE142449 using common bait genes for SRCCA and Boolean implication. We compared the 

proportion of genes discovered by using a two proportion Z-test. 

 

Results 

Boolean Implication Enables Identification of Cell Type Specific Genes like SRCCA 

Boolean Implication analysis explores both symmetric and asymmetric relationship between 

genes whereas SRCCA only focuses on symmetric relationships. We hypothesize that 
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application of asymmetric Boolean implication relationships may improve the accuracy of cell 

types specific genes identification (Fig 1). 

 

Application of Boolean implication analysis led to shorter lists of genes compared to SRCCA 

(Fig. 2). Selecting bait genes is  crucial for both SRCCA and Boolean analysis. For Boolean 

analysis, a general marker and a more specific marker are ideal candidates. However, SRCCA 

relies only on specific bait genes. Because of these differences in specificity, we chose different 

set of bait genes for Boolean analysis from known marker genes for each retinal cell type.  

 

Application of Boolean analysis for gene reporting of photoreceptors led to longer lists of genes 

than other cell types. The largest intersection between SRCCA and Boolean implication was 

observed in rod photoreceptors. The number of genes from Boolean implication in other retinal 

cell types such as RGCs, RPCs and RPE was far lower than photoreceptors.  

 

For RPE, three bait genes were chosen due to the excessively small number of genes obtained 

from two bait genes. This is likely to be due to the smaller number of cells from these types 

present in the retina, compared to photoreceptors. The complete absence of intersection between 

genes from SRCCA and Boolean in RPE could also be explained by the very small number of 

RPE cells present in optic vesicle cultures produced by the method used by Phillips et al. 2018. 

 

Filtering SRCCA using Boolean Implication Improves Prediction Accuracy 

We independently validated the genes from SRCCA and Boolean implication using bulk RNA-

seq datasets with purified retinal cell types. In Fig. 3B, there is a visible improvement in 
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proportion of rod-specific genes while taking the intersection of SRCCA and Boolean 

implication. Similarly, the majority of SRCCA genes not present in Boolean implication were 

not specific to rods, or specific to cones. We were able to show a statistically significant 

improvement in the proportion of rod PR-specific genes by filtering correlating genes using 

Boolean implication. The proportion of genes rod-specific genes from SRCCA, 29 out of 56 

(0.517), was improved to 16 out of 19 (0.842) by filtering using Boolean implication. This 

proportion was shown to be statistically significant by performing a two-proportion Z-test, 

returning a p-value of 0.013.  

 

Similarly, as shown in Fig. 3C, we were able to show a statistically significant improvement in 

photoreceptor-specificity of the rod genes using the combined correlational and Boolean 

approach. All 19 genes obtained by filtering SRCCA using Boolean implication were 

photoreceptor-specific, and the p-value from the two-proportion Z-test was 0.016. 

 

As seen in Fig. 3D, prediction accuracy of both SRCCA and Boolean analysis was lower in cone 

photoreceptors. The proportion of cone-specific genes, 15 out of 30 (0.500), was still highest in 

Boolean implication. Here, the prediction accuracy of Boolean methods alone was not improved 

by taking the intersection with SRCCA. However, this result could not be shown to be 

statistically significant due to the larger number of total genes in SRCCA. Hence, we sought an 

additional method of evaluation for cone photoreceptors with better scope for comparison. 
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Filtering SRCCA using Boolean Implication Improves Reproducibility 

We also performed SRCCA and Boolean implication analysis for cone photoreceptors using the 

same three bait genes: CRX, GNB3 and GNAT2. (Fig. S2) One major limitation of existing 

literature on characterization of retinal cell types is the lack of reproducibility of purported 

marker genes across datasets. Hence, we directly repeated the analysis in GSE130636 and 

GSE142449, which is also scRNA-seq of human retina. The main difference between this dataset 

and the Phillips dataset is the larger size (20,797 vs. 546 cells), and the larger proportion of adult, 

tissue-derived cells. 

 

Fig. 3E displays the results from this method of quantification. Combining correlational and 

Boolean implication using common bait genes yielded highly reproducible results, as all 7 genes 

were reproduced. The two-proportion Z-test also returned a statistically significant p-value of 

0.00082.  

 

Boolean Implication Improves Prediction Accuracy of Novel High Confidence Genes 

Considering the overall improvement in prediction accuracy through Boolean implication 

analysis, we also investigated several specific examples of new discoveries through this method.  

 

Novel high confidence genes are an important contribution of gene reporting methods in silico. 

Identification of high confidence markers of retinal cell types using SRCCA alone may be 

arbitrary, but we show that Boolean implication can lend greater insight into the cell type-

specific genes. 
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Boolean implication analysis identified WWC1 (WW domain containing protein-1) as a novel 

high confidence cone photoreceptor gene. This was validated independently in GSE84589 and 

GSE98838, with statistically significant overexpression in cone photoreceptors. (Fig. 3A-B) 

WWC1 has been described to have a broad function in the brain and memory by previous 

studies.85, 86 

 

Boolean implication analysis of rods also identified two novel rod-specific genes: CASZ1 

(Castor zinc finger 1) (Fig. 3E-F) and PPEF2 (Protein Phosphatase with EF-Hand Domain 2) 

(Fig. 3G-H). These showed rod specificity in both validation datasets. CASZ1 is known to play a 

role in cell differentiation, and may hence play a significant role in influencing rod cell fate. 87 

PPEF2 has been documented in rods before, but has had several conflicting studies on its 

importance in rods.88, 89 This is the first documentation of its rod-specific function in human or 

hPSC-derived retina. Boolean implication analysis has shed light on potential novel markers of 

cone and rod photoreceptors. 

 

Boolean implication analysis refuted AKAP9 (A-kinase anchoring protein-9), identified to be a 

high confidence cone photoreceptor gene by Phillips et al. 2018 based on the results from 

SRCCA. Fig. 3C-D show that it is not differentially expressed in cones, and may be more rod-

specific as per GSE84589. 

 

Discussion 

Boolean methods improved upon correlational methods by filtering out noise and identifying 

asymmetric relationships that lend insight into the specificity of genes. Filtering correlating 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.317313doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.317313
http://creativecommons.org/licenses/by/4.0/


   

  15 
 

genes led to a statistically significant improvement in rod and photoreceptor-specificity for rod 

genes, and reproducibility for cone photoreceptor genes. Hence, we have shown that a 

combination of Boolean implication analysis and SRCCA improves the prediction accuracy of in 

silico gene reporting of retinal cell types.  

 

Boolean implication analysis provided more accurate insight into high confidence genes, and led 

to the identification of WWC1 as a novel marker gene for cone photoreceptors. Previous 

attempts to identify high confidence genes from extensive gene lists obtained through SRCCA 

alone have no way to distinguish between noise and true cell type-specific genes. The 

asymmetric nature of Boolean relationships allows us to determine whether a gene is expressed 

more generally or specifically, which is not present in correlation. 

 

Another advantage of Boolean implication is that the analysis can always be performed over the 

entire dataset. Boolean implication relationships between genes are best visible when there is a 

greater diversity of cell types, including those not expressing the gene. However, SRCCA 

generally requires the operator to choose a specific subset of the data (e.g. day 70) on which to 

perform the analysis, based on whether the cell type in question is present at that developmental 

stage. This choice has a significant effect on the result of SRCCA, and an inept choice of the 

subset may lead to false associations not generalizable over larger datasets. This issue can be 

solved using Boolean implication. 

 

However, Boolean implication analysis was also not entirely free from error. The main source of 

error appears to be the dropouts, which lead to a greater density of points in quadrants a10, a00 
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and a01 in many cases. This, along with the slightly relaxed thresholds adapted for scRNA-seq, 

led to false discoveries of Boolean relationships. This issue likely reduced the improvement in 

quality of analysis in cone photoreceptors. Even so, a combination of correlational and Boolean 

implication analysis could lead to completely error-free results in some cases. (Fig. 3C) 

 

The method of independent validation considered several datasets to evaluate specificity and 

reproducibility. These high-quality datasets provided reliable results for most genes, as human 

and mouse retina are very similar. However, it was not infallible due to small variations between 

the species. We compared the results in mouse datasets with the Kim 2019 dataset (GSE119343, 

n = 1346) containing cone-enriched optic vesicles. There, we found small differences in 

expression patterns in the mouse vs. human retina, such as CERKL, a gene specific to human 

cone photoreceptors, but expressed in both cone and rod photoreceptors in mice. 

 

There were differences in the performance of our methods between different cell types. In cell 

types present in smaller numbers in the retina, we can observe that the number of genes from 

Boolean analysis alone and combined with SRCCA is also smaller. The analysis performed best 

in rods, the most numerous neural retina cell type.90 In RPE, which is rarely present in the optic 

vesicle culture protocol employed by Phillips et al. 2018, there was no intersection between 

Boolean analysis and SRCCA, indicating that the results in that case are likely to be mainly 

noise. However, there is no link between the number of genes obtained from SRCCA and the 

population of cell type, as a result of always considering a fixed number of top correlating genes. 

Hence, Boolean analysis can lend insight into the cell types for which the data is comprehensive 

enough to provide accurate resolution. 
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Boolean implication analysis provides all the advantages offered previously by SRCCA 

including efficiency, ability to combine multiple bait genes, and improved prediction accuracy 

compared to earlier methods. Our method can allow researchers to analyze single-cell data even 

when cell clusters cannot be identified, a common issue in datasets containing developing cells. 

Combining both methods provides statistically significant improvements in specificity and 

reproducibility of genes. Boolean implication can be easily inferred from scatter plots on the 

Hegemon online tool, making it an intuitive option for biologists and computer scientists alike.76 

 

Conclusion 

In this work, we have developed a novel approach for analysis of scRNA-seq data based on 

Boolean implication. We have shown a statistically significant improvement in the prediction 

accuracy and reproducibility of retinal cell-type specific genes, as compared to earlier 

approaches based solely on correlation. Application of our method to retinal organoid datasets 

identified novel high confidence cell type-specific genes such as WWC1 for cones and CASZ1 

and PPEF2 for rods. This Boolean approach allows for analysis and characterization of cell types 

in complex cultures, even when cell clustering cannot be achieved. Considering asymmetric 

relationships has allowed us to effectively filter out noise, lending insight into genes with 

potential importance in regenerative medicine.  
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Figure Legends 

 

Figure 1. Schematic Algorithm 

Schematic algorithm to discover cell type-specific genes from scRNA-seq data by combining 

correlational and Boolean implication analysis. Boolean implication analysis uses one general 

and one specific bait gene to identify cell type-specific biomarkers. Spearman’s rank correlation 

coefficient analysis (SRCCA) uses one or more genes specific to a cell type as bait genes to 

identify other genes expressed in the same cell type. Boolean analysis is directly compared to 

SRCCA and improvement is tested using two proportion Z-test. 

 

Figure 2. Results 

Results of Boolean implication analysis of Phillips 2018 scRNA-seq dataset using two or more 

bait genes, for 5 retinal cell types. Abbreviations: SRCCA - Spearman’s Rank Correlation 

Coefficient Analysis: PR - photoreceptors; RPC - retinal progenitor cell; RPE - retinal pigment 

epithelium; RGC - retinal ganglion cell. 

 

Figure 3. Independent Validation of Results 

(A): Validation bulk RNA-seq datasets such as GSE84589 containing purified rods and cones 

from Mus musculus were used to validate rod and cone gene lists through differential expression. 

(B): Rod cell type-specificity of rod gene lists from 4 methods: Boolean implication, SRCCA, 

SRCCA filtered using Boolean implication and SRCCA without Boolean implication. (C): 

Photoreceptor-specificity of rod gene lists from 4 methods. (D): Cone cell type-specificity of rod 

gene lists from 4 methods. (E): Proportion of genes from SRCCA and SRCCA filtered using 
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Boolean implication using a common set of bait genes CRX, GNB3 and GNAT2 directly 

reproducible in GSE130636 and GSE142449. Abbreviations: Corr. - Correlation; Bool. - 

Boolean; SRCCA - Spearman’s rank correlation coefficient analysis. Note: P-values are from 

two-proportion Z-test between proportion of cell type-specific genes in lists from SRCCA and 

SRCCA filtered using Boolean implication. 

 

Figure 4. Specific Examples 

Analysis of high confidence candidate PR genes from Boolean implication analysis and SRCCA. 

(A-B): High confidence cone PR gene WWC1 from Boolean implication analysis shows 

statistically significant overexpression in cones compared to rods in both datasets. (C-D): High 

confidence cone PR gene AKAP9 from SRCCA does not show cone specificity in either dataset. 

Cone PR group labelled in blue and rod PR group labelled in red on boxplots. (E-H): High 

confidence rod PR genes CASZ1 and PPEF2 from Boolean implication analysis show 

statistically significant overexpression in rods compared to cones in both datasets. Note: p-values 

reported from Welch’s t-test (unequal variances). Abbreviations: PR - photoreceptor; SRCCA - 

Spearman’s rank correlation coefficient analysis. 

 

Figure S1. Discovery of Boolean Implication Relationships 

Method for discovering and applying Boolean implication relationships in single cell RNA 

sequencing data. (A-F): Six types of Boolean implication relationships are visible on scatter 

plots. Two are symmetric with two sparse quadrants (A-B) and four are asymmetric with one 

sparse quadrant (C-F). (G): This plot is divided into four quadrants based on thresholds identified 

by the StepMiner algorithm. (H-I): The BooleanNet algorithm identifies the sparse quadrants 
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using a statistic S and a likelihood error rate p and applying thresholds of 2.5 and 0.35, 

respectively. (J): Analysis of Boolean implication relationships was used to find genes involved 

in cell fate determination using bait genes (A and B). 

 

Figure S2. Additional Gene Lists 

(A): Additional gene lists from SRCCA and Boolean analysis using common bait genes for 

cones CRX, GNAT2 and GNB3. 
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