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ABSTRACT 
Background: Topologically associating domains (TADs) are thought to act as functional units 
in the genome. TADs co-localise genes and their regulatory elements as well as forming the 
unit of genome switching between active and inactive compartments. This has led to the 
speculation that genes which are required for similar processes may fall within the same 
TADs, allowing them to share regulatory programs and efficiently switch between chromatin 
compartments.   

Results: We investigated the relationship between TADs and gene function. To do this we 
developed a TAD randomisation algorithm to generate sets of “random TADs” to act as null 
distributions. We found that while pairs of paralogous genes are enriched in TADs overall, 
they are depleted in TADs with CTCF bound at both boundaries. By assessing gene 
constraint as a proxy for functional importance we found that genes which singly occupy a 
TAD have greater functional importance than genes which share a TAD, and these genes are 
enriched for developmental processes. We found little evidence that pairs of genes in CTCF 
bound TADs are more likely to be co-expressed or share functional annotations than can be 
explained by their linear proximity alone.  

Conclusions: These results suggest that algorithmically defined TADs consist of two 
functionally different groups, those which are bound by CTCF and those which are not. We 
detected no association between genes sharing the same CTCF TADs and increased co-
expression or functional similarly, other than that explained by linear genome proximity. We 
do however find that functional important genes are more likely to fall within a TAD on their 
own suggesting that TADs play an important role in the insulation of these genes.  
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BACKGROUND 
The organisation of the mammalian genome in three dimensional space is non-random and 
hierarchically organised (1). Using Hi-C (2) it was shown that chromosomal loci are clustered 
into two, mega base scale structures known as the A and B compartments (3). The A 
compartment is enriched for active, euchromatin whereas the B compartment is enriched 
for inactive, heterochromatin (3,4). The formation of chromatin compartments is 
hypothesised to be driven by phase separation (5). By analysing chromatin at kilo base scale 
Dixon et al. were able to identify a finer level of chromatin organisation known as 
Topologically Associating Domains (TADs). TADs are regions of the genome characterised by 
a high degree of self-interaction within the length of the TAD, and a low degree of 
interactions with regions outside of the TAD even if they are a similar distance away (6). TAD 
boundaries are enriched for convergently orientated CTCF and are thought to form by active 
loop extrusion where DNA is extruded through cohesion (forming a loop) until the extrusion 
is stalled by convergent CTCFs at the TAD boundaries (5–8). Comparisons of TADs between 
tissues suggested that they are largely tissue invariant (4,6,9). It has also been proposed that 
a third category of chromatin organisation exists, which nests within TADs, these sub-TADs, 
are formed by the same mechanisms as TADs but have weaker insulation and are more 
likely to vary depending on the tissue (10). However, it is currently unclear whether sub-
TADs constitute functionally different structures to TADs (10). 

TADs have been proposed to be functional units in the genome, important for proper 
regulation of gene expression. TADs co-localise regulatory elements with their target genes 
and are thought to promote co-regulation of multiple genes within the same TAD by the 
same enhancers creating “gene regulatory domains” (11). By inserting regulatory sensors 
along the length of the genome Symmons et al. found evidence that the activity of 
enhancers is split into regulatory domains which highly correlate with TADs (12). This 
provided experimental evidence that TADs potentially facilitate enhancers to carry out 
“non-specific” co-regulation of all genes in the TAD (11,12). Simultaneously, TADs are 
thought to insulate genes from aberrant regulation by regulatory elements outside the TAD 
(enhancer hijacking) (11). Several examples of congenital disease have been linked to TAD 
boundary disruptions allowing enhancer hijacking (13,14) demonstrating that at least in 
these cases, TAD boundaries are essential for proper gene regulation. TAD boundaries are 
also able to block the spread of transcription, and repressive chromatin (11). It has been 
observed that the unit of compartment switching in the genome tends to be a single or 
series of TADs (15). Adding to this picture, it is suggested that genes within the same TAD 
have highly correlated expression patterns (16–19). This has led to speculation that genes 
which are required for specific processes may be contained within the same TAD to allow 
them to share regulatory programs and efficiently switch between the active and inactive 
compartments (20). Studies have already indicated that some TADs may be enriched for 
lineage specific genes (20,21) but the global relationship between TADs and gene function is 
yet to be fully understood. 

It has long been known that the linear order of genes in the genome is non-random with 
respect to gene function. Genes that are close together in linear space are more likely to 
have correlated expression patterns (22), and share pathways and protein-protein 
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interactions (PPI) (23). Genes within TADs are by definition also close together in the linear 
genome therefore the linear proximity between genes is an important confounding factor 
when studying the similarity of genes that share a TAD. It is also possible that the increased 
similarity of genes that are proximal in the linear order occurs on a similar scale to TADs. By 
promoting co-regulation of genes, TADs could explain the increased functional similarity 
between proximal genes.  

We hypothesised that TADs form functional units and therefore genes within them are more 
likely to share functional annotations than can be explained by linear proximity alone. In 
order to test this hypothesis we utilised some of the highest quality mammalian Hi-C data 
currently in the public domain (24) and annotated TADs using two TAD calling algorithms; 
Arrowhead and TopDom (23,24). We first assessed the relationship between TADs and gene 
paralogy as well as constraint. Then, focusing on TADs most likely to have been formed by 
loop extrusion, we assessed the functional relatedness of non-paralogous protein coding 
genes within them using four functional annotations: expression correlation, Gene ontology 
(GO) semantic similarity, shared pathways and PPI.  

 

RESULTS 
Characteristics of TADs in cortical neurons and embryonic stem cells (ESC)  

We analysed ESC and cortical neuron Hi-C data from Bonev et al. (24) using the Juicer 
pipeline (25). This data represents some of the highest quality mammalian Hi-C data 
currently in the public domain. Using these Hi-C maps we annotated 8371 (median size 
0.29Mb) and 16002 (median size 0.11Mb) autosomal TADs in ESC, and 8001 (median size 
0.32Mb) and 13835 (median size  0.12Mb) autosomal TADs in cortical neurons, using the 
TAD callers Arrowhead (25) and TopDom (26) respectively (Figure 1A-B). Throughout this 
work we have focused on autosomal TADs so unless explicitly stated, TADs is used to refer 
to autosomal TADs only. We detected more, but smaller TADs with TopDom than with 
Arrowhead for both tissues. Our results confirm the finding from Bonev et al. (found using 
the directionality index TAD calling method) that there are more, but smaller TADs in ESC 
and fewer, but larger TADs in cortical neurons (24). In addition, matching the expected null, 
we observed that, for both TAD callers and datasets, the number of TADs on a chromosome 
correlates strongly with the size of the chromosome (Figure 1C) (r range 0.9-0.94).  

TADs were overlapped with protein coding genes (see Methods). Most TADs contain few 
genes (median number of genes: 1 (Arrowhead) and 0 (TopDom)) and there is little 
correlation between the number of genes within a TAD and the TAD size (0.2-0.3) (Figure 
1D). We investigated several TADs which contained a large number of genes and found that 
they contained genes from large paralog families e.g. olfactory genes and protocadherin 
(Figure 1D). This is consistent with previous studies which have noted that genes from these 
functional families tend to fall within the same TAD, likely due to their shared regulatory 
requirements (11).  
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Figure 1: Features of autosomal TADs in ESC and cortical neurons. A) The number of TADs called 
with Arrowhead and TopDom in ESC and cortical neurons. Arrowhead calls fewer TADs than TopDom 
in both tissues. More TADs are called in ESC than cortical neurons with both TAD callers. B) Size of 
TADs called with Arrowhead and TopDom in ESC and cortical neurons (plotted on a log10 scale). 
Arrowhead calls larger TADs than TopDom in both tissues. Both Arrowhead and TopDom call 
significantly smaller TADs in ESC than cortical neurons with a very small effect size (Wilcoxon test, p-
value: p<0.001 = ***, p<0.01 = **, p<0.05 = *, ES= Effect size calculated using r for Wilcoxon). C) The 
number of TADs per chromosome is strongly correlated with the size of the chromosome. D) In both 
tissues and with both TAD callers most TADs have few genes. Overall, there is a low correlation 
between TAD size and gene number. Several TADs containing many genes were further investigated 
and found to contain multiple members of large gene families. 

 

TAD randomisation 

In order to globally assess the functional similarity between genes in the same TADs we 
sought to generate “random TADs” representing the null distribution. We developed two 
randomisation strategies in order to generate two null distributions controlling for different 
possible confounding signals. In the first randomisation strategy, which we refer to as 
random TADs, we maintained the basic structure of real TADs i.e. TAD size, number of genes 
within the TAD and the approximate TAD overlap structure. This allowed us to control for 
the influence of linear gene order and distance which is known to correlate with gene 
functional similarity (22,23). In this randomisation strategy, the position of each TAD was 
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randomised within the same chromosome to a new region of the same size, containing the 
same number of genes as the original TAD. For TopDom random TADs, overlapping was 
prevented, reflecting the non-overlapping structure of TopDom TADs. For Arrowhead 
random TADs, if the new random TAD overlapped an existing random TAD this was 
controlled in order to favour “nested” TADs, thereby approximating the global TAD overlap 
structure seen in Arrowhead TADs (see Methods) (Figure 2B, Figure 3A). In the second 
randomisation method, which we refer to as random genome TADs, we again maintained 
the basic TAD structure but removed signal attributed to the linear gene. In order to do this, 
the positions of TADs were maintained but the order of the genes in the genome was 
randomly shuffled within each chromosome (Figure 2C). Using both randomisation 
strategies allows us to disentangle the functional similarity between genes within the same 
TAD from the functional similarity which can be attributed to proximity in the linear 
genome. Each TAD randomisation method was run 100 times for each tissue and each TAD 
caller. 

In order to compare the functional similarity of genes within TADs to genes within random 
TADs/random genome TADs, we adopted a pairwise comparison approach (Figure 2D). For 
every feature investigated every possible pair of genes within a TAD/random TAD was 
compared in order to generate a distribution of scores. 
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Figure 2: Randomization and functional analysis procedure.  A: Schematic representing the 
structure of annotated TADs. B: Null dataset one: Random TADs. TADs were randomised within the 
same chromosome by selecting regions of equal size to the original TAD which also contain the same 
number of genes, thus controlling for the effect of the linear genome. C: Null dataset two: 
Randomised genome TADs. In order to remove the effect of the linear genome another null TAD set 
was generated in which the TADs remained in the same positions but the order of genes on the 
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chromosome were randomised. C: Pairwise strategy for comparing functional similarity between 
genes in the same TAD. All possible pairs of genes in each TAD were compared. 

 

To assess the gene distribution within TADs, we compared the distance between genes in 
TADs to genes in random TADs. We found that for both TAD callers, and both tissues, genes 
are significantly further apart in TADs than in random TADs (Figure 3B, median FDR 
corrected p-values; Arrowhead ESC vs 100 sets of random TADs: p<0.01, Arrowhead cortical 
neuron vs 100 sets of random TADs: p<0.01, TopDom ESC vs random 100 sets of TADs: 
p<0.01, TopDom cortical neuron vs 100 sets of random TADs: p<0.01).  

It has previously been shown that TAD boundaries are enriched for CTCF which is 
hypothesised to play a crucial role in TAD formation by loop extrusion (5–8). To assess this in 
our data we tested for the presence of CTCF ChIP-seq peaks near TAD boundaries vs random 
TAD boundaries (Figure 3C, Supplementary figure 2). We observed that ~ 62%, 52%, 28%, 
28% of ESC Arrowhead TADs, ESC TopDom TADs, cortical neuron Arrowhead TADs and 
cortical neuron TopDom TADs respectively had a CTCF ChIP-seq peak within in ±10kb of 
both TAD boundaries. This is compared to ~ 29%, 29%, 4.5%, 5.3% of ESC Arrowhead 
random TADs, ESC TopDom random TADs, cortical neuron Arrowhead random TADs and 
cortical neuron TopDom random TADs respectively. Supporting previous reports, this 
suggests that CTCF binding is common at the boundaries of TADs and is more prevalent than 
expected if TADs were randomly placed. This result also shows that more ESC TADs have a 
CTCF ChIP-seq peak near both boundaries than cortical neuron TADs. This could be due to a 
reduction in the number of chromatin domains formed by loop extrusion during 
differentiation. However, we noted that this still left 30%, 29%, 46%, 38% of ESC Arrowhead 
TADs, ESC TopDom TADs, cortical neuron Arrowhead TADs and cortical neuron TopDom 
TADs respectively which had a CTCF ChIP-seq near only one boundary and 7.9%, 19%, 27% 
and 35% of ESC Arrowhead TADs, ESC TopDom TADs, cortical neuron Arrowhead TADs and 
cortical neuron TopDom TADs respectively which did not have a ChIP-seq peak near either 
boundary. This could suggest that these domains may not be formed by loop extrusion and 
therefore may not conform to the popular mechanistic definition of TADs (10). In order to 
assess the features of these TADs separately we split TADs into CTCF TADs (which we define 
as TADs with a CTCF ChIP-seq peak within ±10kb of both boundaries) and non-CTCF TADs 
(which we define as TADs with a CTCF ChIP-seq peak within ±10kb of one, or neither 
boundary) (Supplementary figure 2 and Supplementary figure 3).  
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Figure 3: Features of autosomal TADs vs random TADs. A) TADs (black) vs random TADs (blue) 
showed on the Hi-C matrix for the equivalent region of Chr2 in both ESC and cortical neurons (CN). 
Matrices visualised using JuiceBox. B) Median distance between genes in TADs (dotted line) vs the 
median distance between genes in 100 sets of random TADs (plotted on a log10 scale). Genes are 
significantly closer together in random TADs than TADs (Wilcoxon test, Median FDR corrected p-
value:  p<0.001 = ***, p<0.01 = **, p<0.05 = *, ES= Median effect size calculated using r for 
Wilcoxon). C) Proportion of TADs with a CTCF binding site within ±10kb of both boundaries, one 
boundary or neither boundary. As expected a greater proportion of TADs have a CTCF binding site 
near both boundaries than in an example set of random TADs. 

 

TADs vs paralogy and gene constraint 

As noted in Figure 1D some of the TADs containing the largest number of genes contain 
many genes from the same paralogous gene families. Genes from the same paralogous 
family are likely to be highly functionally similar due to recent shared ancestry. We 
therefore first investigated paralogous genes in the context of TADs separately. To do this 
we assessed the proportion of paralogous genes pairs within TADs and random TADs. 
Similarly to Ibn-Salem et al. (27) we found a greater proportion of paralogous gene pairs fall 
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within TADs compared to random TADs (Figure 4A, median FDR corrected p-value of TADs vs 
100 sets of random TADs <0.001). This suggests that pairs of paralogous genes are more 
likely to fall within the same TAD than can be explained by the linear proximity of the genes 
alone. We further investigated this relationship and found that TADs which contain at least 
one pair of paralogs are more likely to be significantly larger in size than TADs with no 
paralogs (Figure 4B, p-value <0.001). When these TADs are split into CTCF TADs and non-
CTCF TADs we find that pairs of paralogs are significantly enriched in non-CTCF TADs 
compared to random non-CTCF TADs (median FDR corrected p-value of non-CTCF TADs vs 
100 sets of random non-CTCF TADs <0.001 for ESC Arrowhead, ESC TopDom and cortical 
neuron Arrowhead, and <0.01 for cortical neuron TopDom). However, the opposite is true 
for CTCF TADs (median FDR corrected p-value of CTCF TADs vs 100 sets of random CTCF 
TADs <0.001 for ESC Arrowhead, ESC TopDom and cortical neuron Arrowhead and <0.01 for 
cortical neuron TopDom) (Supplementary figure 4). This suggests that although pairs of 
paralogs are enriched in TADs they are depleted in CTCF TADs, which are more likely to be 
“true” TADs formed by loop extrusion.  

Next we assessed the average constraint scores of genes in TADs. Constraint scores quantify 
the degree of selective constraint acting on protein coding genes, with a higher score 
indicating a greater strength of purifying selection (28). Selective constraint can change over 
evolutionary time, and we therefore considered constraint scores calculated in the mouse 
lineage (29). For TADs called with Arrowhead, we find that genes which singly occupy a TAD 
are significantly more constrained than the mean constraint of genes in TADs containing 
multiple genes (Figure 4C-D). Genes singly occupying an Arrowhead TAD also have 
significantly higher constraint than seen in random TADs (suggesting the result cannot be 
explained by the structure of the linear genome alone) or random genome TADs (Median 
FDR corrected p-value of genes singly occupying TADs vs genes singly occupying TADs in 100 
sets of random TADs or 100 sets of random genome TADs <0.001, Supplementary figure 5). 
This suggests that genes, which singly occupy TADs, may be under higher selective 
constraint and more functionally important than genes which co-occupy a TAD. This might 
suggest that the protection from aberrant regulation of functionally important genes, 
implied by being in a private TAD, is under selective constraint. Interestingly, this 
relationship is not seen for TADs called with TopDom despite the fact that the two TAD 
callers detect a similar proportion of TAD containing only a single gene (~ 21% and 20% of 
Arrowhead TADs, and 17% and 20% of TopDom TADs, in ESC and cortical neuron 
respectively). This could be because TopDom TADs contain a much larger percentage of 
TADs with no genes than Arrowhead TADs (~ 37% and 31% of Arrowhead TADs, and 63% 
and 57% of TopDom TADs, in ESC and cortical neuron respectively). This means that there 
are far fewer TopDom TADs than Arrowhead TADs which contain more than one gene.  

We next sought to test if the relationship between Arrowhead TADs and average gene 
constraint is observable in both CTCF TADs and non-CTCF TADs. When considering only 
Arrowhead CTCF TADs, as seen above, we find that generally the constraint of genes in 
singly occupied TADs is significantly higher relative to the average constraint of genes co-
occupying a CTCF TAD. On the other hand, in Arrowhead non-CTCF TADs, we find a weaker 
relationship between genes singly occupying a non-CTCF TAD and constraint 
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(Supplementary figure 6). The difference between CTCF TADs and non-CTCF TADs in terms 
of their enrichment for paralogous gene pairs and their relationship with gene constraint 
supports the possibility that TADs detected by Arrowhead and TopDom may be made up of 
two functional groups. As CTCF TADs are bounded by CTCF they are likely to have been 
formed by the process of loop extrusion and are therefore more likely to be “true TADs”. 
Whereas, non-CTCF TADs may have been formed by other mechanisms.    

In order to assess which biological processes genes which singly occupy an Arrowhead TAD 
are involved in, we carried out a functional enrichment analysis (see Methods) using 
Biological process GO terms (Figure 4E). We found that genes which singly occupy an 
Arrowhead CTCF TAD are highly enriched for developmental processes, genes which occupy 
a TAD with one other gene (double occupancy) are also enriched for developmental 
processes but to a lesser extent and genes which occupy a TAD with two other genes (triple 
occupancy) are less enriched for developmental processes still. We repeated the 
enrichment analysis using genes which singly, doubly and triply occupy random Arrowhead 
TADs in order to establish whether randomly placed TADs with similar features (e.g. only 
one gene in the length of the TAD) have a similar pattern of enrichment (Supplementary 
figure 7). We found that genes that singly occupy a random TAD are also enriched for 
developmental processes but to a much lesser degree than Arrowhead TADs. This suggests 
that the strong enrichment for developmental function observed in genes that singly occupy 
an Arrowhead TAD cannot be explained by the linear genome alone.    
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Figure 4: Paralogs and constraint vs autosomal TADs. A) Proportion of paralogous gene pairs in 
TADs, the median proportion in 100 sets of random TADs, and the median proportion in 100 sets of 
TADs on a randomised genome. TADs contain significantly more pairs of paralogous genes than both 
random TADs and TADs on a random genome (Fisher’s exact test, Median FDR corrected p-value:  
p<0.001 = ***, p<0.01 = **, p<0.05 = *). B) Size of TADs containing pairs of paralogs vs TADs (with >1 
gene) containing no pairs of paralogs (plotted on a log10 scale). For both TAD callers and tissues, 
TADs which contain pairs of paralogs are larger than TADs which have no paralog pairs. (Wilcoxon 
test, p-value: p<0.001 = ***, p<0.01 = **, p<0.05 = *, ES= Effect size calculated using r for Wilcoxon). 
C) Distribution of mean constraint scores of genes occupying the same TAD. TADs are split depending 
on the number of genes they contain (1, 2, 3, 4, 5, 6+). Dots indicate the mean of the distribution. D) 
Table showing FDR corrected p-values of differences between groups in C calculated with the 
Wilcoxon test. Significant p-values are highlighted red. For TADs called with Arrowhead in both 
tissues, genes singly occupying a TAD have a significantly higher constraint score than the average 
constraint of genes in TADs with >1 gene. For TADs called with TopDom no significant difference is 
observed. E) Biological processes GO term functional enrichment of genes in TADs containing a single 
gene, two genes, and three genes. Only the (max) top 25 most significant GO terms passing a p-value 
threshold of < 0.05 (multiple testing corrected using the “gSCS” option) are shown. 

 

Expression and functional similarity of genes in CTCF TADs 

Since we have so far found evidence that CTCF TADs and non-CTCF are unequal in their 
functional relevance we decided to focus on the functional similarity of pairs of genes in 
CTCF TADs, as they are more likely to represent “true” TADs. The similarity between all pairs 
of genes in CTCF TADs was assessed as shown in Figure 2. Since paralogous gene pairs are 
highly likely to share functional similarity and we have already, separately, assessed their 
relationship with TADs (Figure 4A-B, Supplementary figure 4) we excluded all pairs of 
paralogous genes and masked the olfactory genes (see Methods) in all functional analyses.  

In order to assess whether pairs of genes in the same TAD have correlated expression 
patterns we downloaded FPKM counts from RNA-seq expression data. RNA-seq generated 
during neural differentiation from Bonev et al. (24) and from the most closely matching 
tissues to ESC and cortical neuron which had greater than three samples (G1E-ER4 with 
various lengths of 10nM 17β-estradiol treatment [..repeat with more appropriate tissue.. 
refer to methods] and forebrain at different embryonic stages respectively) from Encode 
were used (30,31). Using these expression counts we calculated spearman’s rank correlation 
coefficient between pairs of genes in CTCF TADs, 100 sets of random CTCF TADs, and 100 
sets of random genome CTCF TADs (Figure 5C-D). We found pairs of genes in CTCF TADs 
generally have a significantly higher expression correlation than pairs of genes in random 
genome CTCF TADs. This is an expected result because randomising the genome removes 
the effect of linear gene proximity. However, we find no significant difference in expression 
correlation between pairs of genes in CTCF TADs and pairs of genes in random CTCF TADs. 
This suggests that contrary to the majority of other studies (16–19) we find no evidence that 
pairs of genes sharing a TAD are more likely to have similar expression patterns than can be 
explained by their linear proximity. However, a study by Soler-Oliva et al. found that 
algorithmically identified co-expression domains tend not to coincide with TADs, which 
supports our findings (32).  
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Figure 5: Pairwise gene co-expression in autosomal TADs. Olfactory genes and paralogous gene 
pairs have been excluded in all panels. A-B) Median expression correlation coefficient (spearman) for 
pairs of genes vs binned distance in the real genome and 1000 random genomes. A) Expression 
correlation coefficients were calculated using RNA-seq from two replicates each of ESC, NPC and 
cortical neuron cells. The data was generated in the same study as the Hi-C data. B) Expression 
correlation coefficients were generated using mouse G1E-ER4 and forebrain RNA-seq from encode. 
The G1E-ER4 RNA-seq was generated with two replicates each of G1E-ER4 cells treated for varying 
lengths of time with 10nM 17β-estradiol. The forebrain RNA-seq was generated with two replicates 
each, of embryos of varying ages. C-D) Median expression correlation coefficient (spearman) for pairs 
of genes in CTCF TADs (dotted line) and median expression correlation coefficient (spearman) in 100 
sets of random CTCF TADs and CTCF TADs on 100 randomised genomes. CTCF TADs called with both 
Arrowhead and TopDom, in both ESC and cortical neuron (CN) Hi-C (Wilcoxon test, Median FDR 
corrected p-value: p<0.001 = ***, p<0.01 = **, p<0.05 = *, Median ES= Effect size calculated using r 
for Wilcoxon). C) Expression correlation coefficients were calculated using RNA-seq from A. D) 
Expression correlation coefficients were calculated using RNA-seq from B. 

 

Next, we sought to assess whether pairs of genes within the same CTCF TAD are more likely 
to share functional annotations than pairs of genes in random CTCF TADs or CTCF TADs on a 
random genome. To do this, we used molecular function (MF) GO semantic similarity scores, 
shared pathways, and PPI (see methods). We consistently found that pairs of genes in CTCF 
TADs are more similar in terms of functional annotation than pairs of genes in random 
genome CTCF TADs (Figure 6D-F). Again, this is expected as randomising the genome 
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removes similarity between pairs of genes with functionally similarity that can be explained 
by their linear proximity. When we explicitly assessed the relationship between functional 
annotation similarity and binned linear distance we found greater similarity between pairs 
of genes which are in very close linear proximity than expected if genes were randomly 
ordered on the chromosome (Figure 6A-C). We next compared the functional annotations of 
genes in CTCF TADs with genes in random CTCF TADs. We found that for the majority of 
comparisons there was no significant difference (9/12 comparisons including CTCF TADs in 
ESC and cortical neurons called using both Arrowhead and TopDom) (Figure 6D-F). Pairs of 
genes in Arrowhead ESC CTCF TADs have significantly more similar MF GO terms than pairs 
of genes in random CTCF TADs. A similar trend in MF GO similarity was observed for all 
other CTCF TADs compared to random CTCF TADs but the difference was not significant. 
This could indicate that pairs of genes in CTCF TADs have slightly more similar MF GO term 
annotations than pairs of genes in random CTCF TADs. However, perhaps this is limited to 
few TADs as the increase in similarity is very small and often not significant. Pairs of genes in 
cortical neuron TopDom CTCF TADs are significantly more likely to share a pathway or PPI 
than pairs of genes in random CTCF TADs. However, the trend in the proportion of gene 
pairs sharing a pathway or PPI between cortical neuron Arrowhead CTCF TADs and cortical 
neuron Arrowhead random CTCF TADs is inconsistent and the opposite trend was observed 
for all ESC CTCF TADs compared to ESC random CTCF TADs. This could suggest a cell type 
difference in CTCF TAD structure in which pairs of genes sharing a pathway/PPI are more 
likely to fall within the same CTCF TAD in differentiated cells like cortical neurons compared 
to undifferentiated cells like ESC. However, the inconsistency of the results again suggests 
that the effect of this is likely to be small and perhaps driven by few TADs. Overall, we find 
the biggest contribution to the functional similarity between pairs of genes in CTCF TADs can 
be attributed to their linear proximity in the genome. When we control for linear proximity 
we find a less consistent picture but in the majority of comparisons, pairs of genes in CTCF 
TADs are no more likely to be functionally similar than if CTCF TADs were randomly placed. 
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Figure 6: Functional similarity of pairs of genes in autosomal TADs. Olfactory genes and paralogous 
gene pairs have been excluded in all panels. A-C) Grey shading indicates FDR corrected p-value <0.05 
based on distribution of values for the random genome. E-F) TADs called with both Arrowhead and 
TopDom; in both ESC and cortical neuron Hi-C. P-value: p<0.001 = ***, p<0.01 = **, p<0.05 = *. A) 
Distribution of MF GO semantic similarity for pairs of genes binned by distance in the real genome vs 
1000 random genomes. B) Distribution of the number of pairs of genes sharing ≥ 1 pathway binned 
by distance in the real genome vs 1000 random genomes. C) Distribution of the number of pairs of 
genes sharing ≥ 1 PPI binned by distance in the real genome vs 1000 random genomes. D) Median 
MF GO semantic similarity for pairs of genes in CTCF TADs (dotted line) compared to the distributions 
of median MF semantic similarity for 100 sets of random CTCF TADs and CTCF TADs on 100 
randomised genomes (Wilcoxon test, Median FDR corrected p-value, Median ES= Effect size 
calculated using r). E) Proportion of pairs of genes sharing ≥ 1 pathway in real TADs and the median 
proportion of pairs of genes sharing ≥ 1 pathway in 100 sets of random CTCF TADs and CTCF TADs on 
100 randomised genomes (Fisher’s exact test, Median FDR corrected p-value. F) Proportion of pairs of 
genes sharing ≥ 1 PPI in real TADs and the median proportion of pairs of genes sharing ≥ 1 PPI in 100 
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sets of random CTCF TADs and CTCF TADs on 100 randomised genomes (Fisher’s exact test, Median 
FDR corrected p-value). 

 

DISCUSSION 
TADs have been proposed to play an important role in gene regulation. They are thought to 
co-localise regulatory elements and their target genes, insulate genes from off target 
enhancer interactions, and block the spread of genome activation (11). Due to these 
findings we hypothesised that genes sharing a TAD would be more likely to be co-regulated, 
as in the absence of further insulation/specificity enhancers may be able to “scan” all 
regulatory elements in the TAD. We hypothesised that if this is the case one might expect 
genes within TADs to have higher co-expression and greater functionally similarity than can 
be explained purely by the proximity of genes in the linear order of the genome.  

Similarly to previously described by Ibn-Salem et al. (27) we found that pairs of paralogous 
genes are more likely to fall within the same TAD than expected if TADs are randomly placed 
within chromosomes (Figure 4A). This presents a clear case in which TADs contain 
functionally similar genes and could reflect the need for paralogs to share regulatory 
elements. However, after we split TADs into CTCF TADs and non CTCF TADs we found that 
whilst pairs of paralogous genes are more likely to fall within non CTCF TADs than randomly 
placed non CTCF TADs, paralogous gene pairs appear to be depleted in CTCF TADs 
(Supplementary figure 4). This suggests that paralogs are depleted in domains formed by 
loop extrusion which may be more likely to represent ‘true’ TADs.    

We found that genes which singly occupy a TAD (called by Arrowhead) are statistically more 
constrained than the average constraint of genes in TADs with multiple genes. This suggests 
that genes in TADs on their own are less tolerant to mutation and therefore more 
functionally important. This is supported by Muro et al. (33) who recently found that genes 
which singly occupy a TAD are more likely to be associated with disease. When we 
separated TADs into CTCF TADs and non-CTCF TADs we found that this relationship is 
stronger for CTCF TADs compared to non-CTCF TADs (Supplementary figure 6). These results 
could indicate that there is a selective pressure for functionally important genes to fall 
privately within CTCF TADs (formed by loop extrusion) providing them with strong insulation 
from aberrant regulation. This selective pressure may be weaker for non-CTCF TADs which 
may not have been formed by loop extrusion and therefore may not be as insulated. In 
contrast, we don’t see this relationship at all for TopDom TADs, we propose that this may be 
due to the smaller size of TopDom TADs which could reflect a scale more similar to that of 
sub-TADs (34,35). It is also worth noting that TopDom annotates the entire genome with 
TADs (compared to Arrowhead, which calls them sporadically) therefore if regions exist in 
the genome which have no TADs, TopDom will still attempt to call them, this could increase 
noise in TADs called by TopDom. The differences shown here between TADs called with 
Arrowhead and TopDom highlight the importance of ensuring findings are robust to the 
choice of TAD caller. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.316786doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316786
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Our results indicate that there is little evidence for an increase in expression correlation or 
functional annotation similarity in genes sharing a TAD. We found no difference in 
expression correlation between pairs of non-paralogous protein coding genes in CTCF TADs 
vs random CTCF TADs. This is contrary to previous findings (16–19). We also found that pairs 
of non-paralogous protein coding genes within CTCF TADs are largely not more similar in 
functional annotation than in random TADs. This suggests that globally TADs are not 
associated with a higher degree of co-regulation between the genes they contain.  

Together our results suggest TADs play a stronger role in insulating genes from aberrant 
regulation rather than promoting co-expression of genes within a TAD. We speculate that 
our results are more compatible with a model of TADs in which enhancers are prevented 
from interacting with all the genes within the same TAD by evolved enhancer-promoter 
specificity or further insulation in the form of tissue specific sub-TADs. If this is the case, 
disease associated variants within a TAD may have deleterious consequences by miss-
regulating their normal target gene, but also may acquire gain-of-function regulation of 
other genes within the TAD.  

Although referred to throughout as non CTCF-TADs because they were identified by 
published TAD callers these domains may not represent ‘true’ TADs based on the prevalent 
definition (domains formed by loop extrusion). Instead, it is possible that these domains 
represent other domain categories e.g. compartmental domains. We therefore suggest that 
perhaps not all TADs called by TAD callers represent TADs. The results presented here 
support the assertion made by Beagan et al. (10) that it is important to separate domains 
formed by different mechanisms because they are likely to have different functional 
properties.  

 

CONCLUSIONS 
Our results suggest a limited role for TADs in promoting co-regulation of the genes within 
them. We find evidence that pairs of paralogous genes fall within TADs more often than 
random TADs. However, we find that pairs of paralogous genes are only enriched in non-
CTCF TADs. The functional differences observed between CTCF and non-CTCF TADs may 
reflect the possibility that non-CTCF TADs are more similar to other types of chromatin 
domain (e.g. compartmental domains) than TADs (defined loop extrusion). We find little 
evidence that non-paralogous protein coding genes within the same CTCF TAD are more 
likely to have correlated expression patterns or similar functional annotations than non-
paralogous protein coding genes in random TADs. This suggests that TADs formed by loop 
extrusion do not have a global association with co-regulation and the formation of “gene 
regulatory domains”. We find evidence that genes that singly occupy a CTCF-TAD have 
significantly higher constraint. This suggests that these genes may be more functionally 
important and TADs formed by loop extrusion may be acting to insulate them from aberrant 
regulation. Overall, our results suggest a stronger role of TADs in regulatory insulation than 
promotion of co-regulation.  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 1, 2020. ; https://doi.org/10.1101/2020.09.28.316786doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.28.316786
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

METHODS 
Topologically associating domains 

Mouse ESC and Cortical neuron Hi-C data published in (24) was downloaded from Gene 
Expression Omnibus (GEO) (accession number: GSE96107). These datasets represent two of 
the high resolution mammalian Hi-C datasets published to date. Hi-C data was analysed 
using the Juicer analysis pipeline aligning to the mm10 genome build (25). Parameters 
within Juicer were selected so that contacts with a mapping quality (MAPQ) below 30 were 
filtered. For each tissue all replicates were run through the Juicer pipeline separately and 
were combined using the “mega” option in Juicer. Hi-C data was binned at 10kb and Vanilla 
coverage (VC) normalisation was employed.  

It has been shown that algorithmically determined TADs can vary widely depending on the 
TAD caller used (36–38). In order to make sure that results are robust to the choice of TAD 
caller, TADs were called using Arrowhead and TopDom which were both run using default 
parameters at 10kb. Arrowhead calls larger TADs, which can overlap whereas TopDom calls 
smaller non-overlapping TADs. TADs were called on Hi-C maps made from merged 
replicates.  

It is widely suggested that TADs are formed by a loop extrusion process involving 
convergent CTCF bound at TAD boundaries and cohesion (35). Where indicated, TADs have 
been split into CTCF TAD or non-CTCF TADs. In order to do this ESC and cortical neuron CTCF 
ChIP-seq peaks (generated alongside the Hi-C data (24)) were downloaded from GEO (GEO 
accession number: GSE96107). TADs where both boundaries were within ±1 bin (10kb) of a 
CTCF peak were considered to be “CTCF TADs”, the equivalent TADs in random TADs or 
TADs on a randomised genome were used for comparison. Whereas, TADs with only one 
boundary or neither boundary within ±1 bin (10kb) of a CTCF peak were considered to be 
“non-CTCF TADs”. 

 

Overlapping TADs with protein coding genes  

Ensembl IDs of mouse genes and mm10 coordinates were downloaded from BioMart (39) 
and non-protein coding genes were filtered out. Using bedtools intersect (40), protein 
coding genes were overlapped and assigned to a TAD if their start and end position fell 
within the same TAD. This TAD-gene mapping method is more stringent than previously 
used (16,17,33)  but it allows us to focus on genes which can be confidently assigned to a 
TAD and controls for the possibility that genes which overlap a TAD boundary may have 
different features. This is especially important given recent evidence has shown that TAD 
boundaries are often not “sharp”, instead boundaries can span “zones of transition” 
meaning that it may not be possible to confidently assign genes spanning a TAD boundary to 
one TAD or the other (41) 

In order to assess the functional similarity between pairs of genes in TADs, unless otherwise 
stated olfactory genes were removed from analysis. The olfactory genes have undergone a 
significant expansion in the mouse vs human genome. The human genome contains ~800 
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olfactory genes (of which <400 are functional), whereas the mouse genome contains ~1400 
olfactory genes (of which <1050 are functional) (42). Therefore, in order to make the 
findings of this study more relevant to human biology the olfactory genes were masked. To 
achieve this MGI IDs associated with Olfactory genes were downloaded by identifying any 
gene associated with the GO term: “olfactory receptor activity” (43–45) and IDs were 
converted to ensembl IDs using BioMart, ensembl IDs were used to remove genes from the 
analysis (1133 genes in total) (39). 

 

TAD randomisation and Genome randomisation 

We generated “random TADs” to serve as a null distributions to compare with TADs. To do 
this we generated two TAD randomisation strategies, each controlling for a different 
possible confounding signals. In the first strategy, which we called “random TADs”, the 
position of each TAD was randomised within the same chromosome so that each TAD was 
randomly assigned to a new region of the same size as the original TAD. The new region was 
accepted only if it contained the same number of genes as the original TAD. TopDom TADs 
do not overlap so in order to approximate the overlap structure of TopDom TADs in random 
TopDom TADs overlapping was prohibited (46). For each TAD, if a new region satisfying the 
criteria could not be found after 10,000 attempts that TAD was excluded from the random 
TAD set. For TADs called with Arrowhead we observed that TADs are far more likely to be 
“nested” (one TAD falls completely within another) rather than “non-nested” (TADs overlap 
incompletely with only part of the TAD falling within the bounds of the other) 
(Supplementary figure 1). To approximate this overlap structure in random TADs, every 
proposed new random TAD position was checked to see if it overlapped any existing random 
TADs. If it overlapped an existing random TAD in a “nested” fashion the overlap was always 
permitted, however if it overlapped an existing random TAD in a “non-nested” fashion the 
new position was accepted with 10% probability, thereby minimising this type of overlap 
(46). As with the random TopDom TADs if a position fulfilling this criteria cannot be found 
after 10,000 attempts the TAD was excluded from the random TAD set. In the second 
randomisation method, which we call “random genome TADs” the position of TADs was 
maintained along with the number of protein coding genes within them, but the order of 
the protein coding genes on each chromosome was randomised.  

TADs called with Arrowhead and TopDom were randomised 100 times each, generating 100 
sets of random Arrowhead TADs, 100 sets of random TopDom TADs, 100 sets of Arrowhead 
TADs on random genome and 100 sets of TopDom TADs on a random genome. Since, during 
the generation of each random TAD set, the algorithm randomises the position of each TAD 
in turn, the order of TADs was shuffled before the generation of every random TAD set. In 
order to test if 100 randomisation was enough, we plotted the median value of each 
measure investigated in this study with each added random TAD/random genome TAD set. 
For most, the measure begins to converge at fewer than 100 randomisations 
(Supplementary figure 8). 
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To test how our TAD randomisation algorithm performs compared to other recently 
published methods we created TAD randomisation algorithms based on the descriptions in 
Nora et al. 2012 (16) and Rao et al. 2014 (4). We used these algorithms to create example 
random TAD sets and compared them to an example random TAD set created using our 
method (Supplementary figure 1). In brief, in the Nora et al. 2012 method, each TAD is 
randomised to a region on the same chromosome which contains the same number of 
genes and is the same length or smaller than the original TAD. We adapted this method to 
prevent overlapping when randomising TopDom TADs, if a non-overlapping TAD could not 
be placed after 10,000 attempts it was excluded from the TopDom random TAD set. In the 
Roa et al. 2014 method, each TAD was randomised to a new position on the same 
chromosome but prevented from overlapping any gaps in the mm10 assembly (mm10 gaps 
were downloaded from the UCSC table browser (47)). This method was adapted to prevent 
overlapping when randomising TopDom TADs (again we set a cut off of 10,000 attempts to 
place each TAD before it was excluded from the TopDom random TAD set).  

We compared random TADs generated using our method to random TADs generated using 
the Nora et al. 2012 method and the Roa et al. 2014 method (Supplementary figure 1). 
Regardless of the randomisation method used, we observed that the distance between 
genes in random TADs was always significantly different to the distance between genes in 
TADs. However, the effect size of these differences was smallest for Arrowhead random 
TADs produced by our method and second smallest for TopDom random TADs produced by 
our method (Rao et al. 2014 produces the smallest effect size for TopDom random TADs). 
This suggests that for this feature, random TADs produced by our method are the closest of 
the three methods to real Arrowhead TADs and second closest for TopDom TADs 
(Supplementary figure 1A).  

Since in our randomisation method and in the Nora et al. 2012 method, random TADs must 
contain the same number of genes as the original TADs, we did not observe any difference 
between the number of genes within TADs and random TADs using these methods. 
However, we did observe a significant difference between the number of genes in TADs and 
random TADs generated by the Rao et al. 2014 method (p<0.001) (except for TopDom ESC 
TADs which are not significantly different) (Supplementary figure 1B).  

The overlap structure of real Arrowhead TADs favours nested TADs. To assess how well each 
randomisation method approximates the overlap structure of Arrowhead TADs, we selected 
all TADs/random TADs which were involved in any type of overlap. We then annotated them 
according to whether they were involved in nesting overlaps, non-nesting overlaps or both. 
We found that our randomisation method best approximates the overlap structure of 
Arrowhead TADs. Random Arrowhead TADs generated using the Rao et al. 2014 or the Nora 
et al. 2012 method contain more non-nesting overlaps than Arrowhead TADs 
(Supplementary figure 1C).  

Finally, in Arrowhead TADs, the overlapping nature of the TADs means that each gene can 
fall within multiple TADs. We assessed the number of Arrowhead TADs per gene in the three 
randomisation methods. Regardless of the randomisation method used, we see a significant 
difference between the numbers of Arrowhead TADs per gene in random Arrowhead TADs 
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compared to Arrowhead TADs. However, random Arrowhead TADs generated by our 
method have the smallest effect size, so best approximate real Arrowhead TADs 
(Supplementary figure 1D).  

 

Pairs of genes with shared ancestry: 

The functional similarity of genes within a TAD was measured by assessing the similarity of 
every possible pair of genes within the same TAD. Gene pairs which have shared ancestry 
i.e. paralogues, are expected to be very functionally similar. In order to assess whether 
genes within TADs are more functional similar irrespective of shared ancestry, (where 
stated) paralogous gene pairs were removed from the analysis. To do this mouse paralogous 
gene pairs were downloaded from BioMart (Ensemble release 98) (39). 

 

Constraint score: 

Mouse gene constraint was assessed as a nonsynonymous z-score (29), calculated between 
36 strains of mice commonly used for genetic research (48). In brief, constraint was 
quantified for each gene as the deviation of the observed number of nonsynonymous 
variants relative to the expected number given no selection, which was determined by the 
average rate of synonymous fixation in the population sample. Genes that have a greater 
relative depletion of nonsynonymous variants are considered more constrained by negative 
selection. 

 

Functional enrichment analysis: 

Functional enrichment analysis was undertaken using the gprofiler r package (49) and 
Biological processes GO terms. The plots include the (max) top 25 most significant GO terms 
passing a p-value threshold of < 0.05 (multiple testing corrected using the “gSCS” option).  

 

Gene co-expression: 

FPKM counts from RNA-seq data generated alongside the Hi-C data was downloaded from 
GEO (GEO accession number: GSE96107). The data consisted of two replicates each for ESC, 
NPC, and cortical neurons. Genes with in FPKM value <1 were treated as having 0 
expression. Gene co-expression was calculated across all 6 samples using spearman’s rank 
correlation coefficient between all pairs of genes. Correlation coefficients calculated from 
this data indicate the similarity of expression over three tissues.  

FPKM counts from polyA plus RNA-seq data were also downloaded from the Encode project 
(30). We chose the closest matching tissues to ESC and cortical neuron which had at least 3 
samples (required for the correlation analyses). To assess the expression correlation within 
cortical neuron TADs we downloaded encode forebrain RNA-seq. The forebrain RNA-seq 
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was generated with two replicates each, of embryos of varying ages. Accession numbers: 
ENCFF302TQO, ENCFF976OLT, ENCFF895JXR, ENCFF227HKF, ENCFF340XFQ, ENCFF484AOO, 
ENCFF601JPN, ENCFF413BXV, ENCFF465SNB, ENCFF567AFL, ENCFF590FAC, ENCFF745ZJF, 
ENCFF763GXJ, ENCFF804FTJ, ENCFF816CVP and ENCFF918QNL (30,31). To assess the 
expression correlation within ESC TADs we downloaded G1E-ER4 RNA-seq data. This is not 
an ideal choice as G1E-ER4 is a GATA-1-null erythroblast cell line, however, no ESC cell lines 
had the required number of replicates [..repeat with more appropriate tissue..]. The G1E-
ER4 RNA-seq data was generated with two replicates each, of G1E-ER4 cells treated for 
varying lengths of time with 10nM 17β-estradiol.  Accession numbers: ENCFF747QEP, 
ENCFF366NFY, ENCFF307OCQ, ENCFF219TLV, ENCFF109JTZ, ENCFF813GTN, ENCFF162KLN, 
ENCFF242TJT, ENCFF546BOH, ENCFF051AIE, ENCFF244ZCG, ENCFF500HHS, ENCFF114OCL 
and ENCFF603DBY (30). Genes with an FPKM value <1 were treated as having 0 expression. 
Datasets which were flagged due to low quality in Encode were not used in the correlation 
analysis.  

 

GO Semantic similarity: 

The R package GOSemSim (50) was used to calculate GO semantic similarity scores. For each 
pair of genes the GO terms assigned to them were compared using the Jiang method. If 
genes were associated with multiple GO terms, scores were combined using “best match 
average”. Pairs of genes where one or both have no annotated GO terms were excluded 
from the analysis as no score could be generated. We first calculated the similarity score 
between all pairs of genes in the genome using each of the MF, Biological process (BP) or 
Cellular component (CC) ontologies. We then plotted these scores for all autosomal genes, 
autosomal genes minus olfactory genes, and autosomal genes minus olfactory genes and 
paralogous pairs, against genomic distance in the real genome compared to the median 
distance in 1000 random genomes. We found that, for scores calculated with BP and CC, 
once olfactory genes and paralogous gene pairs have been removed there is no association 
between GO similarity and distance. This suggests that similarity in these scores is driven by 
paralogous pairs and the olfactory genes. We therefore moved forward using only MF in our 
analysis (Supplementary figure 9).  

 

Shared pathways  

Kegg pathways were downloaded from org.Mm.eg.db (51). The Kegg pathway data is very 
sparse and many genes do not have a pathway annotation. In order to account for this, the 
amount of pairs of genes sharing at least one pathway annotation was considered as a 
proportion of all pairs of genes with at least one pathway annotation each.    

 

Shared protein-protein interactions (PPIs) 
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PPI data was downloaded for mm10 from string v11 (52). Only interactions with the mode 
“binding” were selected so that only direct/physical interactions (rather than functional 
interactions which may not require physical contact) were included. Similarly to pathways, 
PPI data is very sparse and many genes are unannotated. Therefore, as with pathways the 
amount of pairs of genes with a PPI was considered as a proportion of all pairs of genes with 
at least one PPI annotation each. 

 

Random permutation testing 

For expression correlation, GO semantic similarity, proportion of gene pairs sharing a 
pathway and proportion of genes pairs sharing a PPI we have plotted the functional score 
against binned genomic distance in the real genome and compared it to the median value of 
the functional score in 1000 random genomes. In these analyses for each bin, we have 
established whether there is a significant difference between the functional score in the real 
genome compared to the distribution of scores in 1000 random genomes using permutation 
testing. For each bin this has been calculated as follows: sum(values in the random genome 
≥ value in the real genome)/1000. P-values were then FDR corrected.  

 

Effect size 

Effect size, r, was calculated using the r package rcompanion. A positive effect size indicates 
that the value associated with TADs is greater (than random TADs/random genome TADs) 
whereas a negative effect size indicates that the value associated with TADs is lesser (than 
random TADs/random genome TADs). The larger the value the larger the effect size.  

 

AVAILABILITY OF DATA AND MATERIALS 
The processed datasets analysed in during the current study will be made available upon 
publication.  
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