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Abstract Understanding and predicting how amino acid substitutions affect proteins is key to15

practical uses of proteins, and to our basic understanding of protein function and evolution. Amino16

acid changes may affect protein function in a number of ways including direct perturbations of17

activity or indirect effects on protein folding and stability. We have analysed 6749 experimentally18

determined variant effects from multiplexed assays on abundance and activity in two proteins19

(NUDT15 and PTEN) to quantify these effects, and find that a third of the variants cause loss of20

function, and about half of loss-of-function variants also have low cellular abundance. We analyse21

the structural and mechanistic origins of loss of function, and use the experimental data to find22

residues important for enzymatic activity. We performed computational analyses of protein23

stability and evolutionary conservation and show how we may predict positions where variants24

cause loss of activity or abundance.25

26

Introduction27

Protein engineering and mutational analysis have provided us with a wealth of information about28

the molecular interactions that stabilize proteins and govern their functions (Fersht, 1999). This29

information has in turn enabled us to engineer proteins with improved activities and stability, and30

to better understand how mutations cause disease (Stein et al., 2019).31

Computational analyses of missense variants in genetic diseases have suggested that loss of32

function via loss of protein stability is a major cause of disease (Wang and Moult, 2001; Ferrer-33

Costa et al., 2002; Steward et al., 2003; Yue et al., 2005; Casadio et al., 2011; Gao et al., 2015;34

Stein et al., 2019) because unstable proteins either aggregate or become targets for the cell’s35

protein quality control apparatus and are degraded (Nielsen et al., 2020). Indeed, cellular studies36

of disease-causing variants in a number of genes have shown that many variants are degraded in37

the cell (Meacham et al., 2001; Yaguchi et al., 2004; Olzmann et al., 2004; Ron and Horowitz, 2005;38
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Yang et al., 2011, 2013; Arlow et al., 2013; Nielsen et al., 2017; Chen et al., 2017; Matreyek et al.,39

2018; Scheller et al., 2019; Abildgaard et al., 2019; Suiter et al., 2020). For this reason, several40

methods for predicting and understanding disease-causing variants include predictions of changes41

in protein stability (Yue et al., 2005; De Baets et al., 2012; Casadio et al., 2011; Ancien et al., 2018;42

Wagih et al., 2018; Gerasimavicius et al., 2020). While stability-based predictions can be relatively43

successful and may provide mechanistic insight into the origins of disease, it is also clear that44

variants can cause disease via other mechanisms such as removing key residues in an active site or45

perturbing interactions or regulatory mechanisms. Thus, methods used to predict the pathogenicity46

of missense variants often combine analysis of sequence conservation with information on protein47

structure and stability and other sources of information (Kumar et al., 2009; Adzhubei et al., 2010;48

De Baets et al., 2012; Kircher et al., 2014; Choi and Chan, 2015; Ioannidis et al., 2016).49

In order to understand better the relationship between protein stability, abundance and function50

we here asked the question of what fraction of single amino acid changes in a protein causes loss51

of function via loss of stability and cellular abundance of the proteins. Until recently, mutational52

analyses of proteins have mostly relied on a one-by-one approach in which individual amino53

acid changes are introduced and effects on various properties of a protein are tested—often54

using in vitro experiments on purified proteins. Such experiments can now be complemented by55

experiments that simultaneously probe the effects of thousands of variants in a single assay. Such56

multiplexed assays of variant effects (MAVEs, also often termed deep mutational scans) are based on57

developments in high-throughput DNA synthesis, functional assays and sequencing techniques58

(Kinney and McCandlish, 2019). Briefly, a selection procedure (e.g. for growth rate or a fluorescent59

reporter of a protein property) is applied to a large library of variants, each expressed in individual60

cells. Variants change in frequency depending on how they perform under the conditions of the61

selection, and the frequency of each variant before and after the selection is determined using62

next-generation DNA sequencing. Changes in variant frequency are used to compute a score that63

describes each variant’s effect on the property under selection. Such data can be used as an input64

to protein engineering (Araya et al., 2012; Shin and Cho, 2015), or to elucidate genotype-phenotype65

relationships and understand how mutations may cause disease (Starita et al., 2015; Weile and66

Roth, 2018; Stein et al., 2019).67

Now, for the first time, we have available measurements of thousands of variant effects on68

two key protein properties, activity and abundance, measured in multiple proteins. Here we take69

advantage of these data to examine more broadly how substitutions affect activity and stability. We70

examine how variants may affect abundance and activity differently to find functionally important71

positions in proteins (Chiasson et al., 2020), and to understand whether different types of effects72

are found in different regions of a protein’s structure.73

To do so, we here analyse two different types of MAVEs that probe different aspects of protein74

function. As subjects of our study we have chosen two medically relevant human proteins, PTEN75

(phosphatase and tensin homolog) and NUDT15 (nucleoside diphosphate-linked to x hydrolase 15),76

because for both of these proteins multiplexed functional data exist from two different assays: One77

measuring the effect of variants on the activity of the protein via a growth rate (Mighell et al., 2018)78

or drug-sensitivity (Suiter et al., 2020) phenotype, and an assay that probes the effects of amino79

acid changes on cellular abundance (Matreyek et al., 2018; Suiter et al., 2020). We will sometimes80

refer to the abundance data as reporting on ‘stability’ and the growth-based activity data as ‘activity’81

or ‘function’, recognizing that the experiments report on a complex interplay of effects during the82

experimental assays. Notably, low scores in the activity-based assays might occur both due to loss83

of intrinsic enzymatic function, but also e.g. due to decreased protein abundance. Indeed, we use84

the complementary information on protein abundance to disentangle effects on abundance and85

intrinsic activity.86

PTEN is a 403 amino-acid lipid phosphatase expressed throughout the human body and muta-87

tions have been associated with cancer and autism spectrum disorders (Yehia et al., 2019). In mice,88

PTEN has been shown to suppress tumor development via dephosphorylation of phosphatidylinosi-89
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tol lipids, although in vitro PTEN has been shown to have a broader range of substrates including90

proteins. PTEN is composed of two domains: a catalytic tensin-like domain (residues 14-185) and91

a C2 domain (residues 190-350) that mediates membrane recruitment (Lee et al., 1999). The C-92

terminal region of PTEN is disordered with a PDZ-domain binding region (residue 401-403) (Valiente93

et al., 2005). Our analysis of PTEN includes a MAVE that probes the effects of most single amino94

acid substitutions when assayed for lipid phosphatase activity in yeast (Mighell et al., 2018), whose95

growth had been made dependent on the ability of PTEN to catalyse the formation of essential96

phosphatidylinositol bisphosphate (PIP2) from its triphosphate (PIP3). We complement these data97

with results from a different MAVE in which variant effects on cellular abundance is determined in98

an experiment termed ‘variant abundance by massively parallel sequencing’ (VAMP-seq) (Matreyek99

et al., 2018). In VAMP-seq the steady state abundance of protein variants in cultured mammalian100

cells is detected by fusion to a fluorescent protein, and cells are sorted using fluorescent activated101

cell sorting. Our analysis here covers the 56% of all possible single amino acid variants in PTEN for102

which we have measurements for both the activity and abundance, and thus complements our103

recent analysis of a small number of disease variants in PTEN (Jepsen et al., 2020).104

NUDT15 is a nucleotide triphosphate diphosphatase that consists of 164 amino acids in a105

nudix hydrolase domain featuring a conserved nudix box that coordinates the catalytic Mg2+. The106

biologically relevant assembly is reported to be a homodimer although the monomer also has107

catalytic activity (Carter et al., 2015). NUDT15 deficiency is associated with intolerance to thiopurine108

drugs (Yang et al., 2014;Moriyama et al., 2016, 2017; Nishii et al., 2018), which are widely used in109

the treatments of leukemia and autoimmune diseases (Karran and Attard, 2008). Thiopurines are110

a class of anti-metabolite drugs that form the active metabolite, thio-dGTP, which competes with111

dGTP and causes apoptosis when incorporated extensively into DNA. NUDT15 hydrolyses thio-dGTP112

and thus negatively regulates the levels and cytotoxic effects of thiopurine metabolites. Therefore,113

NUDT15 variants that decrease function are a major cause of toxicity during thiopurine therapy,114

and thus the dose of the drug may be personalized to match the metabolism of these compounds115

(Relling et al., 2019). The high drug sensitivity of cells with compromised NUDT15 function has116

been used in a MAVE to assay 95% of all single amino acid variants for causing intolerance towards117

thiopurine drugs (Suiter et al., 2020). The same library and cells were also used in a VAMP-seq118

experiment to probe variant effects on cellular abundance.119

Here we have analysed the effect of variants on activity and cellular abundance in both PTEN120

and NUDT15 to provide a global view of what fraction of variants cause substantial loss of activity121

in the cell, and what fraction of these variants do so via loss of protein abundance. We find that122

approximately one third of all variants cause loss of protein activity, and that about half of these123

do so most likely because of loss of protein abundance. Variants that cause loss of abundance124

are often found inside the protein core, while variants that cause loss of activity without affecting125

abundance are often found in functionally important positions including those involved in catalysis126

or that interact with substrates. We also find that we can predict rather accurately the positions127

where substitutions generally give rise to decreased abundance and activity, whereas it remains128

difficult to quantitatively predict the effects of individual variants.129

Results and Discussion130

Global analysis of variant effects131

We collected data from multiplexed assays reporting on both the activity and abundance of a total132

of 2822 variants in NUDT15 (Suiter et al., 2020) and 3927 variants in PTEN (Matreyek et al., 2018;133

Mighell et al., 2018) (Fig. S1). Scripts to repeat our analyses are available online at github.com/KULL-134

Centre/papers/tree/master/2020/mave-analysis-cagiada-et-al. Two-dimensional histograms reveal135

that most variants have high scores in both assays, indicating wild type-like abundance and activity136

under the conditions of the cellular assays (Figs. 1A and B).137

In order to separate wild-type like variants from those with decreased activity and/or abundance,138
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Figure 1. Overview of the NUDT15 and PTEN multiplexed data analysed in this work. A and B show 2D
histograms that combine the data from the activity-based MAVE on the y-axis with the results from the

VAMP-seq experiment on the x-axis. Variants are categorised based on the region of the 2D histogram (dashed

lines) they belong to. The fractions of variants falling in each of the four quadrants are indicated, with errors of

the mean estimated by bootstrapping using the uncertainties of the experimental scores. Panels C and D show

a per-position consensus category (CC) coloured onto the structure of the proteins (PDB entry 5LPG for NUDT15

and 1D5R for PTEN). Panels E and F show the positional colour categories together with the secondary structure

(ST) and solvent accessibility (SA).
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we define a threshold value for all scores (Fig. S2). These thresholds define four classes of variants139

according to whether the variant showed high or low scores in the activity-based and abundance140

MAVEs. For simplicity each class is also associated with a colour. ‘WT-like’ variants had wild-type-like141

activity and abundance and are shown in green. ‘Low activity, high abundance’ variants had WT-like142

abundance but low activity in the assays, and are shown in blue. ‘Low abundance, high activity’143

variants had WT-like activity but low abundance in the assays and are shown in yellow. ‘Total loss’144

variants had low activity and low abundance and are shown in red.145

For both proteins, the majority of variants are wild-type-like (60% for NUDT15 and 54% for PTEN;146

Figs. 1A and B; green). The total-loss category represents variants that both show loss of activity and147

low cellular abundance (14% for NUDT15 and 18% for PTEN; Figs. 1A and B; red), and as discussed148

further below we expect that most of these variants lose activity because of their low abundance.149

Of the total of 680 and 1403 variants with low activity in NUDT15 and PTEN respectively, 60% and150

50% lose activity together with loss of abundance. The low activity, high abundance variants are still151

abundant in the cell but inactivated by other means, e.g. by changes in amino acids in the active152

site (Figs. 1A and B; blue). The low abundance, high activity class, which contains 16% of NUDT15153

and 10% of PTEN variants (Figs. 1A and B; yellow), show low abundance levels, but high levels of154

activity in the activity-based assay and are not as easily explained by a single mechanism.155

To focus our analysis on different types of variant effects in different parts of the protein156

structure we converted the variant data into positional categories that represent the most frequent157

class (also represented with the same names and colours as for the variants) among the variants at158

that position. We performed this classification procedure at all positions with more than five tested159

variants (99% for NUDT15 and 88% for PTEN). This results in 62% and 60% positions classified as160

WT-like for NUDT15 and PTEN respectively (Figs. S1C and D; green). On the other hand, at 16% and161

22% of the positions most variants cause loss of activity together with loss of abundance (Figs. S1C162

and D; red), whereas the most common outcome at 9% and 12% of the positions are loss of activity163

without loss of abundance (Figs. S1C and D; blue). Finally, at 14% of the positions in NUDT15 and164

9% in PTEN the variants most often have low abundance, but high levels of activity (Figs. S1C and D;165

yellow).166

We validated the classifications using a clustering method that does not depend on defining167

cutoffs for the experimental scores. We grouped together positions with similar variant profiles in168

the two MAVEs (see Methods), and find overall very good agreement with the cutoff-based method169

in particular for the WT-like, total-loss and loss of activity, high abundance categories (Figs. S3170

and S4). For NUDT15 we find that 133/188 positions are classified in the same way using the two171

different methods, with the most variable results occurring in the category with low abundance but172

sufficient activity to sustain growth (Fig. S3). For PTEN, we analysed the data using either three or173

four clusters, with the former appearing to be the more natural classification. In that case, 246/310174

positions are classified in the same way using the two methods, with the 12 positions in the low175

abundance, high activity (yellow) category ending either as WT-like or total-loss. This indicates176

that three of the four categories of position effects are identified more robustly, corresponding177

to substitutions generally resulting in (i) WT-like activity in both assays, (ii) loss of activity and178

abundance or (iii) loss of activity, while retaining WT-like abundance. The low abundance, high179

activity positions are, however, less robustly classified and we do not analyse them further.180

As expected, amino acids at buried positions are in general sensitive to mutations. In NUDT15,181

35 out of the 163 amino acids are fully buried, and half of these (49%) are classified as sensitive to182

mutations in both the activity- and abundance-based assays (red label) with the remaining buried183

positions mainly classified as low abundance, high activity (34%; Figs. S1E and F). Because the184

variant coverage is lower in PTEN, only 355 of 403 positions can be classified in this way, and only185

34 of these 355 are fully buried. Among these 34, 80% are classified as ‘unstable’ positions (low186

abundance, high activity and total-loss categories). Thus, loss of abundance is the typical reason for187

loss of activity for variants at buried positions.188

Low activity, high abundance positions are defined as having the majority of the tested variants189
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that have lost activity, but are still abundant in the cell, and previously such positions have been190

found to map to functionally important sites in the membrane protein VKOR (Chiasson et al., 2020).191

In PTEN, these variants and positions are mainly found in the catalytic phosphatase domain (Fig. S5)192

and include the active site (Figs. 2A and B). In NUDT15 we find the low activity, high abundance193

positions in three different regions. The first is located in proximity of the substrate binding site, the194

second includes the residues that coordinate a magnesium ion (Suiter et al., 2020) and the third195

region consists of four positions: Asn111, Asn117, Gln44 and Arg34, where most variants cause loss196

of activity, but not loss of abundance (Figs. 2C and D). Arg34 is directly involved in the hydrolysis197

of the thiopurine drugs (Carter et al., 2015). Moreover, these four residues form a connected198

hydrogen-bond network that positions a loop (residues 111–117) to enable binding of the substrate.199

In particular, the presence of Asn111 and Asn117 appears to fix the position of the Glu113 and200

preserves its coordinating function with the magnesium ion (Suiter et al., 2020).201

Using Gly47 in NUDT15 and Arg130 in PTEN as reference points in the active sites in these two202

proteins we find that the low activity, high abundance positions, where variants typically show loss203

of activity, but not loss of abundance, are clustered around the active sites. Specifically, we find all204

of these positions in NUDT15 are within 14 Å of Gly47 (C�-distances). The average distance between205

low activity, high abundance positions and Gly47 is 9Å, a value that can be compared to the average206

(15Å) over all positions in NUDT15. In PTEN, we find that 29 of 32 low activity, high abundance207

positions are found in the catalytic domain. All of these 29 positions are within 22Å of Arg130, with208

the average distance to Arg130 being 14Å (compared to 21Å over all positions).209

Computational predictions of multiplexed data from MAVEs210

As described previously and demonstrated above, MAVEs provide a wealth of data not only for use211

in medical applications (Weile and Roth, 2018; Stein et al., 2019) but also for understanding basic212

properties of proteins (Dunham and Beltrao, 2020). Despite recent advances in proteome-wide213

experiments (Després et al., 2020), it is still not possible to probe all possible variants in all proteins214

experimentally, and thus computational methods remain an important supplement to predict and215

understand variant effects. Experimental data fromMAVEs are thus increasingly used to benchmark216

prediction methods, as they provide a broad view of the effect of amino acid substitutions in217

proteins (Hopf et al., 2017; Jepsen et al., 2020; Livesey and Marsh, 2020; Reeb et al., 2020).218

Recently we exploited the two different MAVEs for PTEN to analyse a small number of pathogenic219

variants together with variants that have been observed in a broader analysis of the human220

population (Jepsen et al., 2020). Specifically, we compared the abundance-based (VAMP-seq)221

and activity-based multiplexed data to two computational methods aimed at capturing either (i)222

specifically protein stability or (ii) function more broadly. Here we build on this work, by (i) applying223

computational modelling to predict changes in thermodynamic protein stability using Rosetta (Park224

et al., 2016) and (ii) using evolutionary conservation as a more general view of which amino acid225

changes would be tolerated while maintaining function (Ekeberg et al., 2014). The former uses as226

input the structure of NUDT15 or PTEN to predict the change in protein stability (ΔΔG), while the227

latter uses a sequence alignment of homologuous proteins as input to a computational assessment228

of conservation, taking both site and pair-conservation (co-evolution) into account, quantified by a229

score (which we by analogy to ΔΔG term ΔΔE) that estimates how likely a substitution would be.230

As previously argued (Jepsen et al., 2020), the ΔΔG calculations are more akin to the results of a231

abundance-based MAVE (both capturing aspects of protein stability), while the ΔΔE values capture232

a broader range of effects as would also be expected from an activity-based MAVE.233

We thus compared the computational predictions of ΔΔG and ΔΔE with each of the two234

multiplexed assays for NUDT15 and PTEN. As expected, we find that stability predictions correlate235

better with the abundance-basedMAVE than with the activity-basedMAVE, while for the evolutionary236

analysis the situation is reversed (Fig. S6). This supports the notion that analysis of conservation is237

a better predictor of general aspects of protein function, while the Rosetta calculations support the238

expected relationship between cellular protein abundance and thermodynamic stability (Matreyek239
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Figure 2. Examples of variants that lose activity but not abundance. A: Residues in PTEN in the low activity, high
abundance category (blue) include residues in and surrounding the catalytic phosphatase site including some

that directly interact with the substrate (here mimicked by the inhibitor tartrate (Lee et al., 1999)). B: Other
residues that are more distant to the active site also fall in this category, and variants in this region likely perturb

the integrity of the active site. C-D: Examples of functionally important residues in NUDT15 that are close to, but

outside of the active site. In particular, we identified four conserved residues (Asn111, Asn117, Gln44, Arg44)

that are connected by a hydrogen bond network and likely involved in the hydrolysis of the thiopurines.
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Figure 3. Histograms of the two computational scores (ΔΔG and ΔΔE) in NUDT15 and PTEN. ΔΔG aims to
capture effects purely on the thermodynamic stability, with high values indicating destablized variants. ΔΔE
captures evolutionary conservation, as calculated by a model that takes both site and pairwise co-evolution into

account, and with high values indicating non-conservative substitutions. Thus, for both ΔΔG and ΔΔE positive
values indicate detrimental substitutions, whereas in the experiments low values indicate substitutions that

cause loss of activity or abundance. For both proteins we split the histograms up according to the four

categories of variants determined from the experiments, as indicated by the axes with high and low

experimental scores for abundance and activity. Thus, for example, the two green histograms for NUDT15

indicate the distributions of ΔΔG and ΔΔE values for those variants that are classified as stable and active by
the MAVEs, and indeed it is clear that most of these variants have scores that are below the cutoff (red dashed

lines). In addition to the coloured histograms we also show the full histogram of all analysed variants (grey) to

ease comparison between the subsets and the full set of variants.

et al., 2018; Abildgaard et al., 2019; Jepsen et al., 2020).240

We define threshold values for the computational scores (Fig. S7) to separate wild-type-like from241

deleterious variants and construct four categories that we label with colours as above. Using a242

threshold of 2 kcal/mol for the ΔΔG for both proteins results in 69% (NUDT15) and 65% (PTEN)243

of the variants being predicted stable. Similarly, from the evolutionary conservation analysis 78%244

and 58% of all variants for NUDT15 and PTEN, respectively, have scores that indicated that the245

substitutions are tolerated. Note that, by convention, positive ΔΔG and ΔΔE scores indicate loss of246

stability or sequence tolerance, respectively, and hence the scales are inverted compared to the247

scores from the MAVEs.248

To enable a more direct comparison between the experimental and computational scores, we249

show histograms of the two computational scores (ΔΔG andΔΔE) for each of the four classes based250

on the experimental scores (Fig. 3). We find that the variants that experimentally were classified251

as WT-like (stable and active) generally have low computational values; thus the computational252

predictions suggest that these substitutions have a mild effect on stability (low ΔΔG) and are253

compatible with substitutions observed in homologous proteins (low ΔΔE). We make similar254

observations for the total loss category, where the computational scores are generally above the255

cutoff, and for the low activity, high abundance category where the computational analysis finds low256

values of ΔΔG but higher values of ΔΔE. Despite these general trends, we find variable agreement257

in the classification of individual variants by experiments and computation (Fig. S8), with the best258

agreement in the WT-like and total-loss categories.259

We proceeded by generating and examining the structure-function relationships that we ex-260

tracted from the computational analyses (Fig. S9). We used the computational results to group the261
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positions into four categories and found a high overlap to those found in experiments (Fig. S10),262

in particular for the WT-like and total-loss categories. This result suggests that the computational263

analyses better capture general effects at positions compared to individual variants as discussed264

above (Fig. 3). We again used a clustering procedure as an alternative approach to classify positions,265

and find good agreement both with the cutoff-based classification of the computational data as266

well as with the experiment-based classifications (Fig. S11). Thus, together these results show that267

a joint computational analysis of stability and conservation can be used to find positions in the268

protein where substitutions are likely to disrupt thermodynamic stability, and other positions where269

they will cause loss of activity via removing functionally important residues.270

Conclusions271

Large-scale analyses of proteins using multiplexed assays provide opportunities to obtain a global272

view of variant effects (Gray et al., 2017; Dunham and Beltrao, 2020). By combining different273

assays to read out different properties of a protein it becomes possible to dissect which positions274

contribute most to which property (Jepsen et al., 2020). Most proteins need to be folded to be275

active, and thus amino acid substitutions that lead to loss of stability will often lead to loss of276

function, and indeed loss of stability appears to be an important driver for disease (Yue et al., 2005;277

Stein et al., 2019).278

We have here exploited the availability of data generated by MAVEs for two proteins, with279

one experiment probing general effects on protein activity and another directly assessing cellular280

abundance. We show that a global analysis of these experiments can provide insight into how281

proteins function and how activity may be perturbed. With the assays considered here, we find that282

most variants have at most a modest effect on protein activity. Of the ca. 30% of the variants that283

cause substantial loss of activity we find that ca. 50% also cause loss of abundance. Interestingly,284

the latter number can be compared to our previous analysis of 42 disease-causing variants in PTEN,285

where we found a comparable fraction (∼60%) of the disease-causing variants appear to cause286

loss of function via loss of stability and thereby cellular protein abundance (Jepsen et al., 2020).287

Similarly, in our studies of pathogenic missense variants in the MLH1 gene we found low (<50% of288

wild type) steady state protein levels in 7 out 16 pathogenic variants (Abildgaard et al., 2019). Thus,289

at least in these cases, it appears that the fraction of variants that cause disease via this mechanism290

reflects the overall fraction of ‘total loss’ variants in the protein. An interesting question for future291

experiments is how many of these variants would be active if protein levels could be restored for292

example by chemical chaperones or modulating the protein quality control apparatus (Arlow et al.,293

2013; Kampmeyer et al., 2017).294

Building on previous work (Chiasson et al., 2020) we also show howwe can use variant effects on295

protein activity and abundance/stability to find functionally important residues both by experiments296

and computation. For several surface-exposed residues many variants cause loss of activity, but297

without substantial loss of abundance. We find that these include the active sites in NUDT15 and298

PTEN, but also discover functionally important sites adjacent to these active sites. The importance299

of second shell positions for modulating the structure or dynamics of active site residues has for300

example also emerged in studies of ligand binding (Tinberg et al., 2013) and enzyme evolution and301

design (Campbell et al., 2016; Broom et al., 2020).302

The relatively tight confinement of these low-activity/high-abundance positions may also explain303

why predictions of changes in protein stability can be used to predict a substantial number of disease304

variants: At least in NUDT15 and PTEN the number of positions where substitutions typically cause305

loss of abundance (and thereby activity) is greater than the number of positions where substitutions306

cause loss of activity while retaining protein abundance. Indeed, while functional sites induce307

substantial constraints on amino acid variation during evolution, the strongest effects are those308

closest to the active sites (Jack et al., 2016;Mayorov et al., 2019). Our ability to predict these sites by309

combining evolutionary analysis and stability calculations also suggest an approach for discovering310

new functionally-important sites using combined analyses of protein structure and sequences.311
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We find that ca. 12% of variants in NUDT15 and PTEN appear to be able to support wild-type like312

growth in the cellular assays even at substantially reduced protein levels. Clearly, there can be a313

non-linear relationship between a growth phenotype and protein abundance (Jiang et al., 2013),314

and this may help explain some of these variants. Future experiments that probe the relationship315

between expression levels and variant effects in NUDT15 and PTEN may shed further light on these316

variants. Further, the abundance-based MAVE for PTEN was performed in a cultured mammalian317

cell line (Matreyek et al., 2018) and the activity-based MAVE was performed in yeast (Mighell et al.,318

2018), leading to potential differences due to the differences in the quality control and proteostasis319

machinery in these cells.320

In summary, we demonstrate howmultiplexed assays and computational analyses are beginning321

to provide a coherent and comprehensive view of the global effects of variants in proteins. The322

results highlight that many effects are correctly predicted and thus computation can be used not323

only to predict whether a variant will cause loss of activity or not, but also provide some mechanistic324

insight. Clearly, there is room for improvement, and additional experiments on more proteins and325

covering more aspects of the complicated relationship between protein sequence and functions326

will help further our ability to predict these effects computationally.327

Methods328

Conservation analysis of variant effects329

We used a statistical analysis of multiple sequence alignments (MSAs) of the two proteins to estimate330

the tolerance towards specific substitutions. In line with previous work, we use a method that331

includes both site and pairwise conservation (co-evolution). We used HHBlits (Remmert et al.,332

2012) to build initial MSAs, which we filtered before calculating the variant effects. The first filter333

removes sequences (rows) in the MSA with more than 50% gaps. The second filter keeps only334

positions (columns) that are present in the human target sequences of NUDT15 or PTEN. Finally, we335

apply a similarity filter (Ekeberg et al., 2013) to remove redundant sequences. We use a modified336

version of the lbsDCA algorithm (Ekeberg et al., 2014), based on l2-regularized maximization with337

pseudo-counts to predict the likelihood of every variant of the protein. We use the energy potential338

generated by the algorithm to evaluate the log-likelihood difference between the wild type and339

the variant sequences (ΔΔE). The results of this analysis, the stability calculations and scripts to340

reproduce our analyses are available github.com/KULL-Centre/papers/tree/master/2020/mave-341

analysis-cagiada-et-al.342

Structural analyses343

We used Rosetta (GitHub SHA1 99d33ec59ce9fcecc5e4f3800c778a54afdf8504) to predict changes344

in thermodynamic stability (ΔΔG) from the structure of NUDT15 and PTEN using the Cartesian ddG345

protocol (Park et al., 2016). As starting points we used the crystal structures of NUDT15 (Valerie346

et al., 2016) (PDB ID: 5LPG) and PTEN (Lee et al., 1999) (PDB ID: 1D5R). The values obtained from347

Rosetta were divided by 2.9 to bring them from Rosetta energy units onto a scale corresponding to348

kcal/mol (Frank DiMaio, University of Washington; personal correspondence) (Jepsen et al., 2020).349

We used DSSP-2.28 (Kabsch and Sander, 1983; Touw et al., 2015) and the same crystal structures as350

above to classify the burial with a three state model (Rost and Sander, 1994) (buried, intermediate,351

or exposed).352

Defining thresholds for classifying variants353

We defined thresholds for the scores from both MAVEs (Fig. S2), by fitting the variant score distribu-354

tions using the minimal number of Gaussians (three) needed to obtain a reasonable fit. We then355

used the intersection of the first and last Gaussian as cutoff for our classifications. We use a cutoff356

of 2 kcal/mol (similar to the value used in our previous study (Jepsen et al., 2020)) for ΔΔG and357

varied the cutoff for ΔΔE to maximize the overlap in the classification of positions (Fig. S10).358
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To examine the threshold-based classifications, we used a hierarchical clustering algorithm359

(Virtanen et al., 2020) to group positions with similar responses to amino acid substitutions. Each360

position was represented by a 40-dimensional vector that contains the scores for each of the 20361

possible amino acids in the two MAVEs. Missing values were replaced by the average score over that362

position. We use the Euclidean distance between these vectors as similarity score in the hierarchical363

clustering (Ward Jr, 1963). To compare with the threshold-based classification we analysed this364

using four clusters, though in the case of PTEN we also show the results using only three clusters.365
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553 Supporting Figure S1. Experimental data for NUDT15 and PTEN. Panels A–D show the multiplexed
data as heat maps. The experimental scores are indicated by colours and the wild type sequence is

represented by a light green block at each position. Variants with wild-type-like behaviour have higher

scores, and variants with lower scores indicate those of either low abundance (VAMP-seq) or activity

(activity-based assays). Panels E–H show the distribution of values in each of the four assays with the

red dashed lines indicating the cutoffs used to separate low and high scoring variants.
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561 Supporting Figure S2. Protocol used to define thresholds for the multiplexed data generated by
MAVEs. In each panel we fit the distribution of scores (light blue) to a mixture model with three Gaussian

distributions (black line). The first and last Gaussian are shown in red and green, respectively, and we

used the intersection between these to define cutoffs for classifying the variants (red dotted line).
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567 Supporting Figure S3. Assessment of the quality of a cutoff-based classification of positions in
NUDT15. A: A hierarchical cluster analysis grouping together positions with similar responses to amino

acid substitutions. Using the horizontal line to define the number of clusters, we colour the four

clusters analogous to the results of the threshold-based classification. The bar plot under the cluster

figure shows the colour assigned to each position in the threshold-based classification. B: Agreement

between the two classifications represented using Venn diagrams.
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575 Supporting Figure S4. Assessment of the quality of a cutoff-based classification of positions in PTEN. A:
A hierarchical cluster analysis grouping together positions with similar responses to amino acid

substitutions. Using the horizontal line to define the number of clusters, we colour the four clusters

analogous to the results of the threshold-based classification. The bar plot under the cluster figure

shows the colour assigned to each position in the threshold-based classification. B: Agreement between

the two classifications represented using Venn diagrams. Panels C and D use the same clustering as in

A, but with the cutoff set so as to obtain only three clusters. In this case, the yellow group disappears

and is merged with the green cluster.
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585 Supporting Figure S5. Analysis of PTEN variants by structural domain. The figures show the 2D
histograms of the MAVE scores in PTEN for each of the two structural domains. While the overall picture

in the two domains is similar, it is clear that a greater fraction of variants (47%) in the catalytic

phosphatase domains causes loss of activity compared to the C2 domain (29%).
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591 Supporting Figure S6. Correlation between the experimental data and two computational scores. For
each of the two MAVEs in the two proteins we calculated the Pearson’s correlation coefficient to either

(blue bars) the Rosetta stability predictions or (orange bars) an assessment of tolerance towards

substitutions using an evolutionary model (co-evolution).
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597 Supporting Figure S7. Distributions of scores and thresholds used in the computational analyses.
Panels A and B show the distribution of values in the co-evolution analysis for both the target proteins,

with the red dashed lines indicating the cutoffs used for classifying the variants. The Panels C and D

show the distributions and the thresholds for the Rosetta ΔΔG values.
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603 Supporting Figure S8. Comparison of the classification of variants by analysing the computational and
experimental data analysis. The Venn diagrams show the agreement between the classification of the

individual variants in (A) NUDT15 and (B) PTEN with ‘EXP’ and ‘COMP’ representing the cutoff-based

classification using either the data generated by the two MAVEs or the ΔΔG/ΔΔE analysis, respectively.
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609 Supporting Figure S9. Overview of the NUDT15 and PTEN computational data generated in this work.
Panels A and B show 2D histograms that combine the evolutionary conservation analysis ΔΔE on the
y-axis with the Rosetta ΔΔG values on the x-axis. Variants are categorised based on the region of the 2D
histogram they belong to. Panels C and D show a per-position consensus category (CC) coloured onto

the structure of the proteins (PDB entry 5LPG for NUDT15 and 1D5R for PTEN). Panels E and F show the

positional consensus categories together with the secondary structure (ST) and solvent accessibility (SA).
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617 Supporting Figure S10. Comparing the classification of positions obtained using experimental data
and the computational analysis. Panels A and B show the agreement between the classification from

the analysis of experiments and computation (on the common subset of tested positions) using Venn

diagrams. The protein structures in panels C and D are coloured at those positions where the

experimental and computational classification is the same with the remaining positions shown as grey.
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624 Supporting Figure S11. Cluster analysis of computational ΔΔE and ΔΔG data. The panels show the
result of a hierarchical clustering of (A) NUDT15 and (C) PTEN. The clusters are shown with the same

colours used to define the classes of position in the cutoff-based classification. The two bar plots (B and

D) show the class assigned to each position in the cutoff-based classification using either computational

or experimental data.
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