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Abstract

Cellular force generation and force transduction are of fundamental importance for

numerous biological processes and can be studied with the methods of Traction Force

Microscopy (TFM) and Monolayer Stress Microscopy. Traction Force Microscopy and

Monolayer Stress Microscopy solve the inverse problem of reconstructing cell-matrix

tractions and inter- and intra-cellular stresses from the measured cell force-induced

deformations of an adhesive substrate with known elasticity. Although several

laboratories have developed software for Traction Force Microscopy and Monolayer

Stress Microscopy computations, there is currently no software package available that

allows non-expert users to perform a full evaluation of such experiments. Here we

present pyTFM, a tool to perform Traction Force Microscopy and Monolayer Stress

Microscopy on single cells, cell patches and cell layers grown in a 2-dimensional

environment. pyTFM was optimized for ease-of-use; it is open-source and well

documented (hosted at https://pytfm.readthedocs.io/) including usage examples

and explanations of the theoretical background. pyTFM can be used as a standalone

Python package or as an add-on to the image annotation tool ClickPoints. In

combination with the ClickPoints environment, pyTFM allows the user to set all
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necessary analysis parameters, select regions of interest, examine the input data and

intermediary results, and calculate a wide range of parameters describing forces, stresses,

and their distribution. The Monolayer Stress Microscopy implementation in pyTFM

allows for the analysis of small cell patches and single cells; we analyze the accuracy and

performance of Traction Force Microscopy and Monolayer Stress Microscopy algorithms

using synthetic and experimental data from epithelial cell patches.

1 Introduction 1

The generation of active forces gives cells the ability to sense the mechanical properties 2

of their surroundings [1], which in turn can determine the cell fate during differentiation 3

processes [2], the migratory behavior of cells [3] or the response to drugs [4]. 4

Measuring cellular force generation is important for understanding fundamental 5

biological processes including wound healing [5], tissue development [6], metastasis 6

formation [7, 8] and cell migration [3]. 7

Cellular forces can be divided into three categories: Forces that are transmitted 8

between a cell and its surrounding matrix (also referred to as traction forces), forces 9

that are transmitted between cells, and forces that are transmitted inside cells. 10

Traction forces can be measured with Traction Force Microscopy (TFM), which is 11

most easily applied to cells grown in a 2-dimensional environment: Cells are seeded on a 12

planar elastic substrate on which they adhere, spread, and exert forces. The substrate 13

contains fiducial markers such as fluorescent beads for tracking cell force-induced 14

deformations of the substrate. Typically, the substrate is imaged in a tensed and a 15

relaxed (force-free) state, whereby force relaxation is achieved by detaching the cells 16

from the substrate. These two images are then compared to quantify substrate 17

deformations, either by tracking each individual marker bead, or more commonly, by 18

cross-correlation based Particle Image Velocimetry (PIV) [9]. 19

The deformation field of the substrate is subsequently analyzed to calculate the 20

cell-generated tractions in x- and y-directions. (Note that if the substrate deformations 21

in z-direction are also measured, which requires at least one additional image taken at a 22

different focal plane, it is possible to compute the tractions in z-direction [10]. In what 23

follows, however, we ignore deformations and tractions in z-direction.) The calculation 24
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of the traction field from the deformation field is an inverse problem for which a number 25

of algorithms have been developed, including numerical methods [11, 12], Fourier-based 26

deconvolution [13], and Finite Element (FE) computations [14], all of which have 27

specific advantages and disadvantages (see Sabass et al. 2007 [15] for a detailed 28

discussion). pyTFM uses the Fourier Transform Traction Cytometry (FTTC) algorithm 29

[13], as it is computationally fast and does not require the location of the cell boundary 30

as an additional input. 31

Tractions must be balanced by forces transmitted within or between cells. These 32

forces are usually described by stress tensors. The stress tensor field for cells grown in a 33

2-dimensional environment can be calculated using the Monolayer Stress Microscopy 34

method [16,17], whereby the cell or cell patch is modeled as an elastically stretched 35

2-dimensional sheet with point-like contacts to the matrix so that the tractions are 36

balanced by the internal stress of the elastic sheet. 37

In pyTFM, the cell or cell patch is modelled as a linear elastic sheet represented by a 38

network of nodes and vertices so that the stresses can be calculated by a standard 39

two-dimensional Finite Element Method (FEM). First, forces with the same magnitude 40

but opposing direction to the local tractions are applied to each node. Then, internal 41

strains and consequently stresses are calculated based on the network geometry and 42

elastic properties. 43

pyTFM uses the Monolayer Stress Microscopy algorithm developed by Tambe et al. 44

2013 [17]. In this implementation, the calculated network strain has no physical 45

meaning, as the matrix strain and the cell strain are not required to match [18]. 46

Consequently, the Young’s modulus of the elastic sheet has no influence on the stress 47

estimation, and the Poisson’s ratio has only a negligible influence. Both parameters can 48

therefore be freely chosen [17]. Note that there are different implementations of 49

Monolayer Stress Microscopy in which cell and matrix deformations are coupled and the 50

network elasticity corresponds to the effective cell elasticity, which must be known to 51

obtain correct results [19]. A comparison about these two approaches can be found in 52

[18]. 53

pyTFM uses a modified Monolayer Stress Microscopy algorithm for small cell 54

patches. Stress microscopy for single cells and small cell patches suffers from the low 55

spatial resolution of the TFM algorithm. A significant part of the tractions can seem to 56
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originate from outside the cell area, and when only tractions beneath the cell area are 57

considered, the stress field is underestimated. This problem cannot be remedied by 58

constraining the tractions to be zero outside the cell area (constrained TFM) as this 59

tends to produce large spurious tractions at the cell perimeter [13] and hence 60

unphysically high stresses in the cell monolayer. Ng et al. 2014 [20] addressed this issue 61

by expanding the FEM-grid to cover all tractions generated by the cell patch and by 62

exponentially decreasing the stiffness of the FEM-grid with increasing distance to the 63

cell patch edge. In our implementation, the FEM-grid is also expanded to cover all 64

cell-generated tractions, however, we found it unnecessary to introduce a stiffness 65

gradient in the FEM-grid. Moreover, zero-translation and zero-rotation constraints are 66

explicitly added to the FEM-algorithm in pyTFM. 67

Finally, pyTFM adds a number user-friendly features to easily set parameters, select 68

regions of interest and quickly evaluate results. For this, pyTFM can be optionally used 69

as an add-on to the image annotation tool ClickPoints [21]. This makes the analysis of 70

large data sets particularly easy by sorting input and output data in a database and 71

allowing the user to browse through it. 72

pyTFM is well documented, including detailed usage examples, information on the 73

theory of TFM and Monolayer Stress Microscopy, and explanations about the calculated 74

parameters. The documentation is hosted at https://pytfm.readthedocs.io. 75

2 Design and implementation 76

pyTFM is a Python package implemented in Python 3.6. It is mainly intended to be 77

used as an add-on for the image display and annotation tool ClickPoints, but can also 78

be used as a stand-alone Python library. 79

pyTFM performs TFM and Monolayer Stress Microscopy following the workflow 80

shown in Fig. 1A. The main steps of the workflow are the calculation of the 81

deformation field from images of the cell substrate in a tensed and relaxed state, the 82

calculation of the traction field, and the calculation of the monolayer stress field. The 83

mathematical details of these steps are discussed in Section 2.2. Deformation, traction 84

and stress fields are further analyzed to extract scalar measures of cellular stress, force 85

generation, and force transduction between cells. 86
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Fig 1. Workflow of pyTFM and image database organization. A: Workflow of
TFM and Monolayer Stress Microscopy analysis with pyTFM. B: Organization of the
pyTFM ClickPoints database. Input images are colored in orange, intermediary results
in yellow, and the final output in the form of scalar measures in green. The mask that
defines the cell boundaries and the area over which strain energy, contractility and
monolayer stresses are computed is colored light blue.

Cellular force generation is quantified by the total force generation and centripetal 87

contractility. Total force generation in turn is described by the strain energy that is 88

elastically stored in the substrate, and centripetal contractility is described by the sum 89

of all cell-generated forces projected towards a single force epicenter. Stresses are 90

quantified by average normal and shear stresses and their coefficient of variation, which 91

is a measure for stress fluctuations. Cell-cell force transduction is quantified by the line 92

tension, which is the force per unit length acting on a segment of a cell-cell boundary. 93

Specifically, pyTFM calculates the average magnitude of the line tension as well as the 94

average normal and shear component of the line tension. Additionally, pyTFM 95

calculates the area and number of cells of each cell patch, which can be used to 96

normalize the quantities above. We provide more details on how these quantities are 97

defined and how to interpret them in the Supplementary S1 File. 98

The user is required to select an area of the traction field over which the strain 99

energy, contractility and monolayer stresses are computed. This area should cover all 100

cell-generated tractions and is thus typically larger than the cell area. However, a 101

significant further extension of the user-selected area beyond the cell edge will lead to 102

an underestimation of monolayer stresses, as will be further discussed in Section 2.2.2. 103

Optionally, the outline of the cell or cell patch can be selected, defining the area over 104

which average stresses and stress fluctuations are computed. Also optionally, the outline 105

of cell-cell boundaries can be selected to calculate force transduction between cells. 106

pyTFM generates several output files. All fields (deformations, tractions, stresses) 107

are saved in the form of NumPy arrays as binary .npy files and are plotted as vector 108

fields or heat maps. The cell-cell force transduction and the strain energy density can 109

also be plotted (see Fig. 5 for an example). The user has full control over which plots 110

are produced. All calculated scalar results are saved in a tab-separated text file. 111

pyTFM includes Python functions to read, compare and statistically analyze the result 112

text files of several experiments. Alternatively, the result text files can be opened with 113
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standard text editors or data analysis tools such as Excel. 114

2.1 Integration of pyTFM with ClickPoints databases 115

When using the pyTFM add-on in ClickPoints, input and output images are organized 116

in a database (Fig. 1B), which allows users to efficiently navigate large data sets. The 117

database is organized in frames and layers: Each frame represents one field of view. 118

Initially, three layers are assigned to each frame. These layers contain images of the 119

substrate in the tensed and relaxed state, and an image of the cells. Output plots such 120

as the deformation field or the traction field are added as new layers in each analysis 121

step. Additionally, each frame is associated with a mask object in the form of an integer 122

array representing the user selected areas and cell outlines. This mask object can be 123

drawn directly in ClickPoints and can be displayed in each layer of a frame. 124

pyTFM provides a graphical user interface for the ClickPoints environment, which 125

allows the user to select input images, to set all relevant analysis parameters (e.g. the 126

elasticity of the substrate), and to select whether the analysis should be performed on 127

all frames or just the currently viewed frame (Fig. 2). A number of tools are provided 128

by ClickPoints, e.g. to draw masks, to adjust contrast and brightness of the displayed 129

images, to measure distances and object sizes, and to export images and video 130

sequences. 131

Fig 2. User interface of pyTFM. 1: Check boxes to select specific analysis steps. 2:
Selection of input images, drift correction and semi automatic segmentation of cell
borders. 3: Drop-down menu to select between analysing all frames in a database or
analysing only the currently viewed frame. 4: Parameters for PIV and TFM. 5:
User-selected region (red outline) and cell boundaries (green) for computing tractions,
stresses, contractility, strain energy and line tensions. 6: ClickPoints tools to select the
region and the cell boundaries by drawing masks. 7: ClickPoints navigation bar
through frames. Layers are navigate with the Page Up and Page Down keys, and frames
are navigated with the left and right arrow keys. 8: ClickPoints panel to adjust contrast
and brightness of the image display. This is helpful for manually segmenting cell
borders.
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2.2 Implementation of TFM and Monolayer Stress Microscopy 132

2.2.1 Deformation fields and TFM 133

Deformation fields are calculated from the images of the substrate in a tensed and 134

relaxed state using the cross correlation-based Particle Image Velocimetry (PIV) 135

algorithm implemented in the openPIV Python package [9]. PIV is performed by 136

selecting for example a 50x50 pixel tile around a given pixel from the tensed image and 137

shifting the tile by pixel increments in all directions across the corresponding tile in the 138

relaxed image. This yields a correlation matrix of in this case 99x99 pixels. The 139

deformation vector is then obtained by calculating the vector between the position of 140

the highest correlation and the center of the matrix. The initial deformation vector is 141

further refined to sub-pixel accurate values by fitting a 2D Gauss curve to the directly 142

neighbouring correlation values. To reduce noise, deformation vectors with a 143

signal-to-noise ratio smaller than 1.03 are exclude and replaced by the local mean of the 144

surrounding deformations at distances <= 2 pixel. The signal-to-noise ratio of each 145

deformation vector is defined as the ratio of the correlation of the highest peak and the 146

correlation of the second-highest peak outside of a neighborhood of 2 pixels around the 147

highest peak. The user may also correct a drift between the two input images: The drift 148

is identified by cross-correlating the entire images and then corrected by cropping both 149

images to the common field of view. 150

Tractions are calculated with the Fourier Transform Traction Cytometry (FTTC) 151

method [13]. Deformations (~u) and tractions (~t) are related by the convolution of the 152

traction vector field and a Greens tensor K: 153

~u = K ⊗ ~t (1)

In the case of a linearly elastic semi-infinite substrate, K is given by the Boussinesq 154

equations [22]. Inverting Eq. 1 and solving for the tractions is difficult in real space. 155

However, by exploiting the convolution theorem, the equation simplifies to a 156

multiplication in Fourier space: 157

~̃u(~k) = K̃(~k) ~̃T (~k) (2)
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where ~̃u(~k), ~̃T (~k) and K̃(~k) are the Fourier transforms of the deformation field, the 158

traction field and the Greens tensor. The latter can be found in [13]. 159

Eq. 2 can be analytically solved and thus allows for the direct calculation of tractions 160

in Fourier space. Tractions in real space are then obtained by applying the inverse 161

Fourier transform and an additional Gaussian filter with a sigma of typically 1-3 µm. 162

The original TFM algorithm assumes that the underlying substrate is infinitely 163

thick, which is justified in the case of single cells with dimensions that are smaller than 164

the thickness of the elastic substrate. In the case of cell patches, however, this 165

assumption is inadequate. We have therefore included a correction term for finite 166

substrate thickness [23]. 167

2.2.2 Monolayer Stress Microscopy 168

Stresses in a cell sheet are calculated with an implementation of Monolayer Stress 169

Microscopy as described in [16,17]. For computing stresses in small cell patches or 170

single cells, we implemented a method that corrects for the limited spatial resolution of 171

unconstrained TFM, which otherwise would lead to a substantial underestimation of 172

stresses [20]. Details of this correction are described below. 173

In the absence of inertial forces, tractions and stresses are balanced according to the 174

relation: 175

−tx =
δσxx
δx

+
δσyx
δy

−ty =
δσyx
δx

+
δσyy
δy

(3)

where σxx, σyy are the normal stresses in x- and y- direction, σyx is the shear stress, 176

and tx and ty are the x- and y-components of the traction vector. This differential 177

equation is solved using a Finite Element method (FEM) where the cell patch is 178

modeled as a 2-dimensional network of nodes arranged in a grid of quadrilateral 179

elements. Each node in the FEM-grid is loaded with a force of the same magnitude but 180

opposing direction as the local tractions. In the standard FE method, the nodal 181

displacements ~d of the cell patch are calculated by solving the equation 182

~d = K−1 ~f (4)
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where ~f are the vector of nodal forces, and K−1 is the inverse stiffness matrix. The 183

nodal displacements are converted to strains by taking the derivative in x- and 184

y-direction. Then, the strain is used to calculate the stress from the stress-strain 185

relationship of a linearly elastic 2-dimensional material: 186


σ11

σ22

σ12

 =
E

1 − v2


1 v 0

v 1 0

0 0 1 − v



ε11

ε22

ε12

 (5)

where E and v are Young’s modulus and Poisson’s ratio of the material, and ε11, ε22 187

and ε12 are the components of the strain tensor. Most of the FEM calculation is 188

performed using the solidspy Python package [24]. 189

The stiffness matrix K in Eq. 4 depends on the Young’s modulus in such a way that 190

the Young’s modulus in Eq. 5 cancels out. The traction-stress relation is therefore 191

independent of the Young’s modulus of the cell patch [17]. Furthermore, the Poisson’s 192

ratio has only a negligible influence on the stress prediction [17]. In the pyTFM 193

algorithm, the Young’s modulus is set to 1 Pa, and the Poisson’s ratio is set to 0.5. 194

Eq. 4 is only uniquely solvable if the displacements of at least two nodes of the 195

FEM-grid are assigned (which constrains the solution regarding translation and 196

rotation). In the original Monolayer Stress Microscopy algorithm [17], nodes at the edge 197

of the field of view are constrained to zero displacements in the direction perpendicular 198

to the edge of the field of view. This results in erroneous stresses within a margin of 199

approximately 150 µm to the image edge, which must be excluded from further analysis 200

[17]. This is impractical in the case of small cell patches or single cells. 201

pyTFM addresses this problem by modifying Eq. 4 so that it can be solved without 202

assigning the displacements of boundary nodes. This requires two steps. First, to ensure 203

that all forces and torques of the cell or cell patch are balanced, the forces applied to 204

the FEM-grid are corrected by subtracting the net force and rotating all force vectors to 205

enforce zero torque. Second, equation 4 is constrained to zero force and torque by 206

adding the equations: 207
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∑
(fx) = 0∑
(fy) = 0∑
(fxry − fyrx) = 0

(6)

rx and ry are the components of the distance vector of the corresponding node to 208

the center of the FEM-grid. Eqs. 6 are equivalent to imposing zero translation and zero 209

rotation constraints. The combined system of Eqs. 6 and Eq. 4 is solved numerically 210

using a standard least-squares minimization. 211

The analysis of stresses in small cell patches poses a second challenge: The 212

FEM-grid should be of the same size and shape as the cell patch, as outside nodes add 213

additional stiffness, leading to an underestimation of the stress field. However, the 214

limited spatial resolution of both PIV and TFM implies that some forces generated 215

close to the edge of the cell patch are predicted to originate from outside the cell patch 216

(Fig. 4). Neglecting these forces would lead to an underestimation of the stress field. 217

This can be avoided by extending the FEM-grid by a small margin so that all 218

cell-generated forces are included in the analysis. In practice, the user outlines the area 219

with clearly visible tractions (red outline in Fig. 2), over which pyTFM then spans the 220

FEM-grid. We explain further details of this approach in Section 3.1.1. 221

2.2.3 Limits of applicability of Monolayer Stress Microscopy and TFM 222

The TFM and Monolayer Stress Microscopy algorithms can only be applied if a number 223

of conditions are met. 2-dimensional TFM relies on the assumption that tractions in 224

z-direction generate only small deformations in the x- and y-plane. This is valid if 225

z-tractions are small, or if the substrate is almost incompressible (Poison’s ratio close to 226

0.5) [11] Additionally, TFM assumes that the matrix is a linearly elastic material. Both 227

assumptions are valid for polyacrylamide and PDMS, two popular substrates for TFM 228

[25–28]. 229

For Monolayer Stress Microscopy, cells are modeled as a linearly elastic material with 230

uniform elastic properties. As local stiffness inhomogeneities introduce only negligible 231

errors in the stress prediction, it is generally not necessary to consider non-linear elastic 232

effects of the cells [17]. Furthermore, Monolayer Stress Microscopy assumes that the cell 233
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dimensions in the x- and y-plane (length l) is larger the cell height (h). Increased cell 234

height introduces an error in the stress prediction on the order of (l/h)2 [17]. 235

3 Results 236

3.1 Accuracy of TFM and MSM algorithms 237

To evaluate the accuracy of the calculated tractions and stresses, we designed a simple 238

test system with a predefined stress field for which tractions and deformations can be 239

analytically computed. We then compare the analytical solution to the solution 240

provided by pyTFM. 241

The workflow of this test is illustrated in Fig. 3A: First, we define a square-shaped 242

area of 150 µm width representing a cell patch. This area carries a uniform normal 243

stress in x- and y-direction of 1 N/µm magnitude and zero shear stress. Stresses outside 244

the cell patch are set to zero. Next, we calculate the corresponding traction field by 245

taking the spatial derivatives of the stress field and applying Eq. 3. 246

Fig 3. Accuracy of stress and traction force calculation. A: We model a cell
colony as a uniformly distributed square-shaped stress field for which we analytically
compute a traction field and subsequently a deformation field. We use the deformation
field as the input for Traction Force Microscopy and Monolayer Stress Microscopy to
recover the traction and the stress fields. B: Input and reconstructed traction field. C:
Input and reconstructed stress field. The yellow dashed line shows the extent of the
original stress field. D: Contractility and average normal and shear stress and CV for
the mean normal stress in the input and reconstructed traction and stress fields. The
contractility is computed over an area that is 12 µm larger than the original stress field.
Average normal and shear stresses and the CV of the mean normal stress are computed
over the area of the original stress field.

From the traction field, we obtain the deformation field by first calculating the 247

Fourier transform of the traction field. Then we use Eq. 2 to obtain the deformation 248

field in Fourier space and, after applying the inverse Fourier transform, in real space. 249

We use a modified Greens Tensor K to account for a finite substrate thickness [23]. The 250

substrate thickness is set to 100 µm. 251

The deformation field is then used as the input for the TFM and Monolayer Stress 252

Microscopy algorithms. We use an FEM-grid area that is 5 µm larger than the original 253

stress field area since this resulted in the best stress recovery (Fig. 4A). 254

The computed mean of the normal and shear stresses and the standard deviation of 255
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the normal stresses are finally compared with the known input stress (uniform normal 256

stress in x- and y-direction of 1 N/µm magnitude, and zero shear stress). To compare 257

the reconstructed traction field with the analytical solution, we also compute the total 258

contractility (sum of all cell-generated forces projected towards a single force epicenter) 259

over the FEM-grid area. 260

We find that the pyTFM algorithm accurately reconstructs the stress field (Fig. 3B). 261

By contrast, the reconstructed traction field is blurred in comparison to the input 262

traction field (Fig. 3C). This is the effect of a Gaussian smoothing filter with a sigma of 263

3 µm that is applied to the tractions computed by the FTTC algorithm. This filter 264

helps to prevent unphysiological isolated and locally diverging tractions in the case of a 265

noisy input deformation field. In our test case, we do not model the influence of noise 266

and could therefore omit the filter; in practical applications, we find a sigma of 3 µm to 267

give the best compromise between resolution and noise. 268

The computed average normal stress is slightly (7%) smaller than the input stress, 269

but the error increases rapidly when the margin for extending the FEM-grid is 270

decreased below 5 µm (Fig. 4A). Total contractility and the coefficient of variation for 271

the normal stress are recovered accurately (Fig. 3D). 272

3.1.1 Effect of FEM-grid size on the stress recovery 273

pyTFM requires the user to select an area of the traction field over which pyTFM then 274

computes contractility and strain energy and draws the FEM-grid for computing 275

monolayer stresses. The size of this area influences the accuracy of the stress and force 276

measurements. Selecting an area that is too small leads to an underestimation of stresses 277

and contractility. Selecting an area that is too large also leads to an underestimation of 278

stresses. To systematically analyze which effect the size of the user-selected area has on 279

the traction and stress reconstruction, we expand the traction area and analyze the 280

average normal stress and the contractility for the synthetic test data described above 281

(Fig. 4A) and for a MDCK cell patch grown on a polyacrylamide substrate (Young’s 282

modulus 49 kPa, Fig. 4B). In the case of the synthetic data, we normalize the computed 283

average normal stress and contractility to the known input stress (1 N/m) and to the 284

known contractility of the input traction field (600 N), respectively. In the case of the 285

experimental data, we normalize the computed average normal stress and contractility 286
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to their respective maximum values as the true stress and contractility is unknown. 287

Fig 4. Effect of increasing the traction area on stress and contractility
recovery. The predicted traction fields of an artificial test system (A) and a real
MDCK cell patch (B). The outlines of 3 representative FEM-grids are shown on the left.
The relationship between average normal stress and FEM-grid size is shown on the right.

We find that the normalized stress rapidly increases (by approximately 40%) with 288

increasing area until it reaches a maximum, after which it declines at a slower rate. The 289

contractility displays a similar initial increase but then remains approximately constant. 290

The maximum of the normalized stress occurs when the traction area just covers all 291

cell-generated tractions, including those that appear outside the cell patch. In the cases 292

of the synthetic data, the maximum is reached at a traction area expansion distance of 293

5 µm beyond the cell patch outline, whereas in the case of the MDCK cell patch, it is 294

reached at at an expansion distance of 20 µm. The reason for this larger distance in the 295

MDCK data is the additional blurring of tractions introduced by the PIV algorithm 296

(whereas no PIV was needed for analyzing the synthetic data). The traction area 297

corresponding to the maximal normal stress can be regarded as the optimum, as 298

approximately 93% of the input stress is recovered. Expanding the traction area and 299

thus the FEM-grid beyond the optimum distance adds elastic material to the monolayer 300

and thereby reduces the average stress. This stress reduction, however, occurs only 301

gradually (Fig. 4B), which implies that in practice it is best to choose the traction area 302

rather generously to include all cell-generated tractions. The contractility reaches its 303

maximum values at almost the same expansion distance as the stress. Thus it is 304

possible to use the same area to accurately compute both stress and contractility. 305

3.2 Analysis of a MDCK cell-colony with pyTFM 306

In the following, we illustrate the workflow of pyTFM (Fig. 1) using a MDCK cell 307

colony as a representative example. Experimental details for this example are provided 308

in Supplementary S2 File. Two images of fluorescent beads serve as the essential input, 309

one image taken before and one image after cell removal by trypsinization of the cells 310

(Fig. 5A). pyTFM calculates the deformation field (Fig. 5B) and the traction field (Fig. 311

5C). The user then selects the area (red outline in Fig. 5 ) over which pyTFM draws 312

the FEM-grid and computes the contractility and strain energy (both are scalar values), 313
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and the monolayer stress field (represented as a map of normal stresses (Fig. 5E)). If 314

the user optionally selects the outline of the cell patch and the boundaries of the 315

individual cells within the patch (green outlines in Fig. 5E), pyTFM also computes the 316

line tension between the cells (Fig. 5F). The program also computes a number of scalar 317

values for quantifying cellular force generation and stress distribution (Table 1). 318

Fig 5. Analysis of stress and force generation of a MDCK cell colony. A:
Images of substrate-embedded fluorescent beads before and after the cells are detached
by trypsinization. B: Substrate deformation field. C: Traction field. The user selects the
area (red outline) over which contractility, strain energy and cell stresses are
subsequently calculated. D: Image of the cell colony; fluorescent membrane staining
with tdTomato-Farnesyl. E: Absolute value of the Mean normal stress in the cell colony.
F: Line tension along cell-cell borders. The orange dashed line marks the outer edge of
the cell colony.

The cell colony in this example displays several typical features: First, stresses and 319

traction forces are unevenly distributed across the cell colony, as indicated for example 320

by a high coefficient of variation of 0.38 for the normal component of the stress field 321

(Table 1). Second, the average line tension is higher than the average normal or 322

maximum shear stress. This indicates that, on the average, interfacial stresses between 323

cells exceed intracellular stresses. Third, normal and tensile components of the stress 324

field dominate over shear stress components, indicating that tractions are locally 325

aligned. In addition, the shear component of the line tension is considerably smaller 326

than its normal component, implying that cells in this colony pull on each other but do 327

not exert appreciable forces parallel to their boundaries. 328

Table 1. Scalar values computed by pyTFM quantifying cellular force
generation and stress distribution.

Scalar Quantity Result

Contractility 0.64 µN
Strain energy 0.11 pJ
Avg. max. normal stress 2.62 mN/m
Avg. max. shear stress 0.78 mN/m
CV normal stress 0.38
Avg. line tension 2.04 mN/m
Avg. normal line tension 1.94 mN/m
Avg. shear line tension 0.56 mN/m
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4 Availability and future directions 329

Currently, pyTFM exclusively uses the Fourier Transform Traction Cytometry 330

algorithm [13]. This algorithm is simple, robust and well established but has a number 331

of limitations (see Section 2.2.3). However, due to the structure of pyTFM, it is possible 332

to implement alternative algorithms that address these issues with minimal changes to 333

other parts of the software. An example is the Boundary Elements Method [11] that 334

solves the inverse problem numerically in real space and allows users to set spatial 335

constraints on the tractions. This avoids the occurrence of arguably unphysiological 336

tractions outside the cell area. Another example is 2.5-dimensional Traction Force 337

Microscopy that allows for the calculation of tractions in z-directions [10]. This 338

algorithm is also necessary when cells are grown on compressible substrates and generate 339

significant z-tractions. Finally, FEM-based Traction Force Microscopy algorithms allow 340

for the analysis of cells grown on non-linear elastic substrates such as collagen [29]. 341

pyTFM can be downloaded and installed from 342

https://github.com/fabrylab/pyTFM under the GNU General Public License v3.0. 343

Detailed instructions on the installation and usage are provided at 344

https://pytfm.readthedocs.io/. 345
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5 Supporting information 353

S1 File. Scalar quantities used to describe cellular stresses and force 354

generation. We discuss the definition and interpretation of the quantities that pyTFM 355

uses to describe cellular stresses, force generation and cell-cell force transfer. 356

S2 File. Experimental details for analyzing the MDCK cell colony. We 357

provide basic information on our protocols for polyacrylamide gel preparation and cell 358

culture for the TFM analysis of the MDCK cell colony. 359

S3 File. pyTFM source code and documentation. This archive contains the 360

pyTFM source code and documentation which includes installation and usage 361

instructions and links to further example data sets. 362
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