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Abstract 

  Membrane proteins play numerous physiological roles and are thus of tremendous 

interest in pharmacology. Nevertheless, stable and homogeneous sample preparation is 

one of the bottlenecks in biophysical and pharmacological studies of membrane proteins 

because membrane proteins are typically unstable and poorly expressed. To overcome 

such obstacles, GFP fusion-based Fluorescence-detection Size-Exclusion 

Chromatography (FSEC) has been widely employed for membrane protein expression 

screening for over a decade. However, fused GFP itself may occasionally affect the 

expression and/or stability of the targeted membrane protein, leading to both 

false-positive and false-negative results in expression screening. Furthermore, GFP 

fusion technology is not well suited for some membrane proteins depending on their 

membrane topology. Here, we developed an FSEC assay utilizing nanobody (Nb) 

technology, named FSEC-Nb, in which targeted membrane proteins are fused to a small 

peptide tag and recombinantly expressed. The whole-cell extracts are solubilized, mixed 

with anti-peptide Nb fused to GFP and applied to a size-exclusion chromatography 

column attached to a fluorescence detector for FSEC analysis. FSEC-Nb enables one to 
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evaluate the expression, monodispersity and thermostability of membrane proteins 

without the need of purification by utilizing the benefits of the GFP fusion-based FSEC 

method, but does not require direct GFP fusion to targeted proteins. We applied 

FSEC-Nb to screen zinc-activated ion channel (ZAC) family proteins in the Cys-loop 

superfamily and membrane proteins from SARS-CoV-2 as examples of the practical 

application of FSEC-Nb. We successfully identified a ZAC ortholog with high 

monodispersity but moderate expression levels that could not be identified with the 

previously developed GFP fusion-free FSEC method. Consistent with the results of 

FSEC-Nb screening, the purified ZAC ortholog showed monodispersed particles by 

both negative staining EM and cryo-EM. Furthermore, we identified two membrane 

proteins from SARS-CoV-2 with high monodispersity and expression level by 

FSEC-Nb, which may facilitate structural and functional studies of SARS-CoV-2. 

Overall, our results show FSEC-Nb as a powerful tool for membrane protein expression 

screening that can provide further opportunity to prepare well-behaved membrane 

proteins for structural and functional studies. 
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Introduction 

Biophysical and biochemical studies, especially the structural determination of 

membrane proteins, require stable and homogeneous sample preparations, the 

acquisition of which is often hindered by the poor expression and unstable nature of 

membrane proteins
1-3

. 

   To overcome this issue, various methods have been developed
4-16

. In particular, 

following the pioneer works on the application of GFP fusion techniques for membrane 

protein expression screening
12-14

, GFP fusion-based Fluorescence-detection 

Size-Exclusion Chromatography (FSEC) has been widely utilized for rapid evaluation 

of the expression status and thermostability of membrane proteins from both eukaryotes 

and prokaryotes
15,16

. 

    In GFP fusion-based FSEC, recombinantly expressed GFP-fused proteins can be 

detected by a fluorescence detector following size-exclusion chromatography. The 

resulting fluorescence chromatography profiles allow one to rapidly analyze the 

expression level, monodispersity, and stability of both unpurified and purified 

membrane proteins at a scale on the order of nanograms. GFP fusion-based FSEC, 
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which is suited for the high-throughput screening of panels of orthologs, mutations and 

membrane proteins under different biochemical conditions, has been shown to be 

powerful in determining the structure of eukaryotic and prokaryotic membrane proteins 

by both cryo-EM and X-ray crystallography
17-25

. 

 Nevertheless, several significant disadvantages of this method have also been 

recognized. 

  First, because GFP is a highly stable, soluble protein, its fusion sometimes causes 

false-positive hits by FSEC screening. In the case of such false-positive hits, GFP fusion 

proteins exhibit monodispersity by FSEC, but target membrane proteins may 

immediately aggregate or precipitate after the removal of GFP due to the instability of 

the target membrane protein alone
26

. Second, in addition to the issue of false positivity, 

GFP fusion also causes a false negativity because it sometimes negatively affects the 

expression level
27,28

. Finally, depending on the membrane topology of the target 

membrane protein, the GFP fusion technique may be difficult to apply. For instance, 

GFP fusion technology is not well suited for application with bacterial membrane 

proteins whose both N- and C-terminal ends are located at the periplasm because GFP 
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tends to fail to fold properly at the periplasm and thus does not show its 

fluorescence
29,30

. Likewise, eukaryotic Cys-loop receptors are also known to be 

unsuitable for either N- or C-terminal GFP fusion
31,32

. Thus, the insertion of GFP into 

the cytoplasmic loop is required for the application of GFP technology
31,32

. This finding 

indicates that the simple strategy of N- or C-terminal GFP fusion is not applicable to 

some eukaryotic membrane proteins; thus, the application of GFP fusion-based FSEC 

may need optimization of the position at which GFP is inserted. 

  To overcome such disadvantages, a GFP fusion-free FSEC method would be ideal, 

and a multivalent nitrilotriacetic acid (NTA) fluorescent probe called P3NTA was 

developed as a pioneer work of the GFP fusion-free FSEC method
9
. The P3NTA probe 

can bind the poly-histidine tag fused to a target membrane protein for detection by 

FSEC without the need for purification. However, since interactions of the P3NTA 

probe with poly-histidine-tagged proteins are relatively weak and nonspecific, 

endogenous proteins from host cells with multiple accessible histidine residues may 

seriously affect the detection of target proteins
33

. In particular, expression constructs of 

membrane proteins with high stability and monodispersity but relatively moderate 
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expression are hard to identify from FSEC screening by P3NTA due to its relatively 

weak and nonspecific detection ability. However, such expression constructs would now 

still be promising since structure determination by cryo-EM requires much less purified 

protein than that by X-ray crystallography
34

. 

  To make further practical use of GFP fusion-free FSEC, we hypothesized that the 

application of other types of small peptide tags with high affinity and specificity would 

be ideal and that recent advances in nanobody (Nb) technologies for small peptides 

would meet such demands for GFP fusion-free FSEC. 

 Nb technology has been broadly utilized in laboratory research, clinical diagnosis and 

potential therapies
35

. Nbs, which are derived from the antigen-specific variable domain 

of the camelid heavy-chain antibody, have a molecular weight of 12-15 kDa and can be 

recombinantly expressed in bacteria with high yield. 

 Recently, the peptide tags ALFA and BC2 and the corresponding specific Nbs we 

refer to here as NbALFA and NbBC2, respectively, were developed
33,36

. The ALFA tag 

(SRLEEELRRRLTE), designed de novo, forms a stable, hydrophilic and electroneutral 

α-helix in solution with an extremely high affinity of ~26 pM for NbALFA
33,37

. The de 
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novo designed sequence of ALFA is absent in common model organisms, which makes 

its recognition by NbALFA unique
33

. The BC2 tag (PDRKAAVSHWQQ), derived from 

residues 16-27 of β–catenin, is unstructured in solution, and has a high affinity of ~1.4 

nM for NbBC2
36

. 

  Here, we developed a new type of FSEC utilizing Nb technology named FSEC-Nb. A 

membrane protein fused to the small peptide tag ALFA is recombinantly expressed in 

bacterial or eukaryotic cells. The whole-cell extracts are then solubilized and mixed 

with the NbALFA Nb, which is specific for the ALFA tag, fused to mEGFP
38

 for FSEC 

analysis (Fig. 1). 

 To validate the method, we applied FSEC-Nb to the expression of bacterial and 

eukaryotic membrane proteins and showed that FSEC-Nb can be applied to ortholog 

screening and a thermostability assay. 

 Notably, we applied FSEC-Nb to orthologs of the zinc-activated ion channel (ZAC) 

family, a member of the Cys-loop receptor superfamily, which are unsuitable for either 

N- or C-terminal GFP fusion, and identified a ZAC ortholog from Oryzias latipes 

(OlZAC). However, we were not able to detect the expression of OlZAC by P3NTA, a 
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previously developed GFP fusion-free FSEC method. Consistent with the FSEC-Nb 

results, the negative staining EM and cryo-EM of the purified ZAC ortholog showed the 

monodispersity of the particles. Furthermore, we screened the expression of membrane 

proteins from SARS-CoV-2 by FSEC-Nb and identified two of them with a high level 

of expression and monodispersity, which could facilitate further structural and 

functional studies of SARS-CoV-2. Overall, our results showed FSEC-Nb as a powerful 

tool for expression screening of membrane proteins. 

 

Results 

Establishing the FSEC-Nb method 

  To overcome the disadvantages of the conventional FSEC method, we designed 

FSEC-Nb, which utilizes short peptides as fusion tags and Nbs specific to these peptides 

fused to monomerized EGFP proteins as a probe (Fig. 1). 

   We first applied our method to a prokaryotic ortholog of Zrt/Irt-like protein (ZIP) in 

the E. coli expression system. ZIPs function as metal transporters and are conserved 

from prokaryotes to eukaryotes, including humans
39

. Among the ZIP family, the 
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structure of the bacterial ZIP protein from Bordetella bronchiseptica (BbZIP) was 

determined by crystallography
39

; we chose to utilize BbZIP to establish our FSEC-Nb 

system because both its N- and C-terminal ends are located at the periplasm
39

, which is 

not well suited for application of the GFP fusion-based FSEC method in bacterial 

expression systems. 

In our experiment, BbZIP was fused to the peptide tags ALFA and BC2 at its 

C-terminus and recombinantly expressed in E. coli. The whole-cell extract was 

solubilized with detergents and mixed with mEGFP-fused Nbs specific for either the 

ALFA or BC2 tag (Fig. 2A and 2B). After removal of the pellet by ultracentrifugation, 

the sample was applied to a SEC column connected to a fluorescence detector (Fig. 1). 

When BbZIP was probed with mEGFP-tagged NbALFA, the FSEC plots presented 

peaks for both the mEGFP-tagged NbALFA in complex with the ALFA peptide-tagged 

BbZIP and free mEGFP-tagged NbALFA (Fig. 2A), but the corresponding complex 

peak was not observed when BbZIP was probed with mEGFP-tagged NbBC2 (Fig. 2B). 

These results showed that mEGFP-NbALFA specifically recognized the ALFA 

peptide-tagged BbZIP protein for the detection of BbZIP expression. The reason for the 
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failure of mEGFP-tagged NbBC2 and the BC2 tag is unknown but may have been due 

to the difference between tags in terms of their affinities for their Nbs (ALFA: ~26 pM, 

BC2: ~1.4 nM)
33,36

. Furthermore, we tested expression of the C-terminally 

mEGFP-tagged BbZIP by FSEC but did not detect its expression (Fig. 2C), consistent 

with the finding that the C-terminal end of BbZIP is located at the periplasm
39

. We also 

tested expression of BbZIP C-terminally fused to muGFP
40

, a derivative of superfolder 

GFP
41

, since superfolder GFP is more suitable for its folding at the periplasm
42,43

. 

However, we still did not detect the expression of the muGFP-tagged BbZIP by FSEC 

(Fig. 2C).  

 Overall, based on the results from BbZIP, we decided to employ the ALFA peptide 

tag and mEGFP-tagged NbALFA with our FSEC-Nb system for further experiments. 

 

Thermostability assay by FSEC-Nb 

  We next applied the FSEC-Nb method to check membrane protein expression in 

mammalian cells and tested whether the FSEC-Nb system can be employed for 

thermostability assays of membrane proteins (Fig. 3A and 3B). We chose the human 
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P2X3 (hP2X3) protein, a member of the P2X receptor superfamily with known 

structures
44-46

. 

  ALFA-tagged hP2X3 was transiently expressed in HEK293 cells, which were 

solubilized for further FSEC-Nb experiments. The FSEC profiles of ALFA-tagged 

hP2X3 labeled with mEGFP-fused NbALFA showed peaks for both the mEGFP-fused 

NbALFA in complex with the ALFA-tagged hP2X3 and free mEGFP-fused NbALFA 

(Fig. 3C), showing that the FSEC-Nb technique can be applied in HEK293 cells. 

  In the thermostability assay of hP2X3 by FSEC-Nb, solubilized samples were 

incubated at their respective temperatures for 10 minutes using a thermal cycler, and the 

precipitated materials were then removed by ultracentrifugation before labeling with 

mEGFP-tagged NbALFA (Fig. 3A and 3B). The FSEC-Nb profiles clearly showed a 

thermal shift of the main peaks from the samples incubated at temperatures near and 

above 55 °C (Fig. 3D), with estimates of the Tm of 56.6 °C. 

  We then tested the thermostabilizing effects of ATP on hP2X3 (Fig. 3E). ATP is an 

endogenous ligand of P2X receptors that typically increases the thermostability of P2X 

receptors
16

. Consistently, in the thermostability assay carried out by FSEC-Nb, ATP 
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showed a clear stabilizing effect, increasing the estimated Tm by 15 °C. These results 

showed that FSEC-Nb can be employed to assay the thermostability of membrane 

proteins without the need for purification steps. 

 

Expression screening of ZAC orthologs and SARS-CoV-2 membrane proteins 

 As examples of the practical application of FSEC-Nb, we then applied FSEC-Nb to 

screen ZAC family proteins and membrane proteins from SARS-CoV-2 (Fig. 4 and 5). 

ZACs belong to the Cys-loop ligand-gated ion channel (LGIC) superfamily, which 

also includes nicotinic acetylcholine (nACh), 5-HT3, GABAA and glycine receptors
47,48

. 

  In addition to Zn
2+

, the gating of ZACs, nonselective cation channels that are widely 

expressed in the human body, is activated by Cu
2+

 and protons
48

. Since ZACs were the 

last members of the Cys-loop LGIC superfamily to be discovered
47-49

, their function and 

structure are poorly characterized. 

  To facilitate structural and biophysical studies of ZAC proteins, we utilized FSEC-Nb 

to overcome the difficulty imposed by heterogeneous ZAC expression and purification. 

We chose to apply FSEC-Nb to ZACs because Cys-loop LGIC superfamily proteins 
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were reported to be unsuitable for either N- or C-terminal GFP fusion
31,32

. 

  ZAC genes from Homo sapiens (HsZAC), Danio rerio (DrZAC), Oryzias latipes 

(OlZAC) and Oreochromis niloticus (OnZAC) were synthesized with ALFA and 

octa-histidine tags at the C-terminus, and recombinantly expressed in HEK293 cells. 

The expressed ZAC orthologs were probed by mEGFP-tagged NbALFA for detection 

by the FSEC-Nb method. FSEC-Nb screening of ZAC orthologs showed that the profile 

for OlZAC exhibited a higher and sharper peak than those for other ZAC orthologs (Fig. 

4A). In contrast, we could not detect the expression of the C-terminally muGFP-tagged 

OlZAC by FSEC (Fig. 4B). Furthermore, we could not detect the expression of OlZAC 

by P3NTA-based FSEC, the previously developed GFP fusion-free FSEC method (Fig. 

4C), showing the improved sensitivity of FSEC-Nb over P3NTA-based FSEC.  

  SARS-CoV-2 is a pathogen that causes coronavirus disease 2019 (COVID-19)
50-52

. 

Using FSEC-Nb, we screened the expression of a series of membrane proteins from 

SARS-CoV-2 (Fig. 5). We identified ORF3a and ORF7b with high monodispersity and 

high expression level, comparable to those of hP2X3 (Fig. 5). ORF3a is an ion channel 

and potential target for COVID-19 therapy
53

. A mutation on ORF7b reportedly showed 
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higher replicative fitness
54

. Consistent with the sharp peak from FSEC-Nb, the cryo-EM 

structure of ORF3a was recently reported on bioRxiv
53

. Overall, our FSEC-Nb 

screening results may facilitate structural and functional studies of SARS-CoV-2. 

 

Detergent screening of OlZAC 

 Purification of membrane proteins requires detergents to extract the proteins from the 

biological membrane. The type of detergent used often affects the monodispersity and 

stability of a membrane protein in purification; thus, detergent screening is beneficial 

for establishing purification protocols for membrane proteins. Furthermore, the addition 

of lipids and lipid-like compounds, such as cholesteryl hemisuccinate (CHS), which 

was shown to be useful for the purification and crystallization of various GPCRs
55-57

, 

could also affect the stability of membrane proteins
16

. In our assay of OlZAC 

thermostability by FSEC-Nb, we tested multiple types of detergents for OlZAC; among 

these detergents were n-dodecyl-b-D-maltoside (DDM); DDM additive with CHS at a 

ratio of 5:1 (w:w), referred to as DDM-CHS; lauryl maltose neopentyl glycol (LMNG); 

and glyco-diosgenin (GDN). The FSEC-Nb profiles of OlZAC solubilized with DDM 
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showed a thermal shift of the main peaks from the samples incubated at temperatures 

near and above 60 °C (Fig. 6A), with estimates of the Tm of 60.6 °C (Fig. 6B). 

Unpurified ALFA-tagged OlZAC samples solubilized with the respective detergents 

were heat-treated at 60 °C for 10 minutes, and FSEC-Nb was applied to both heated and 

unheated samples for comparison (Fig. 6C). Compared to DDM, LMNG conferred 

better thermostability to OlZAC, whereas DDM-CHS solubilized OlZAC similarly as 

with DDM (Fig. 6C). The performance of GDN was similar to that of LMNG (Fig. 6C). 

Based on the results of detergent screening with OlZAC by FSEC-Nb, we decided to 

employ either DDM or DDM-CHS for protein extraction from the membrane and either 

LMNG or GDN for the subsequent purification steps. 

 

Large-scale culture and purification of OlZAC 

 For large-scale culture in HEK293S cells, we then generated bacmid DNA for OlZAC, 

which was used to transfect Sf9 insect cells to prepare BacMam virus. To optimize the 

expression conditions, using FSEC-Nb, we performed small-scale expression screening 

in HEK293S cells by testing different amounts of P2 virus, incubation times, and cell 
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culture temperatures at 16 hours after the addition of P2 virus (Fig. 7A and 7B) and 

decided to choose one set of conditions for large-scale culture (1% volume P2 virus 

addition, 88 hours of culture at 37 °C after the addition of virus). 

OlZAC was purified as described in the Methods section. Briefly, the membrane 

collected from cell lysates was solubilized in DDM-CHS, and the detergent was then 

exchanged to LMNG in the affinity chromatography steps. During size-exclusion 

chromatography in SEC buffer containing LMNG, the UV absorbance plot showed a 

symmetric peak for OlZAC and a prior void peak (Fig. 7C). A total of 2.4 liters of 

HEK293 cell culture yielded approximately 0.5 mg of purified OlZAC protein. 

Trp-based FSEC verified the monodispersity of the pooled fractions constituting the 

main SEC peaks (Fig. 7D), and the purity of the pooled fractions was validated by 

SDS-PAGE (Fig. 7E). 

 

Negative staining EM and cryo-EM of OlZAC 

  To evaluate the sample quality of OlZAC, which was identified by FSEC-Nb, we 

performed negative staining EM and preliminary cryo-EM of OlZAC (Fig. 8). 
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 Pioneering structural studies of other eukaryotic pLGIC members by crystallography 

and cryo-EM have elucidated their fundamental architecture: a pentamer comprised of 

an extracellular component for ligand gating, a transmembrane component for ion 

permeation and an intracellular component
32,58-64

. ZACs possess low amino acid 

sequence identity with other pLGIC members, with the closest matches exhibiting ~20% 

identity with ZACs
47,48

. Accordingly, little is still known about the ZAC structure. 

  The OlZAC purified under the apo conditions was reconstituted into amphipol by 

mixing with amphipols at a mass ratio of 1:20, and the detergent was removed by 

Bio-Beads. We tested the reconstitution of NAPol on a small scale by Trp-FSEC, which 

resulted in a high and symmetric peak for the amphipol-reconstituted OlZAC (Fig. 

S1A). NAPol is a nonionic amphipol that is soluble across a wide pH range and 

compatible with multivalent cations
65,66

; thus, we chose NAPol for ZACs since both pH 

and the presence of divalent cations are relevant to the functional status of ZACs. On a 

large scale, we further reconstituted OlZAC into NAPol and separated the 

amphipol-reconstituted OlZAC by SEC (Fig. S1B).  

  The amphipol-reconstituted OlZAC was then stained by uranyl acetate and observed 
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under an electron microscope. The images taken by the EM-CCD camera showed 

monodispersed OlZAC particles (Fig. 8A). Because of the high contrast after negative 

staining, the particles were easily recognized from the images (Fig. 8B). The particles 

extracted from over one hundred images were classified into several 2D classes, which 

validated the stoichiometry and constitution of ZACs (Fig. 8C, 8D and 8E). Similar to 

other pLGIC members, ZACs form a pentamer (Fig. 8E) and is composed of 

extracellular, transmembrane and intracellular components (Fig. 8D). 

 We then performed preliminary cryo-EM single-particle analysis of OlZAC with a K3 

direct detection camera (Fig. 8F and 8G), which also showed monodispersed particles. 

  These results showed the sample quality of OlZAC identified by FSEC-Nb, which 

would be suitable for structural studies. 

 

Discussion 

  In this work, we developed a new type of FSEC assay, named FSEC-Nb, utilizing the 

ALFA peptide tag and anti-ALFA peptide Nb NbALFA. In FSEC-Nb, targeted 

membrane proteins are tagged by the peptide tag ALFA and recombinantly expressed in 
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either prokaryotic or eukaryotic cells before being probed by mEGFP-tagged NbALFA 

for FSEC analysis (Fig. 1). We first tested two peptide tags, ALFA and BC2, and found 

that the peptide tag ALFA was more suitable for the detection of BbZIP by FSEC-Nb in 

a bacterial expression system (Fig. 2). We then applied the FSEC-Nb method for a 

thermostability assay (Fig. 3). As a demonstration of the practical application of 

FSEC-Nb, we then applied FSEC-Nb for the screening of orthologs of ZAC, a member 

of the Cys-loop LGIC superfamily without a known 3D structure, as well as membrane 

proteins from SARS-CoV-2 (Fig. 4 and 5). We then further screened different types of 

detergents for the purification of OlZAC (Fig. 6). Finally, using purified OlZAC (Fig. 7), 

we performed negative staining EM and preliminary cryo-EM, which showed the 

monodispersity of the purified OlZAC sample (Fig. 8). 

 FSEC-Nb confers the advantage of conventional GFP fusion-based FSEC but avoids 

the following disadvantages of GFP fusion-based FSEC.  

 First, GFP fusion-based FSEC is not well suited for some membrane proteins, 

depending on their membrane topology
29-32

. To be noted, the membrane topology 

prediction from 29 organisms by TransMembrane Hidden Markov Model (TMHMM)
67
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showed ~20% of multispanning membrane proteins possess both their N- and 

C-terminal ends at the extracellular or periplasmic sides. Furthermore, even when 

applicable, GFP fusion may occasionally affect the expression and/or stability of 

targeted membrane proteins, potentially leading to both false-positive and false-negative 

results
26-28

. In our recent worst case, we screened over 60 homologs of MgtC, a 

virulence factor in Salmonella enterica
68

, by GFP fusion-based FSEC with the 

C-terminally mGFPuv-tagged expression constructs (Table S1), because the C-terminal 

end of MgtC is located at the cytoplasm. We identified only two of them with high 

monodispersity and expression level (Fig. S2). However, both two proteins aggregated 

and precipitated after the removal of the GFP tag. In addition, compared to the P3-NTA 

method, a previously developed GFP fusion-free FSEC method utilizing poly-histidine 

tag, FSEC-Nb showed better performance in the screening of ZAC protein orthologs 

(Fig. 5). Overall, FSEC-Nb would be useful for expression screening of both types of 

membrane proteins to which the conventional GFP fusion-based FSEC is applicable and 

is not applicable. 

 On the other hand, representing a disadvantage of our FSEC-Nb assay over the 
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conventional GFP fusion FSEC method, purified GFP-fused NbALFA, which acts as a 

probe, needs to be prepared in each laboratory that wishes to use this method. However, 

the purification of mEGFP-fused NbALFA would be easy for most biochemistry and 

structural biology laboratories, as its E. coli expression level is quite high (more than 10 

mg of purified protein from 1 liter of E. coli culture), and 1 mg of mEGFP-fused 

NbALFA is enough for 1,000 FSEC-Nb experiments and would thus last for a couple of 

years with conventional laboratory usage. Furthermore, to improve access for FSEC-Nb, 

we have deposited the expression vectors for mEGFP- and mCherry-fused NbALFAs as 

well as template vectors with the ALFA tag for expression in E. coli (pETNb-nALFA 

and pETNb-cALFA) and insect (pFBNb-cALFA) and mammalian (pBMNb-cALFA) 

cells to the Addgene plasmid repository (Fig. 9). We have also deposited BbZIP gene in 

pETNb-cALFA and hP2X3 gene in pBMNb-cALFA as positive controls for FSEC-Nb. 

Thus, FSEC-Nb can be easily introduced to most biochemistry and structural biology 

laboratories, particularly to labs those with the experience with the conventional GFP 

fusion-based FSEC method, which has already been widely used. Notably, all of these 

vectors can be used for not only a small-scale expression check by FSEC-Nb but also 
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large-scale protein expression. 

   Overall, FSEC-Nb can be used for expression screening and thermostability assays 

on a small scale with high sensitivity and specificity without the need for GFP fusion to 

target proteins. Such advantages of FSEC-Nb will enable us to explore further 

opportunities to prepare target proteins for structure determination as well as other 

biophysical and pharmacological studies. 

 

Materials and Methods 

Purification of mEGFP-tagged Nbs 

With an interval of GSGSGS, the NbALFA sequence was fused in frame with an 

N-terminal His8-mEGFP affinity tag and subcloned into the pET28b vector. The protein 

was overexpressed in E. coli Rosetta (DE3) cells in LB medium containing 30 μg/ml 

kanamycin at 37 °C by induction at an OD600 of ~0.5 with 0.5 mM isopropyl 

D-thiogalactoside (IPTG) for 16 hours at 18 °C. The E. coli cells were subsequently 

harvested by centrifugation (6,000 × g, 15 minutes) and resuspended in buffer A (50 

mM Tris-HCl (pH 8.0), 150 mM NaCl) supplemented with 0.5 mM 
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phenylmethylsulfonyl fluoride (PMSF). All purification steps were performed at 4 °C. 

The E. coli cells were then disrupted with a microfluidizer, and debris was removed by 

centrifugation (70,000 × g, 60 minutes). The supernatant was loaded onto equilibrated 

Ni-NTA resin pre-equilibrated with buffer A and mixed for 1 hour. The column was then 

washed with buffer A containing 30 mM imidazole, and the protein was eluted with 

buffer A containing 300 mM imidazole. The imidazole was removed by dialysis in 

buffer B (20 mM HEPES (pH 7.0), 150 mM NaCl) overnight. Finally, the purified 

mEGFP-tagged NbALFA was concentrated to 1 mg/ml using an Amicon Ultra 30K 

filter (Merck Millipore) and stored at -80 °C before use. mEGFP-tagged NbBC was 

similarly expressed and purified. 

 

FSEC-Nb in the E. coli expression system 

In the E. coli expression system, BbZIP tagged with either the ALFA or BC2 peptide at 

its C-terminus was synthesized and subcloned into the pET28b vector and 

overexpressed with a protocol similar to that for the expression of mEGFP-tagged 

NbALFA described above. The E. coli cell pellets from 5 ml of LB culture were 
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suspended in 400 μl of buffer A and sonicated, and the cell debris was removed by 

centrifugation (20,000 × g, 10 minutes). The lysates were solubilized by mixing 500 μl 

of buffer A containing 2% (w:v) DDM and 0.5 mM PMSF for 1 hour, and were 

ultracentrifugaed (200,000 × g, 20 minutes). Unless noted, 1 μg of mEGFP-tagged 

NbALFA was added to the supernatant and incubated for 30 minutes. Considering the 

reported affinity values of NbALFA binding to an ALFA-tag (kon (M
-1

s
-1

): 3.6(±0.1) x 

10
5
, koff (s

-1
): 9.4 (±0.2) x 10

-6
, KD 26 (±1) pM)

33
, 30 minutes incubation would be 

enough for the saturation of the binding. After centrifugation (20,000 × g, 10 minutes), 

50 μl of the sample was applied to a Superdex 200 Increase 10/300 GL column (GE 

Healthcare) equilibrated with buffer A containing 0.05% (w:v) DDM for the FSEC 

assay. GFP fusion-based FSEC was performed similarly but without the labeling step 

with mEGFP-tagged NbALFA. In the FSEC assay, fluorescence was detected using the 

RF-20Axs fluorescence detector for HPLC (Shimadzu, Japan) (for mEGFP, excitation: 

480 nm, emission: 512 nm) (for muGFP, excitation: 480 nm, emission: 508 nm) (for 

mGFPuv, excitation: 395 nm, emission: 507 nm). FSEC-Nb experiments with 

mEGFP-tagged NbBC2 were performed with a similar protocol. 
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FSEC-Nb in the HEK293 expression system 

 hP2X3, ZAC orthologs and membrane proteins from SARS-CoV-2 containing ALFA 

and His8 tags at their C-terminus were synthesized and subcloned into a derivative of 

the Bac-to-Bac system vector with the CMV promoter and WPRE motif. Using 3 μl of 

Lipofectamine 2000 (Thermo Fisher Scientific, US), 1 μg of each plasmid was 

transfected into 1 ml of HEK293S cells in adherent culture at a density of 0.5 million 

cells/ml in DMEM supplemented with 10% FBS. Cells were incubated in a CO2 

incubator (37 °C, 5% CO2) for 48 hours after transfection and solubilized with 200 μl of 

buffer A containing 2% (w:v) DDM supplemented with 0.5 mM PMSF, 5.2 μg/ml 

aprotinin, 2 μg/ml leupeptin, and 1.4 μg/ml pepstatin A (all from Sigma-Aldrich) for 1 

hour. After ultracentrifugation (200,000 × g, 20 minutes), 1 μg of mEGFP-tagged 

NbALFA or 2 μl of 0.5 μM P3NTA was added to and mixed into 100 μl of the 

supernatant for 30 minutes, Then, after centrifugation (20,000 × g, 10 minutes), 50 μl of 

the sample was applied to a Superdex 200 Increase 10/300 GL column (GE Healthcare) 

equilibrated with buffer A containing 0.05% (w:v) DDM for the FSEC assay. In the 
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FSEC assay, fluorescence was detected as described above. The P3NTA peptide was 

prepared and used for FSEC as previously described (excitation: 480 nm, emission: 520 

nm)
9
. 

 

Thermostability assay by FSEC-Nb 

 ALFA peptide-tagged hP2X3 was expressed in HEK293 cells and solubilized as 

described above. Cells from 4 ml of culture were resuspended in 1.2 ml of buffer A (50 

mM TRIS (pH 8.0), 150 mM NaCl) containing 2% DDM by the addition of either ATP 

at a final concentration of 1 mM (ATP-bound conditions) or 0.6 unit of apyrase (Sigma, 

USA) to remove endogenous ATP (apo conditions), rotated at 4 °C for 1 hour, and then 

ultracentrifuged (200,000 g, 10 minutes). One hundred microliters of the supernatant 

was dispensed into 1.5-ml Eppendorf tubes and incubated at the respective temperature 

for 10 minutes using either a thermal cycler or heat block bath. After ultracentrifugation 

(200,000 g, 10 minutes), the supernatant was mixed with 1 μg of mEGFP-tagged 

NbALFA and then centrifuged (20,000 g, 10 minutes). Then, 50 μl of the supernatant 

was applied to a Superdex 200 Increase 10/300 GL column (GE Healthcare) 
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equilibrated with buffer A containing 0.05% (w:v) DDM for the FSEC assay. We 

estimated the melting curves based on the peak heights and determined the melting 

temperatures by fitting the melting curves to a sigmoidal dose-response equation 

because the melting curves based on the peak heights were known to be consistent with 

the melting curves based on the peak area estimated by Gaussian fitting
16

. 

 

Detergent screening by FSEC-Nb 

 HEK293S cells expressing ALFA-tagged OlZAC were prepared as described above. 

The collected cells were solubilized in buffer A containing different types of detergents: 

2% (w:v) DDM, 2% (w:v) DDM-CHS, 1% (w:v) LMNG, and 1% (w:v) GDN. 

FSEC-Nb and thermostability assays by FSEC-Nb were conducted as described above. 

 

Expression and purification of OlZAC 

OlZAC tagged with ALFA and His8 was expressed in HEK293S GnTI
-
 cells using a 

baculovirus-mediated gene transduction system in mammalian cells
69

. 

Small-scale expression screening to determine large-scale culture conditions was 
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performed by FSEC-Nb (Fig. 7A and 7B). FSEC-Nb was carried out with the protocol 

described above. A 800-ml culture of HEK293S GnTI
-
 cells was grown to a density of 

2.5 × 10
6
 ml

-1
 and infected with 8 ml of P2 BacMam virus. After 16 hours of culture at 

37 °C, 10 mM sodium butyrate was added, and the temperature was maintained at 37 °C 

for another 72 hours of culture. Then, the cells were harvested and washed with buffer 

A. All purification steps were performed at 4 °C. Cells were broken by sonication with 

protease inhibitors (1 mM PMSF, 5.2 μg/ml aprotinin, 2 μg/ml leupeptin, and 1.4 μg/ml 

pepstatin A, all from Sigma-Aldrich). Membrane fractions were collected by 

ultracentrifugation (200,000 × g, 60 minutes). The membrane was solubilized in buffer 

A containing 2% (w:v) DDM-CHS and supplemented with protease inhibitors (1 mM 

PMSF, 5.2 μg/ml aprotinin, 2 μg/ml leupeptin, and 1.4 μg/ml pepstatin A, all from 

Sigma-Aldrich) for 2 hours. The debris was removed by ultracentrifugation (200,000 × 

g, 60 minutes). The supernatant was loaded onto equilibrated TALON resin (Clontech) 

and then washed with buffer A containing 0.01% (w:v) LMNG and 10 mM imidazole. 

Protein was eluted with buffer A containing 300 mM imidazole. The eluted protein was 

loaded on a Superdex 200 10/300 GL column and subjected to SEC in buffer B 
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containing 0.01% (w:v) LMNG. The main peak fractions were pooled and concentrated 

to ~1 mg/ml using an Amicon Ultra 100K filter (Merck Millipore). 

 

Amphipol reconstitution 

All steps were performed at 4 °C. On a small scale, 10 μg of OlZAC (10 μl) was mixed 

with 200 μg of NAPol (Anatrace, dissolved in 2 µl of buffer B) and incubated for 16 

hours. The detergent was removed by incubation with Bio-Beads SM-2 (Bio-Rad) for 4 

hours, after which the beads were removed over a disposable Poly-Prep column. Twenty 

microliters of the eluent was diluted to 200 μl, and 50 μl of the sample was applied to a 

Superdex 200 10/300 GL column equilibrated with buffer A for Trp-based FSEC 

(excitation: 280 nm, emission: 325 nm). At a large scale, 500 μg of OlZAC (500 μl) was 

mixed with 10 mg of NAPol (Anatrace, dissolved in 100 µl of buffer B) and incubated 

for 16 hours. The detergent was removed with Bio-Beads SM-2 (Bio-Rad) for 4 hours, 

and the beads were subsequently removed over a disposable Poly-Prep column. The 

eluent was applied to a Superdex 200 10/300 GL column equilibrated with buffer B, and 

the main fractions consisting of the amphipol-reconstituted OlZAC were pooled and 
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concentrated to ~3 mg/ml using an Amicon Ultra 100K filter for electron microscopic 

analysis. 

 

Negative staining and electron microscopy 

Gilder 400 square mesh grids (AG400) were glow discharged in a PELCO easiGlow 

apparatus at a current of 25 mA for 30 seconds. Five microliters of protein solution 

(~20 μg/mL) was dropped onto the grid and allowed to remain on the grid for 1 minute. 

The residual protein solution was blotted from the grid edge with a piece of filter paper. 

The grid was covered with 2% uranyl acetate, blotted immediately, covered again with 2% 

uranyl acetate for 30 seconds and blotted again. After drying, the grid was observed 

under a Talos L120C microscope at 120 kV. In total, 133 micrographs were taken with a 

Ceta CCD camera at a nominal magnification of 92,000× at a pixel size of 1.55 Å. The 

micrographs were processed in RELION 3.0 for particle picking, extraction and 2D 

classification
70

. 

 

Cryo-EM data acquisition 
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A total of 2.5 μl of OlZAC in NAPol was applied to a glow-discharged holey carbon 

film grid (QUANTIFOIL, R1.2/1.3, 100 Holey Carbon Films, Au 300 mesh) blotted 

with a Vitrobot (FEI) system using a 3.0-s blotting time with 100% humidity at 9 °C and 

plunge-frozen in liquid ethane. Cryo-EM images were collected on a Titan Krios (FEI) 

electron microscope operated at an acceleration voltage of 300 kV. The specimen stage 

temperature was maintained at 80 K. Images were recorded with a K3 Summit direct 

electron detector camera (Gatan Inc.) set to super-resolution mode with a pixel size of 

0.41 Å (a physical pixel size of 0.82 Å) and a defocus ranging from -1.3 µm to -2.0 µm. 

The dose rate was 20 e
-
 s

–1
, and each movie was 1.76 seconds long, dose-fractioned into 

40 frames, with an exposure of 1.3 e
-
 Å

–2 
for each frame. 

 

Gene synthesis 

The gene fragments for mEGFP, muGFP, mCherry, ALFA and BC2 tags, NbALFA, 

NbBC2, BbZIP, ZAC, hP2X3, and membrane proteins from SARS-CoV-2 used for this 

research were synthesized by Genewiz (Suzhou, China). 
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Data availability 

All data and materials are available from the authors upon reasonable request. The 

plasmids shown in Fig. 9 (mEGFP-NbALFA, mCherry-NbALFA, pETNb-nALFA, 

pETNb-cALFA, pFBNb-cALFA, pBMNb-cALFA) have been deposited into Addgene 

(http://www.addgene.org/) (Addgene IDs: 159986, 159987, 159988, 159989, 159990 

and 159991). We have also deposited BbZIP gene in pETNb-cALFA and hP2X3 gene in 

pBMNb-cALFA as positive controls for FSEC-Nb (Addgene IDs 160498 and 160499). 
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Figure legends 

 

Figure 1 FSEC-Nb designation and verification 

(A) Flow chart of FSEC-Nb for membrane protein expression and purification. (B) 

Cartoon diagram of the FSEC system for FSEC-Nb. (C) Cartoon of a representative 

FSEC trace from FSEC-Nb. 

 

Figure 2 Establishing the FSEC-Nb method 

(A) FSEC traces of unpurified ALFA peptide-tagged BbZIP with mEGFP-tagged 

NbALFA, as detected by mEGFP fluorescence. A close-up view of the main peak 

profiles for the complex of ALFA-tagged BbZIP and mEGFP-tagged NbALFA is also 

shown. (B) FSEC traces of unpurified BC2 peptide-tagged BbZIP with mEGFP-tagged 

NbBC2, as detected by mEGFP fluorescence. (C) FSEC traces of C-terminally 

mEGFP-tagged and muGFP-tagged BbZIP, as detected by mEGFP and muGFP 

fluorescence, respectively.  

 

Figure 3 Thermostability assay by FSEC-Nb 

(A) Flow chart of the thermostability assay by FSEC-Nb. (B) Cartoon diagram of the 

thermostability assay by FSEC-Nb. (C) FSEC-Nb traces of unpurified ALFA-tagged 

hP2X3, as detected by mEGFP fluorescence. (D) FSEC-Nb traces of unpurified 

ALFA-tagged hP2X3 preheated at the indicated temperatures. A close-up view of the 
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main peak profiles for the complex of the ALFA-tagged hP2X3 and mEGFP-tagged 

NbALFA is also shown. (E) Melting curves of hP2X3 in the presence and absence of 

ATP, as detected by FSEC-Nb. The fitted curves are shown as blue (apo) and green 

(with ATP) lines. 

 

Figure 4 Expression screening of ZAC orthologs 

(A) FSEC-Nb traces of unpurified ALFA peptide and His8-tagged ZAC orthologs with 

mEGFP-tagged NbALFA, as detected by mEGFP fluorescence. A close-up view of the 

main peak profiles for the complex of the ALFA-tagged ZAC and mEGFP-tagged 

NbALFA is also shown. The expression of ZAC orthologs from Homo sapiens (GI: 

206725456), Danio rerio (528523664), Oryzias latipes (765127633), and Oreochromis 

niloticus (542233486) was screened by FSEC-Nb. (B) FSEC traces of C-terminally 

muGFP-tagged OlZAC, as detected by muGFP fluorescence. (C) FSEC traces of 

unpurified ALTA peptide and His8-tagged ZAC orthologs with P3NTA, as detected by 

fluorescein fluorescence.  

 

Figure 5 Expression screening of membrane proteins from SARS-CoV-2 

FSEC-Nb traces of unpurified ALFA peptide and His8-tagged membrane proteins from 

SARS-CoV-2 with mEGFP-tagged NbALFA, as detected by mEGFP fluorescence. A 
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close-up view of the main peak profiles is also shown. The expression of ORF3a 

(UniProt ID: P0DTC3), E (P0DTC4), M (P0DTC5), ORF7a (P0DTC7), and ORF7b 

(P0DTD8) was screened by FSEC-Nb. 

 

Figure 6 Detergent screening for OlZAC purification 

(A) FSEC-Nb traces of unpurified ALFA-tagged OlZAC preheated at the indicated 

temperatures. A close-up view of the main peak profiles is also shown. (B) Melting 

curves of OlZAC, as detected by FSEC-Nb. The fitted curve is shown as a black line. 

(C) Normalized peak heights of ALFA-tagged OlZAC preheated at 60 °C for 10 

minutes solubilized with the indicated detergents. The peak heights were normalized to 

that from the sample solubilized with DDM at 4 °C. Error bars represent standard error 

of the mean (N=6).  

 

Figure 7 Large-scale expression and purification of OlZAC 

(A) FSEC profiles of OlZAC, as detected by FSEC-Nb for the optimization of cell 

culture conditions. (B) Time course curves of the main peak heights, as detected by 

FSEC-Nb. HEK293S cells were infected with P2 BacMam virus for OlZAC expression 

at a 1% or 2% volume. At 16 hours after virus addition, cell culture temperatures were 
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maintained at 37 °C or shifted to 30 °C. (C) Size-exclusion chromatography of OlZAC, 

as detected by UV absorbance. (D) FSEC trace of purified OlZAC, as detected by Trp 

fluorescence. (E) SDS-PAGE of the purified OlZAC after SEC. 

 

Figure 8 Negative staining EM and cryo-EM of OlZAC 

 (A, B) Negative staining EM images of OlZAC particles. (C-E) Selected 2D class 

averages, as calculated using RELION. (E, F) Cryo-EM image at 1.8 μm defocused 

with OlZAC particles. 

 

Figure 9 Vector maps for FSEC-Nb 

 (A, B) Maps of the expression vectors for mEGFP-tagged (E) and mCherry-tagged (F) 

NbALFA. (C-F) Maps of the expression vectors for FSEC-Nb in E. coli (C, D), insect 

cells (E), and mammalian cells (F). 

 

Figure S1 Amphipol reconstitution of OlZAC 

(A) FSEC trace of NaPol-reconstituted OlZAC on a small scale, as detected by Trp 
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fluorescence. (B) Size-exclusion chromatography of NaPol-reconstituted OlZAC, as 

detected by UV absorbance. 

 

Figure S2 Expression screening of MgtC by GFP-fusion FSEC 

(A, B) FSEC traces of C-terminally mGFPuv-tagged TpMgtC (Accession Number: 

WP_038038224.1) and AtMgtC (WP_043965058.1), as detected by mGFPuv 

fluorescence. 

 

Table S1 MgtC orthologs for GFP fusion-based FSEC screening 
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No Species Accession Number Abbreviation 

1 Halobacillus halophilus WP_014641389.1 HhMgtC 

2 Lactococcus lactis WP_021722089.1 LlMgtC 

3 Mycobacterium aromaticivorans WP_051660484.1 MaMgtC 

4 Virgibacillus halodenitrificans WP_060678220.1 VhMgtC 

5 Klebsiella oxytoca WP_049112851.1 KoMgtC 

6 Yersinia ruckeri WP_004722955.1 YrMgtC 

7 Elizabethkingia meningoseptica WP_019051280.1 EmMgtC 

8 Methylophilus sp.  WP_049639727.1 MsMgtC 

9 Pedobacter agri WP_010599226.1 PaMgtC 

10 Thermobacillus composti WP_015253117.1 TcMgtC 

11 Thermobispora bispora WP_013130974.1 TbMgtC 

12 Brevibacillus brevis WP_017246836.1 BbMgtC 

13 Vibrio vulnificus WP_045614446.1 VvMgtC 

14 Clostridium acetobutylicum WP_010966920.1 CaMgtC 

15 Xanthobacter autotrophicus WP_012113199.1 XaMgtC 

16 Bacillus cereus KYQ01271.1 BcMgtC 

17 Gracilibacillus boraciitolerans  GAE93792.1 GbMgtC 

18 Lactobacillus paracasei WP_016383475.1 LpMgtC 

19 Rubrobacter xylanophilus WP_011565853.1 RxMgtC 

20 Lysinibacillus boronitolerans WP_016994404.1 LbMgtC 

21 Desulfurispora thermophila WP_018084380.1 DtMgtC 

22 Thermanaerothrix daxensis WP_054522013.1 TdMgtC 

23 Thermocrinis albus WP_012992317.1 TaMgtC 

24 Sphaerobacter thermophilus  ACZ39839.1 StMgtC 

25 Thermorudis peleae WP_038038224.1 TpMgtC 

26 Rubellimicrobium thermophilum WP_040645344.1 RtMgtC 

27 Quasibacillus thermotolerans WP_039233714.1 QtMgtC 

28 Thermincola ferriacetica WP_083436703.1 TfMgtC 

29 Caldicellulosiruptor naganoensis WP_045165679.1 CnMgtC 

30 Anoxybacillus thermarum WP_043965058.1 AtMgtC 

31 Desulfofundulus WP_027355452.1 DeMgtC 

32 Thermodesulfobium narugense WP_013756617.1 TnMgtC 

33 Serratia WP_006319255.1 SeMgtC 

34 Bacillus mannanilyticus WP_025026422.1 BmMgtC 

35 Alkalihalobacillus akibai WP_035663104.1 AaMgtC 

36 Hungateiclostridium thermocellum WP_003513884.1 HtMgtC 

37 Stenotrophomonas pictorum WP_054658310.1 SpMgtC 

38 Prevotella maculosa WP_019967744.1 PmMgtC 

39 Prevotella salivae  EFV04256.1 PsMgtC 
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40 Prevotella veroralis WP_018911053.1 PvMgtC 

41 Prevotella sp.  WP_177216065.1 PspMgtC 

42 Peptococcaceae bacterium  KJS46311.1 PbMgtC 

43 Sphingobacteriales bacterium  OJV97509.1 SbMgtC 

44 Yersinia pestis WP_015683614.1 YpMgtC 

45 Natronincola peptidivorans WP_090446121.1 NpMgtC 

46 Myxococcus hansupus WP_021781415.1 MhMgtC 

47 Obesumbacterium proteus WP_046459523.1 OpMgtC 

48 Limihaloglobus sulfuriphilus WP_146682549.1 LsMgtC 

49 Lactobacillus kefiri WP_054769137  LkMgtC 

50 Dictyoglomus sp.  PMQ01502.1 DspMgtC 

51 Bacillus sp.  WP_094032362.1 BspMgtC 

52 Sphingobacterium detergens WP_120259343.1 SdMgtC 

53 Chryseobacterium culicis WP_105683769 CcMgtC 

54 Lactobacillaceae WP_021357857.1 LaMgtC 

55 Bacteroides eggerthii WP_118363478.1 BeMgtC 

56 Acidaminococcus WP_016459447.1 AcMgtC 

57 Tissierella sp. P1 WP_094904138.1 TspMgtC 

58 Mucilaginibacter sp.  WP_067187481.1 MspMgtC 

59 Erwinia typographi WP_034897147.1 EtMgtC 

60 Clostridium tepidiprofundi WP_066821746.1 CtMgtC 

61 Arthrobacter sp. WP_155850019.1 AsMgtC 

62 Chitinophagaceae bacterium  WP_157444983.1 CbMgtC 

63 Risungbinella massiliensis WP_044641850.1 RmMgtC 

64 Deltaproteobacteria bacterium  OGR23206.1 DbMgtC 

65 Carnobacterium iners WP_085559504.1 CiMgtC 

66 Lactobacillus farraginis  KRM01365.1 LfMgtC 

67 Thermosyntropha lipolytica WP_073089568.1 TlMgtC 

68 Acidobacteria bacterium PYX87356.1 AbMgtC 

    Table S1. MgtC orthologs for GFP fusion-based FSEC screening 
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