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Abstract: Although advancing the therapeutic alternatives for treating deadly cancers 

has gained much attention globally, still the primary methods such as chemotherapy 

have significant downsides and low specificity. Most recently, Anticancer peptides 

(ACPs) have emerged as a potential alternative to therapeutic alternatives with much 

fewer negative side-effects. However, the identification of ACPs through wet-lab 

experiments is expensive and time-consuming. Hence, computational methods have 

emerged as viable alternatives. During the past few years, several computational ACP 

identification techniques using hand-engineered features have been proposed to solve 

this problem. In this study, we propose a new multi headed deep convolutional neural 

network model called ACP-MHCNN, for extracting and combining discriminative 

features from different information sources in an interactive way. Our model extracts 

sequence, physicochemical, and evolutionary based features for ACP identification 

through simultaneous interaction with different numerical peptide representations 

while restraining parameter overhead. It is evident through rigorous experiments 

using cross-validation and independent-dataset that ACP-MHCNN outperforms other 

models for anticancer peptide identification by a substantial margin. ACP-MHCNN 

outperforms state-of-the-art model by 6.3%, 8.6%, 3.7%, 4.0%, and 0.20 in terms of 

accuracy, sensitivity, specificity, precision, and MCC respectively. ACP-MHCNN and its 

relevant codes and datasets are publicly available at:  

https://github.com/mrzResearchArena/Anticancer-Peptides-CNN. 

 

Keywords: Anticancer peptides, Deep Learning, Convolutional Neural Network, 

Automatic Feature Extraction, Sequence-based Features, Physicochemical-based 

Features, Evolutionary-based Features, 

 

1. Introduction 
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Cancer is one of the deadliest diseases in the world. Even though there are several ways 

of treating some of the cancer types, still there is no certain treatment for most of the 

cancers. Two of the major treatment strategies for cancer are radiation therapy and 

chemotherapy [1]. However, they are both expensive and have long term negative side 

effects [1]. In addition, cancer cells can become resistant to the chemotherapeutic 

drugs [1]. Therefore, there is a demand for finding new low cost and more effective 

treatments for cancer [2]. Among the newly introduced treatment methods for this 

deadly disease, anticancer peptides (ACP) have gained a lot of attention in the recent 

years as a less toxic and potentially more effective treatment for cancer [2, 3].  

 

ACPs are short peptides consisting of 10 to 50 amino acids which are typically derived 

from antimicrobial peptides [4]. ACPs perform a wide range of cytotoxic activities 

against cancer cells while leave benign cells intact which is the reason behind their high 

specificity and low side effects [5]. Additionally, ACPs have low production cost, they 

are easy to synthesize and modify, and they have excellent tumour penetration 

capabilities [6]. In the past few years, many ACP based treatment options have been 

tested on a wide variety of cancer cells but only a few of them have been cleared for 

further clinical trials [7, 8]. Hence, rapid identification of potential ACPs is important 

for cancer therapeutic advancement. However, identification of these peptides through 

wet-lab experiments is relatively costly and time consuming [1]. Therefore, there is a 

demand for fast and accurate computational methods to tackle this problem. Among 

different computational methods, machine learning has merged as a promising 

approach to identify ACPs more efficiently and effectively. 

 

During the past few years, a wide range of traditional Machine Learning (ML) methods 

have been proposed to identify ACPs. These traditional ML techniques require a set of 

hand-engineered features to represent protein sequences for the classification 

purpose. Thus, various methods for extracting effective features to represent proteins 

and peptides in an effective manner that contain significant discriminatory information 

for the classification purpose have been proposed. AntiCP was the first ML model for 

ACP identification that was proposed in [1]. In this model, peptide sequences are 

formulated by amino acid composition (AAC), split AAC (using N-terminal and C-

terminal residues), dipeptide composition (DPC) and binary profiles features (BPF) [1]. 

Afterwards, these features are passed as input to a Support Vector Machine (SVM) 

classifier for separating the ACPs from the non-ACPs. 

 

Shortly after that, Hajisharifi et al., proposed two methods for ACP identification using 

SVM [9]. In the first method, SVM was employed for separating ACPs from non-ACPs. 

They used pseudo-amino acid composition (PseAAC) method on different 

combinations of 6 physicochemical properties of the amino acids to extract their 

features. In the second method, the binary classification was performed using SVM with 

a local alignment based kernel method designed for feature extraction from peptide 

sequence. Later on, Chen et al. proposed iACP, where gapped dipeptide compositions 

(g-gap DPC) were used for feature extraction from peptide sequences, and SVM with 

radial basis function (RBF) kernel was used for the classification purpose [2].  

 

More recently, Manavalan et al., proposed MLACP to tackle this problem.  To build this 

model, AAC, DPC, atomic composition (ATC) of the sequences, and physicochemical 

properties of the residues were used for feature extraction while, SVM and Random 

Forest (RF) classifiers were used for ACP identification [10]. At the same time, Akbar et 

al., proposed iACP-GAEnsc, which used g-gap DPC, reduced amino acid alphabet 

composition (RAAAC), and PseAAC based on hydrophobicity and hydrophilicity of the 

amino acids (Am-PseAAC) for feature extraction. They also proposed an ensemble of 
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different classifiers that combined SVM, RF, Probabilistic Neural Network (PNN), 

Generalized Regression Neural Network (GRNN), and K-nearest neighbour (KNN) 

classification models for ACP identification [11]. 

 

Later on, Xu et al., proposed a hybrid sequence-based model, where the peptides were 

converted to feature vectors through g-gap DPC to tackle this problem. They also used 

SVM and RF as their employed classifiers [12]. At the same time Kabir et al., proposed 

TargetACP, where the peptides were represented using split AAC, correlation factors 

extracted from PSSM profiles (PsePSSM), and composite protein sequence 

representation (CPSR). They also used SVM, RF and KNN classifiers as their employed 

models [13].  

 

Most recently, Schaduangrat et al. proposed ACPred, where different combinations of 

AAC, DPC, PseAAC, Am-PseAAC, and physicochemical properties were used for peptide 

representation. They used SVM and RF classifiers for the ACP identification prediction 

[3]. At the same time, Wei et al., proposed ACPred-FL, where AAC, g-gap DPC, BPF, 

amino acid-specific physicochemical property-based bit vectors and composition-

transition-distribution (CTD) methods were used for feature extraction. Similarly, they 

used SVM based ensemble model as their employed classifier [14]. 

  

Using traditional ML models (SVM, RF, KNN, etc.), the systems’ performances depend 

on the underlying manual feature extraction mechanisms. However, formulating 

problem-specific optimal feature representations for these sequences is not a trivial 

task and requires significant iterations of trial and error. In recent years, deep learning 

(DL) methods attracted tremendous attention to tackle challenging problems related to 

biological sequences because in many cases, unlike traditional ML algorithms, they do 

not require manual feature extraction to represent the input data [15-21]. Several DL 

methods, such as Convolutional Neural Network (CNN) [16, 22], Recurrent Neural 

Network (RNN) [16], word embedding [23, 24], and autoencoder [25, 26, 27] have been 

successfully employed for feature extraction and classification for DNA, RNA and 

protein sequences. Methods such as CNN and RNN exploit spatial locality and ordering 

information of the residues for ensuring that the extracted features retain a significant 

amount of discriminatory information from biological sequences. 

 

However, none of the studies related to ML-based ACP identification explored 

automated feature extraction using DL methods until recently, when ACP-DL was 

proposed in [28]. To the best-of-our-knowledge ACP-DL is the only deep learning 

classifier proposed for this problem, so far. ACP-DL uses bidirectional long-short-term-

memory (LSTM) recurrent layers for extracting features from peptide sequences 

followed by a fully-connected layer with a sigmoid neuron for classification. ACP-DL 

extracts features from two one-hot vector-based peptide representation techniques 

(binary profile and k-mer sparse matrix) that only depict the presence of a specific 

amino acid or a group of amino acids along different positions of the sequences. As a 

result, physicochemical properties or evolutionary substitution information of the 

residues, which contain significant signals regarding anticancer activities of peptide 

sequences are not utilized in ACP-DL’s feature extraction process [3, 14, 11, 13]. As a 

result, although the predictive performance of ACP-DL is quite impressive, there is still 

room for significant improvement. 

 

Although recurrent layers are reliable for converting biological sequences into fixed-

size features vectors [16], convolutional layers have also demonstrated promising 

performance addressing similar problems. In fact, CNN have been demonstrated as an 

effective technique for feature extraction and classification for DNA, RNA, peptides, and 
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protein sequences in a wide range of studies [29-36]. However, CNN has never been 

used for ACP classification task. In this study, we hypothesize representation 

techniques that depict the residues’ evolutionary relationship and their 

physicochemical characteristics can embellish the feature extraction process for ACP 

identification since this type of information contains signals necessary for elucidating 

the structure and function of peptides. With this viewpoint, we are proposing a method 

called ACP-MHCNN, which consists of three jointly trained groups of stacked 

convolutional layers for interactive feature extraction from three distinct information 

sources for ACP identification. Our results demonstrate that ACP-MHCNN outperforms 

the current state-of-the-art methods on several well-established ACP identification 

datasets with a substantial margin. On ACP-500/ACP-164 benchmark dataset, ACP-

MHCNN outperforms ACP-DL by 6.3%, 8.6%, 3.7%, 4.0%, and 0.20 in terms of accuracy, 

sensitivity, specificity, precision, and Matthews correlation coefficient (MCC), 

respectively. Our model and all its relevant codes and datasets are publicly available at:   

https://github.com/mrzResearchArena/Anticancer-Peptides-CNN.  

 

2. Materials and Methods 

 

In this section, we represent the benchmarks that are used in this study. We also 

present our sequence-representation methods as well as the proposed feature 

extraction and classification models.  

 

2.1 Benchmark Datasets 

 

In this study, we use three independent benchmarks to study the effectiveness and 

generality of our proposed method. These benchmarks are namely, ACP-740, ACP-240, 

and the combination of ACP-500 and ACP-164. 

 

ACP-740 dataset was introduced in [28], consists of 740 samples out of which 376 are 

positive and 364 are negative. The positive samples (anticancer peptides) and negative 

samples (those without anticancer activity) in this benchmark are collected from [2, 

25]. The ACP-240 dataset was introduced in [28], consists of 240 samples where 129 

experimentally validated anticancer peptides are the positive samples and 111 AMPs 

without anticancer activity are the negative samples.  

 

Two datasets, ACP-500 and ACP-164, were constructed in [14], where ACP-500 is used 

for training and validation, while ACP-164 is used as an independent test dataset. 

These two datasets consist of 332 positive and 1,023 negative samples, combined 

which are taken from [1, 2, 37]. Out of these samples, 250 positive samples and 250 

negative samples are randomly selected for constructing ACP-500, whereas ACP-164 

contains the remaining 82 positive samples along with 82 randomly selected negative 

samples. 

 

 

2.2 Numerical Representation for Peptide Sequences 
 

 

Although ACP-MHCNN does not require manual feature extraction, it is crucial to 

encode the sequences in numerical formats since the initial feature extraction layer of 

any DL architecture performs mathematical operations on the input for extracting 
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class-discriminative activations. Such information is then passed as input to nodes in 

the subsequent layers. In this study, we exploit three peptide representation methods 

that are described in the following three sections. Since it has been shown in [14, 28] 

that considering k amino acids from the N-terminus of a peptide is sufficient for 

capturing its anticancer activity, we have represented each sequence using its k N-

terminus residues.  In our experiments, we have set k = 15.  

 

2.2.1 Binary Profile Feature (BPF) Representation 

 
In our first representation method, each of the 20 amino acids (A, R, N, D, C, Q, E, G, H, I, 

L, K, M, F, P, S, T, W, Y, and V) is represented using a binary one-hot vector of length 20. 

For example, A is represented as [1, 0, ..., 0], R is represented as [0, 1, ..., 0], V is 

represented as [0, 0, ..., 1], and so on. This representation encodes each sequence into a 

k × 20 matrix. Manually extracted short-range sequence patterns such as AAC, DPC, 

split AAC and long-range sequence patterns such as g-gap DPC have been successfully 

employed with traditional ML models for ACP identification [1, 2, 9, 12, 10, 14, 11]. We 

hypothesize that our model’s feature detection mechanism can capture both short-

range and long-range sequence patterns that distinguish the peptides with anticancer 

activity from BPF representation. 

 

2.2.2 Physiochemical-based Representation 
 

Basak et al., used a numerical representation for proteins for identifying length 5 

conserved peptides through molecular evolutionary analysis [38]. The underlying 

numerical representation method proposed in [39] utilized an alphabet reduction 

strategy where the amino acids are divided into non-overlapping groups based on their 

side chain chemical property. The findings from these two studies have implied that 

amino acid physicochemical properties can facilitate the identification of evolutionarily 

conserved motifs, which are in turn important for maintaining the appropriate 

structure or function of the molecules. When these conserved motifs go through 

changes in the primary structure level, the amino acid residues are usually replaced 

with the ones with similar physicochemical properties. This phenomenon highlights 

the significant impact of exploring physicochemical properties for motif identification 

with respect to similarity among the substitute amino acids. Since our model identifies 

peptides with specific functions, discovering these motifs can strengthen our model.  

 

Moreover, hand-engineered features based on amino acid physicochemical properties 

have been shown to improve ACP identification in a series of studies that have used 

traditional machine learning models [3, 9, 10, 14, 11]. We hypothesize that our feature 

extraction mechanism can identify similar features from a peptide representation 

based on the amino acids’ physicochemical properties. With these assumptions, our 

physicochemical property-based representation replaces each of the residues in a 

peptide sequence with a 31-dimensional vector (composed of 0/1 elements) that 

depict various physicochemical properties. As a result, each of the sequences is 

encoded into a k × 31 matrix. 

 

For each amino acid, a unique 31-dimensional vector is formed through the 

concatenation of a 10-bit vector and a 21-bit vector. Elements of the 10-bit vector 

depict the membership of a specific amino acid in 10 overlapping groups based on its 

physicochemical properties as it was explained in [14]. Elements of the 21-bit vector 

are determined based on membership of a specific amino acid in the 7*3 = 21 groups 

formed by dividing them into 3 groups based on 7 physicochemical properties namely, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.313668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313668
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

polarity, normalized Van der Waals volume, hydrophobicity, secondary structures, 

solvent accessibility, charge, and polarizability as it was done in [14].    

        

2.2.3 Evolutionary Information based Representation 

 

BLOSUM is a symmetric 20 × 20 matrix constructed by Henikoff et al., in [40], where 

each entry is proportional to the probability of substitution of a given amino acids with 

another amino acid in a protein (substitution probability in evolutionarily related 

proteins).  Each entry in this matrix can be represented using the following equation:  

      

���, �� �
�
�
�	


���

����
                     (1) 

 

Where, p��is the probability of amino acids ‘i’ and ‘j’ being aligned in homologous 

sequence alignments, f� is the probability that amino acid ‘i’ appears in any protein 

sequence, f�is the probability that amino acid ‘j’ appears in any protein sequence, and  

λ is the scaling factor for rounding off the entries in the matrix to convenient integer 

values .  

 

The observed substitution frequency for every possible amino acid pair (including 

identity pairs) is calculated from a large number of trusted pairwise alignments of 

homologous sequences as it is explained in [40]. If an entry M(i,j) is positive, the 

number of observed substitutions between amino acids i and j is more than random 

expectation. Thus, these substitutions are conservative (these substitutions occur more 

frequently than other random substitutions in homologous sequences). Therefore, each 

of the 20 rows of this matrix is a vector containing 20 elements that depict a specific 

amino acid’s evolutionary relationship with other amino acids. Here, we use BLOSUM 

matrix for retrieving a 20-dimensional vector for each of the 20 amino acids and use 

these vectors for encoding each peptide sequence into a k × 20 matrix. We hypothesize 

that our feature extraction architecture can automatically extract discriminative 

evolutionary features for ACP identification from this sequence representation. Among 

different BLOSUM matrix variations, we have used BLOSUM62 as the most popular one 

in this study.      

        

 

2.3 Multi-Headed Convolutional Neural Network 

Architecture 
 

CNN is a specialized neural network where each neuron in a given layer is connected to 

a group of neighbouring nodes in the previous layer. These layers drastically reduce 

parameter overhead and extract translation-invariant meaningful features by 

exploiting spatial locality structure in data through local connectivity and weight 

sharing [41]. A convolutional layer usually consists of several kernels where each 

kernel detects some specific local pattern in different input locations [41]. Since hand-

engineered feature extraction methods such as AAC, DPC, g-gap DPC, PseAAC, and 

PsePSSM utilize ordering of neighboring residues and their correlation information 

with respect to evolutionary and physicochemical properties for feature generation 

from peptide sequences, using convolutional kernels for automatically approximating 

similar features is a rational choice. Moreover, well-defined ordering among the 

residues in peptide primary structure, the residues' inherent local neighbourhood 

structures, and the presence of similar patterns (sequence motifs) at different locations 
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across a peptide make these sequences perfect candidates for feature extraction 

through convolutional kernels.         

 

The feature extraction mechanism in our proposed model consists of groups of stacked 

convolutional layers. Each convolutional layer group extracts features from a different 

representation of the peptide sequence. Since we have used three representation 

methods that serve as sources of discriminative information, our model contains three 

parallel layer groups. Each of these groups extract short-range and long-range patterns 

from a unique sequence representation using two stacked convolutional layers with 

varying number of kernels. The number of kernels in the layers and size of these filters 

are hyperparameters tuned through cross-validation [42].  

 

The output feature maps of the second convolutional layer of each of the three groups 

are flattened, and the three resulting vectors are concatenated. The unified vector from 

this concatenation is passed through a dense layer with ReLU (Rectified Linear Unit) 

[43] activation function for recombining the features extracted from different sequence 

representations. It is to be mentioned that each element of the input vector for this 

dense recombination layer is calculated from a single information source (BPF or 

physicochemical or evolutionary representation) during forward-propagation . In 

contrast, elements of this layer’s output vector can be aggregated from multiple 

information sources. Hence, this layer enables seamless interaction between different 

convolutional groups that extract patterns from different representations and 

facilitates joint feature learning from multiple information sources during back-

propagation [44].  These complex non-linear features are then passed as inputs to a 

dense layer with softmax activation function [45], which draws a linear decision 

boundary on the derived feature space for separating the anticancer peptides from 

peptides without anticancer activity. Figure 1 represents the architecture of our 

proposed model for joint feature extraction from multiple information sources. 

 

 
Figure 1: The general architecture of ACP-MHCNN. We extract BPF, physicochemical, and 

evolutionary-based features. We then feed the extracted features to a multi-headed deep 

convolutional neural network (MHCNN) to predict Anti-Cancer peptides. 
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Since the training data is limited for this task, there is a possibility for overfitting when 

training a deep-CNN model. To avoid overfitting, we adopt both L2 and dropout 

regularization methods in the feature extraction step to build out model [46]. L2 and 

dropout have been shown to be effective methods to address overfitting issue when the 

number of training samples are limited [46]. To be specific, the feature extraction 

occurs in all layers of the three parallel convolutional groups and the dense 

recombination layer after concatenation. Therefore, high dropout rates (>=0.5) are 

employed after each of these layers during the training phase to mitigate overfitting. 

These dropout rates are determined through cross-validation. Note that, the three 

convolutional layer groups that extract features from three distinct sequence 

representations are jointly trained alongside the dense recombination layer for 

minimizing cross entropy loss function [47]. Therefore, our model can simultaneously 

interact with the three information sources for detecting complex and ambiguous 

patterns. Optimal values for our model's weights and biases are learned by employing 

Adam optimizer [44] with a learning rate determined through cross-validation. 

 

ACP-DL, the only deep learning-based architecture proposed to date for anticancer 

peptide identification, employed stacked bidirectional LSTM layers for feature 

extraction which is an intuitive choice given a recurrent model’s capability of capturing 

global sequence-order information [28]. However, the recurrent connections and the 

gates also introduce a large number of parameters that need to be tuned. This can lead 

to overfitting since the number of training instances is limited. Moreover, since only 15 

N-terminus amino acids have been considered for feature extraction, LSTM’s long-

range sequence-order-effect detection capabilities remain underutilized while the 

parameter overhead persists [28] In this study, we do not add any recurrent layer on 

top of the output feature maps from the final convolutional layers to avoid this issue. 

 

Furthermore, it is to be noted that the kernels in the final layer of each convolutional 

group have an effective receptive field of length 6 due to hierarchical relationship 

between the stacked layers (length 4 kernels to length 3 kernels) [41]. This effective 

receptive field should provide sufficient coverage for extracting both short-range and 

long-range patterns from sub-sequences of length 15. In addition, since we extract 

features from short sub-sequences, reducing the temporal dimension of the 

intermediate feature maps (outputs of the first and second convolutional layers of each 

group) is not required for learning higher order features. Hence, we do not add any 

pooling layers between the feature extraction layers within the convolutional groups 

[41]. The absence of pooling layers also reduces potential loss of sequence order 

information that can be exploited by the kernels in the final convolutional layers in the 

groups for detecting long-range patterns [41]. 

 

To analyse the contribution of features extracted from each of the information sources, 

we carry out experiments using all possible combinations of the three representations. 

This results in seven models (3C1 +3C2 +3C3) with 1, 2 or 3 convolutional groups. All 

these combinations are summarized in Table 1. The performance for our architecture 

using these seven combinations is reported in the following section. 

 

 

Table 1: Summary of seven combinations of the three sequence representations explored in this 

study. On the First column of the table, we present the name of the combination, on the second 

column we present the name of the representations used to build the given combination, and in 

the third column we present the number of convolutional groups for the given combination. 

 
COMBINATION 

NUMBER 

   REPRESENTATIONS IN THE COMBINATION NUMBER OF 

CONVOLUTIONAL 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.313668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313668
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

LAYER GROUPS 

C1 BPF 1 

C2 Physicochemical Properties 1 

C3 Evolutionary Information 1 

C4 BPF & Physicochemical Properties 2 

C5 BPF & Evolutionary Information 2 

C6 Physicochemical Properties & Evolutionary Information 2 

C7 BPF & Physicochemical Properties & Evolutionary 

Information 

3 

 

For ACP-740 and ACP-240, our model’s hyperparameters are tuned on ACP-740 

through cross-validation, and the same model configuration is used for ACP-240. For 

ACP-500 and ACP-164, hyperparameter tuning is performed on ACP-500 through 

cross-validation. ACP-240 and ACP-164 have been kept untouched during 

hyperparameter tuning to avoid performance overestimation. Table 2 shows detailed 

hyperparameter configurations for different ACP identification datasets used in this 

study. 

 

Table 2:  Hyperparameter configurations employed for different ACP datasets.  In this table, 

‘Conv’ = a convolutional layer, ‘Dense’ = a fully connected layer, ‘filter’ = number of filters in a 

convolutional layer, ‘kernel’ = size of filters in a convolutional layer, ‘drop’ = dropout rate, and 

‘units’ = number of neurons in a fully connected layer.   

 

ACP-740 and ACP-240 ACP-500 and ACP-164 

Convolutional Group-1: 

Conv-1: 

filter=10 kernel=4 drop=0.8 

 

Conv-2: 

filter=8 kernel=3 drop=0.7 
 

Convolutional Group-1: 

Conv-1: 

filter=16 kernel=3 drop=0.7 

 

Conv-2: 

filter=8 kernel=3 drop=0.5 
 

Convolutional Group-2:  

Conv-1: 

filter=10 kernel=4 drop=0.8 

 

Conv-2: 

filter=8 kernel=3 drop=0.7 
 

Convolutional Group-2: 

Conv-1: 

filter=16 kernel=3 drop=0.7 

 

Conv-2: 

filter=8 kernel=3 drop=0.5 
 

Convolutional Group-3:  

Conv-1: 

filter=10 kernel=4 drop=0.8 

 

Conv-2: 

filter=8 kernel=3 drop=0.7 

Convolutional Group-3: 

Conv-1: 

filter=16 kernel=3 drop=0.7 

 

Conv-2: 

filter=8 kernel=3 drop=0.5 

Dense Recombination: 

Dense-1: 

units=8 drop=0.7 

 

Dense Recombination: 

Dense-1: 

units=16 drop=0.6 
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 Dense-2: 

units=8 drop=0.5 
 

 

3. Results and Discussion 

 

In this section, we present how we carry out the performance evaluation of our 

proposed model, our achieved results, and then discuss them. 

 

3.1 Evaluation Metrics 
 

The evaluation metrics that have been used for measuring the performance of our 

classification method are Accuracy, Sensitivity, Specificity, Precision, and Matthews 

correlation coefficient (MCC). These metrics are described through the following 

equations: 
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Where, tp is the number of correctly predicted positive instances, tn is the number of 

correctly predicted negative instances, fp is the number of incorrectly predicted 

negative instances, and fn is the number of incorrectly predicted positive instances. 

The range of values for Accuracy, Sensitivity, Specificity, and Precision is 0 to 100 

percent. 100% represents an ideal classifier (totally accurate) and 0% represents the 

worst possible model (totally inaccurate). In addition to that, MCC has a range from -1 

to +1. A value of 0 in MCC represent a random classifier with no correlation, +1 

represent perfect positive correlation and -1 represents perfect negative correlation. 

 

3.2 Contribution Analysis for Different Sequence 

Representations 
 

For each of the representation combinations summarized in Table 1, we have 
performed experiments on ACP-740 and ACP-240 using 5-fold-cross validation, and 
the corresponding results are reported in Table 3 and Table 4, respectively. For 
ACP-500 and ACP-164, we train and tune the models on ACP-500 and test them on 
ACP-164. The corresponding results are reported in Table 5.  
 
 

Table 3: Results achieved using 5–fold cross validation for ACP-740 dataset. 
 

Combination Accuracy Sensitivity Specificity Precision MCC 
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C1 76.0 78.9 73.0 75.0 0.52 

C2 73.1 74.7 71.3 72.8 0.46 

C3 81.1 81.3 80.7 81.3 0.62 

C4 76.9 75.7 78.4 78.2 0.54 

C5 84.0 87.6 80.3 82.0 0.68 

C6 81.8 82.9 81.1 81.8 0.64 

C7 86.0 88.9 83.1 84.4 0.72 

 

 
As shown in Table 3, for the ACP-740 dataset, among the single-representation 

combinations (C1, C2, and C3), the representation depicting evolutionary information 

of the amino acid residues (C3) performs better compared to BPF and 

physicochemical-based representations (C1 and C2) on all six performance measures. 

As shown in Tables 4 and 5, similar results are observed for single representation 

models for ACP-240 and ACP-164. These results indicate when it comes to feature 

extraction from a single peptide representation, evolutionary information contributes 

the most for separating the ACPs from the non-ACPs compared to BPF and 

physicochemical-based representation.  

 
 

Table 4: Results achieved using 5–fold cross validation for ACP-240. 
 

Combination Accuracy Sensitivity Specificity Precision MCC 

C1 73.5 82.7 63.6 72.9 0.47 

C2 71.2 82.3 59.6 70.6 0.43 

C3 79.1 84.6 72.7 78.6 0.58 

C4 75.1 84.6 63.6 73.3 0.50 

C5 79.9 85.4 73.6 79.3 0.60 

C6 81.5 83.2 79.6 82.8 0.63 

C7 83.0 90.1 75.6 81.1 0.67 

 

 
Among the two-representation combinations (C4, C5, and C6), C5 (BPF + 
evolutionary) and C6 (physicochemical property + evolutionary information) 
performs better than C4 (BPF + physicochemical property) which further 
underscores the importance of the features extracted from evolutionary information 
for ACP identification. Moreover, C5 and C6 (two-representation combinations 
containing evolutionary information) perform better than C3 (the best performing 
single-representation combination containing evolutionary information only). This 
aspect of the results manifests that our proposed joint pattern extraction strategy 
from multiple representations through parallel-convolutional-groups can effectively 
embellish the features learned from a strong primary representation (evolutionary 
information in this case) through potential ambiguity resolution using other 
secondary representations (BPF and physicochemical property-based information in 
this case). 
 

Table 5: Results achieved using independent test for ACP-500/164 dataset 
 

Classifier Accuracy Sensitivity Specificity Precision MCC 

C1 83.8 85.4 81.6 82.3 0.67 

C2 74.2 77.9 70.6 72.6 0.49 

C3 89.0 91.4 86.6 87.2 0.78 

C4 85.6 88.7 82.6 83.6 0.71 

C5 90.0 93.7 86.3 87.3 0.80 
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C6 88.4 89.4 86.7 87.1 0.76 

C7 91.0 97.6 84.2 86.0 0.82 

 

This hypothesis has been further corroborated by the performance of the all-

representation combination (C7) on all datasets. As shown in Tables 3, 4, and 5, the 

model trained on C7 consisting of three parallel convolutional groups that extract 

features from all three representations performs better than the other combinations 

(C1 to C6). Therefore, we use this all-representation combination model to train ACP-

MHCNN and compare its performance with state-of-the-art methods in the following 

subsection. To provide more insight into our achieved results, we present receiver 

operating characteristic (ROC) curves for our achieved results. The ROC curve for ACP-

740 (using 5-fold cross validation), ACP-240 (using 5-fold cross validation), and ACP-

164 (using ACP-500 as the training dataset) are shown in Figures 2, 3, and 4, 

respectively.  

 

 

 

 

 

Figure 2: ROC curve for ACP-740 dataset for the 5-fold cross-validation on the experiment. 
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As shown in these figures, we constantly achieve very high Area Under the Curve (AUC) 

value. We achieve 0.90, 0.88, and 0.93 for ACP-740, ACP-240, and ACP-164, 

respectively. The consistent AUC achieved on these three benchmarks using different 

evaluation methods demonstrates the generality of our proposed model. In addition, 

achieving 0.93 in AUC on ACP-164 which is an independent test set demonstrates the 

potential of ACP-MHCNN on identifying ACP for new unseen samples. 

 

Figure 3: ROC curve for ACP-240 dataset for the 5-fold cross-validation on the experiment. 

 

3.3 Comparison with State-of-the-art Methods 
 

We compare ACP-MHCNN with ACP-DL as the state of the art and also the only DL 

based ACP identification model proposed to date [28]. Yi et al. tested their proposed 

ACP-DL on ACP-740 and ACP-240 datasets using 5-fold cross-validation. We use the 

same evaluation strategies and metrics for a fair comparison while estimating our ACP-

MHCNN’s performance on ACP-740 and ACP-240 datasets. To investigate the 

generality of ACP-MHCNN even furtherACP-MHCNN, we compare it with ACP-DL on 

ACP500/ACP164 dataset as well. In this experiment, ACP-500 is used for training and 

tuning the model, and ACP-164 is used as independent dataset. During all these 

experiments, ACP-DL is trained using the implementation details available in the 

accompanying Github repository (https://github.com/haichengyi/ACP-DL). 

 

Comparison between ACP-MHCNN and ACP-DL on all the datasets is shown in Table 6. 

As shown in this table, ACP-MHCNN outperforms ACP-DL on all datasets for every 

evaluation metric. To be precise, on ACP-740, ACP-MHCNN scores 6.0%, 7.5%, 4.5%, 

4.7%, and 0.12 more than ACP-DL in terms of accuracy, sensitivity, specificity, 

precision, and MCC, respectively. Similarly, on ACP-240 ACP-MHCNN scores 1.8%, 

6.0%, 4.4% and 0.02 more than ACP-DL in terms of accuracy, specificity, and MCC, 

respectively.  
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ACP-MHCNN also significantly outperforms ACP-DL on the ACP-500/ACP-164 dataset 

that was used to investigate the generalizability of our model. On ACP-500/ACP-164 

ACP-MHCNN outperforms ACP-DL by 6.3%, 8.6%, 3.7%, 4.0%, and 0.20 in terms of 

accuracy, sensitivity, specificity, precision, and MCC respectively. ACP-MHCNN and its 

relevant codes as well as the datasets used in this study are all publicly available at:   

https://github.com/mrzResearchArena/Anticancer-Peptides-CNN. 

 

Figure 4: ROC curve for ACP-500/164. Here We used ACP-500 as  a training dataset and ACP-

164 as a testing dataset on the experiment. 

 

Table 6: Comparing the results achieved for ACP-BNN to ACP-DL as the state-of-the-art 

anticancer peptide predictor. 

 

Dataset Model Accuracy Sensitivity Specificity Precision MCC 

ACP-740 ACP-DL 80.0 81.4 78.6 79.7 0.60 

ACP-740 ACP-MHCNN 86.0 88.9 83.1 84.4 0.72 

ACP-240 ACP-DL 81.3 92.0 69.6 76.7 0.64 

ACP-240 ACP-MHCNN 83.0 90.1 75.6 81.1 0.67 

ACP-500/ACP-164 ACP-DL 84.7 89.0 80.5 82.0 0.62 

ACP-500/ACP-164 ACP-MHCNN 91.0 97.6 84.2 86.0 0.82 

 

4. Conclusion 

 

In this study, we propose a new deep neural network architecture called ACP-MHCNN 

consisting of parallel convolutional groups which jointly learn and combine features 

from three different peptide representation methods for accurate identification of 

ACPs.  The architecture extracts sequence-based features from residue-order 

information (using BPF representation), physicochemical property-based features 

from 31 bit-vector representation of the residues (elements of these vectors depict 
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various physicochemical properties of the amino acids) and evolutionary features from 

BLOSUM62 matrix-based representation of the peptides.  

 

Although hand-engineered features extracted from these information sources have 

been successfully employed for ACP identification, automatic feature extraction has 

hardly been explored for this problem. Before this study, ACP-DL was the only method 

that has used deep feature extraction for ACP identification [28]. It has used recurrent 

layers for extracting features from two residue-order-based peptide representations 

and leaves significant room for improvement. In the current study, we attempt to 

address the limitations of ACP-DL by improving the sequence representation and 

feature extraction methods. For sequence representation, we consider the residues' 

evolutionary and physicochemical characteristics alongside their ordering so that the 

downstream feature extraction layers can embed the sequences in spaces with 

additional discriminative information. For feature extraction, we jointly train three 

parallel convolutional layer groups so that the combined feature vector contains 

discriminative patterns extracted from three sources. 

 

The positive effects of these improvements are manifested in the experimental results 

obtained on well-established ACP identification datasets, where ACP-MHCNN has 

significantly outperformed ACP-DL using different evaluation measures for every 

dataset investigated in this study.  Hence, we believe our current study's findings add 

significantly to the existing knowledge on computational method development for ACP 

identification. ACP-MHCNN, its relevant codes, and the datasets used in this study are 

all publicly available at:   https://github.com/mrzResearchArena/Anticancer-Peptides-

CNN. 
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