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Abstract.—Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-
evidence dating (or ”tip-dating”) approaches that allow for the incorporation of fossils as tips in the analysis, with
their phylogenetic and temporal relationships to the extant taxa inferred from the data, and 2) the fossilized birth-
death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fos-
silization), and thus provide a coherent and biologically interpretable tree prior. To explore the behaviour of these
methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to de-
clining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence
on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-
intuitive informativeness of the uniform tree prior and the inherent nonidentifiability of divergence-time models. In
contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition
model or the morphological clock model. We compare the performance of a large pool of candidate models using a
combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific spe-
ciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown
divergences for the Marattiales in the Middle Devonian and Upper Cretaceous, respectively, with elevated speciation
rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of ∼ 2800 species
at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid
decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approx-
imately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to
potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal
balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal
data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study
makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils
historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of
node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades are made
a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted
in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and
lineage diversification.
[Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth-death; lineage
diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes]

The ability to infer phylogenies with branch lengths1

in units of time (“divergence-time estimation”) is an ex-2

tremely powerful tool of evolutionary biology. Beyond3

simply allowing for the inference of the timing of evo-4

lutionary divergences, it enables studies of diversifica-5

tion rates and rates of molecular evolution, permits test-6

ing of the drivers of global patterns of biodiversity and7

biogeography (e.g., the roles of vicariance and disper- 8

sal), and allows us to examine the evolutionary impact 9

of major events in the Earth’s history. Extensive research 10

over the past two decades has dramatically improved our 11

ability to infer time-scaled phylogenies (see Donoghue 12

and Yang 2016), such that researchers today can choose 13

from a wide variety of models that relax the molecu- 14
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2 SENSITIVE MODELS AND THEIR DATING DIFFICULTIES

lar clock (Sanderson 1997; Thorne et al. 1998; Magallón15

2004; Drummond et al. 2006; Drummond and Suchard16

2010; Lartillot et al. 2016) and from sophisticated meth-17

ods for associating fossil data with nodes on a phylogeny18

(Marshall 2008; Ho and Phillips 2009; Heath 2012; Roth-19

fels et al. 2015a). Molecular dating techniques, however,20

are fraught with controversy, and their application re-21

mains contentious (e.g., Graur and Martin 2004; Wheat22

and Wahlberg 2013; Wilf and Escapa 2014; Cracraft et al.23

2015; Mitchell et al. 2015; Wang and Mao 2015). Much24

of this controversy is due to the difficulties inherent in25

accurately associating data from the fossil record with26

particular nodes in a phylogenetic tree, as is required by27

the dominant method of divergence-time estimation, the28

“node-dating” approach. In a node-dating analysis, the29

investigator associates fossils (or other sources of tem-30

poral information, such as island ages, or age estimates31

from prior studies) with particular nodes in a phyloge-32

netic tree, and provides a calibration density for each33

node that reflects the investigator’s belief about the tem-34

poral relationship between the calibrated node and its35

constraining fossil (Ho and Phillips 2009).36

In a conceptual departure from node-dating ap-37

proaches, the increasingly popular “tip-dating” or “total-38

evidence dating” (TED) methods treat fossils as their39

own terminals in the phylogenetic analysis and jointly40

infer the placement of the fossils, the patterns of morpho-41

logical evolution, and a time-calibrated phylogeny. These42

methods use a dataset containing molecular characters43

for extant taxa and morphological characters for both ex-44

tant and fossil taxa (Lee et al. 2009; Pyron 2011; Ronquist45

et al. 2012; Sterli et al. 2013). TED approaches thus over-46

come the main weaknesses of node-based methods: the47

phylogenetic affinities of calibrating fossils are inferred48

from the morphological data rather than depending on49

researchers’ implicit assumptions or separate cladistic50

analyses; the temporal connection between a fossil and51

a portion of the tree of extant species is not determined52

in advance; and many more fossils can be used, including53

fragmentary ones and ones that are members of wholly54

extinct clades. More generally, these approaches allow55

for the incorporation of a much greater proportion of the56

fossil record and shift divergence-time estimation toward57

a less subjective treatment of fossil data.58

For these reasons, TED methods offer great promise for59

more transparent inferences of divergence time. How-60

ever, inferring the topological and temporal position of61

fossils in a Bayesian framework requires the investigator62

to specify a model of discrete morphological evolution63

and a tree model that includes non-contemporaneous64

tips. The morphological model most frequently used—65

the Mk model (Lewis 2001)—assumes that rates of66

change between character states are the same for all char-67

acters, and has been criticized as inadequate for mod-68

eling morphological evolution (e.g., Sterli et al. 2013; 69

Goloboff et al. 2019). Among the tree models, the fos- 70

silized birth-death models (Heath et al. 2014; Zhang et al. 71

2016) are an advance over the earlier uniform tree model 72

(Ronquist et al. 2012) in the sense that they provide a 73

coherent mechanistic description of diversification and 74

preservation (Marshall 2019), but they are still limited in 75

biologically important ways, and the relative impacts of 76

these tree models on inference under TED have not been 77

exhaustively explored. 78

In addition to the modeling concerns specific to total- 79

evidence dating, TED methods share an unusual sta- 80

tistical pathology with other divergence-time estimation 81

methods: nonidentifiability. Under the standard models 82

of character evolution (continuous-time Markov chains), 83

there is no information in molecular or morphological 84

data about either rate or time individually; it is only their 85

product (e.g., number of substitutions per site) that can 86

be estimated. There are thus an infinite number of com- 87

binations of rate and time that have identical likelihoods 88

for a given dataset, and the goal of divergence-time 89

estimation—to isolate time from rate—depends on the 90

priors on node ages and clock rates when performed in 91

a Bayesian framework. This fundamental nonidentifia- 92

bility of relaxed-clock models is apparent in node-dating 93

analyses (Zhu et al. 2015), but is shared by TED anal- 94

yses, too: the same data (character alignments) can be 95

equivalently fit by very different combinations of model 96

parameters, and those different model parameters could 97

potentially lead to very different branch length infer- 98

ences. There is thus a need for rigorous analyses of the 99

behaviour of TED methods, for biologically meaningful 100

priors, and for the development of general tools for eval- 101

uating model performance (Wilf and Escapa 2016). 102

Here we explore the sensitivity of TED analyses to 103

these modeling choices, focusing on marattialean ferns 104

(Marattiales: Polypodiopsida). These ferns have a 105

deep fossil record that extends back more than 320 106

million years (see extensive review by Rothwell et al. 107

2018a); their relatively modest extant diversity (approx- 108

imately 110 species; Murdock 2008a; Schuettpelz et al. 109

2016) belies their former dominance, especially dur- 110

ing the Pennsylvanian when they were canopy domi- 111

nants in both clastic and peat swamp communities (Cleal 112

2015; DiMichele and Phillips 1996, 2002; Phillips et al. 113

1985). Apparent diversity then declined in the Triassic 114

through Cretaceous, and no unequivocal records exist 115

from the Cenozoic (Lundgren et al. 2019; Rothwell et al. 116

2018a). This temporal pattern—clusters of extinct and ex- 117

tant diversity separated by a depauperate intermediate 118

sample—as well as extensive morphological homoplasy 119

among the extant genera (Murdock 2008b; Lehtonen et al. 120

2020) not only make traditional node-dating approaches 121

effectively impossible, but may also challenge many of 122
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SENSITIVE MODELS AND THEIR DATING DIFFICULTIES 3

the assumptions of total-evidence dating models. In this123

study, we employ the statistical tools of sensitivity anal-124

ysis, model adequacy, and model comparison to evalu-125

ate the impact of modeling choices, to improve estimates126

of marattialean phylogeny and divergence times, and to127

learn about the the processes driving marattialean evolu-128

tion and diversification.129

MARATTIALES130

Marattialean ferns constitute one of the eusporangiate131

fern clades, and while their relationship to other ferns132

has historically been unclear (e.g., Schuettpelz et al. 2006;133

Qiu et al. 2007; Lehtonen 2011), an emerging consensus134

places them as the sister group to the largest group of ex-135

tant ferns, the leptosporangiates (Rai and Graham 2010;136

Kuo et al. 2011; Grewe et al. 2013; Knie et al. 2015; Roth-137

fels et al. 2015b; Kuo et al. 2018; Qi et al. 2018; Lehtonen138

et al. 2020; but see Wickett et al. 2014; Shen et al. 2018;139

One Thousand Plant Transcriptomes Initiative and oth-140

ers 2019). The approximately 110 extant species of Marat-141

tiales are divided among six genera (Murdock 2008a;142

Schuettpelz et al. 2016). These ferns are homosporous,143

tropical in distribution, and range in size from mega-144

herbs (species of “king fern” in the genus Angiopteris145

can have leaves exceeding 3m in length) to the small146

dimorphic-leaved species of Danaea (Fig. 1).147

Fossil taxa of the Marattiales are generally attributed148

to one of two families: the completely extinct Psaroni-149

aceae and the still living Marattiaceae (see Rothwell et al.150

2018a). The Marattiales fossil record includes spores,151

compressions, and impressions, but they are best known152

from Carboniferous taxa that were carbonate permineral-153

ized (found in “coal balls”) and described in anatomical154

detail, including whole-plant reconstructions (Fig 1E, M)155

The extensive fossil record of the Marattiales, in its rich-156

ness, completeness, and temporal extent (Millay 1997;157

Liu et al. 2000; Rothwell et al. 2018a), makes this lineage158

an ideal test case for divergence-time estimation.159

In addition, the morphology of marattialeans (both fos-160

sil and extant) is comparatively well-studied (e.g., Stidd161

1974; Millay 1979; Millay and Taylor 1984; Hill and Ca-162

mus 1986; Millay 1997; Liu et al. 2000; Murdock 2008b;163

Cleal 2015; Rothwell et al. 2018b), the phylogeny of the164

extant lineages is fairly well understood (Li and Lu 2007;165

Murdock 2008b; Senterre et al. 2014; Lehtonen et al. 2020),166

and there are pre-existing matrices of molecular and mor-167

phological characters available for a broad taxon sample168

(including, for the morphological data, strong fossil rep-169

resentation; Hill and Camus 1986; Murdock 2008b; Roth-170

well et al. 2018b; see also Lehtonen et al. 2020, which was171

published after our analyses were completed).172

DATA 173

Taxon samples.—Our taxon sample includes fossil and ex- 174

tant members of the Marattiales and their sister clade, the 175

leptosporangiate ferns (Fig 1; summarized in Table S.2). 176

The ingroup sample comprises 45 fossil taxa representing 177

either the Psaroniaceae or Marattiaceae, along with 26 178

extant Marattiaceae; the outgroup samples include nine 179

extant species selected for phylogenetic breadth and six 180

well-understood fossil reconstructions spanning the di- 181

versity of leptosporangiate ferns. We chose from among 182

fossil taxa coded by Rothwell et al. (2018b), excluding 183

taxa with large amounts of missing data that were pri- 184

marily of interest for informing Scolecopteris classifica- 185

tion. Additionally, we added three Marattiales species 186

to expand our fossil age representation: Floratheca apoka- 187

lyptica (early Permian), Rothwellopteris pecopteroides (late 188

Permian), and an un-named species from the Lower Cre- 189

taceous assigned to the Marattiaceae by Vera and Césari 190

(2016). Our extant-taxon sample is also based on Roth- 191

well et al. (2018b) but altered to maximize the number 192

of taxa that had both morphological and DNA data by 193

adding five species of Ptisana and three species of Danaea. 194

In some of the analyses that follow, we used three addi- 195

tional ancient land-plant fossils: 1) Psilophyton crenulatum 196

(early Devonian; Doran 1980); 2) Pertica quadrifaria (early 197

Devonian; Kasper and Andrews 1972), and; 3) Rhacophy- 198

ton ceratangium (late Devonian; Cornet et al. 1976; Dittrich 199

et al. 1983; see Supplemental Table S.2). We chose these 200

taxa because they are among the most complete and well- 201

studied early fossil vascular plants and are clearly out- 202

side of the Marattiales + leptosporangiate clade. 203

Morphological and molecular data.—Our morphological 204

dataset was largely derived from Rothwell et al. (2018b), 205

which itself relied heavily on Hill and Camus (1986) and 206

Murdock (2008b), and amended as necessary. Our fi- 207

nal morphological matrix comprised 98 discrete charac- 208

ters describing anatomy and gross morphology; in to- 209

tal, there were 79 binary characters, 10 three-state char- 210

acters, four four-state characters, three five-state charac- 211

ters, one six-state character, and one seven-state charac- 212

ter. We provide the details of how we assembled and 213

scored our morphological dataset in the Supplemental 214

Material (S§1). 215

We used available chloroplast DNA sequences from 216

Murdock (2008b) augmented with additional data for our 217

outgroup taxa. The final dataset comprised 33 species 218

with sequences from four chloroplast markers: aptB, rbcL, 219

rps4 + rps4-trnS spacer, trnS-trnG spacer + trnG intron 220

(Table S.1). 221

The complete morphological and molecular matrices 222

are available in the Data Dryad repository DOI:X and the 223

GitHub repository XXXX. 224
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Figure 1: Sample of Marattiales fossil and extant diversity A–D: Growth habit and frond morphology. A: Angiopteris evecta, Costa Rica, image
credit R.C. Moran. B: Danaea cuspidata, Costa Rica, image credit W.L. Testo. C: Christensenia aesculifolia, Papua New Guinea, image credit M.
Sundue. D: Pecopteris, West Fork Trinity, Texas, Late Pennsylvanian, USNM number 546865, image credit W.A. DiMichele. E–G: Stem, petiole,
and root anatomy in cross section. E: Cross section of Psaronius melandrus higher up in the trunk, and an oblique section of inner and outer root
mantle. University of Illinois Coal Ball # XXX, Middle Pennsylvanian, Herrin Coal Member, Sahara Coal Company Mine, Illinois, image credit
S.D. Elrick. F: Petiole cross section, Eupodium kalfusii, Brazil, image credit F.B. Matos. G: Root cross section of Angiopteris evecta showing polyarchy,
image credit R.C. Moran. H–M: Examples of synangia morphology. H: Angiopteris evecta, Papua New Guinea, image credit M. Sundue. I: Silicone
cast of Marattiopsis patagonica, Early Jurassic of Patagonia, Argentina, MPEF-Pb 5295, image credit I.H. Escapa. J: Danaea cuspidata, Costa Rica,
image credit W.L. Testo. K: Christensenia aesculifolia, Papua New Guinea, image credit M. Sundue. L: Eupodium laeve, Puerto Rico, image credit M.
Sundue. M: Scolecopteris pinnules, University of Illinois Coal Ball 30932E. Middle Pennsylvanian, Calhoun Coal Member, Bonpas Creek, North
Caroline, image credit S.D. Elrick.
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SENSITIVE MODELS AND THEIR DATING DIFFICULTIES 5

1. uniform
2. constant-rate FBD
3. episodic FBDψ
4. episodic FBDλ,µ
5. episodic FBDλ,µ,ψ

tree models

S

molecular
data

D

morphological
data

GTR+I+Γ

substitution model

UCLN

molecular clock model

1. linked
2. unlinked

morphological clock
model

1. Mk
2. Mk+Γ
3. F81
4. F81+Γ

morphological transition
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Figure 2: A graphical model representation of the total-evidence dating model. The total-evidence model includes five separate model compo-
nents: 1) the substitution model; 2) the molecular-clock model; 3) the morphological-transition model; 4) the morphological-clock model, and; 5)
the tree model. Each box shows the dependence between each module and the molecular (S) and morphological (D) datasets. GTR+I+Γ: General
time-reversible substitution model with a proportion of invariant sites and gamma-distributed among-site rate variation. UCLN: Uncorrelated
lognormal relaxed molecular clock. Mk: Markov transition model with k states. F81: Markov transition model with unequal stationary frequencies.
FBD: Fossilized birth-death model.

METHODS225

Models226

The Bayesian total-evidence dating model consists of227

five main components: 1) the molecular substitution228

model; 2) the molecular clock model; 3) the morpholog-229

ical transition model; 4) the morphological clock model,230

and; 5) the tree model. The impact of substitution and231

molecular-clock models on phylogenetic inference is rel-232

atively well understood (Huelsenbeck and Rannala 2004;233

dos Reis and Yang 2012; Zhu et al. 2015). By con-234

trast, the influence of the morphological-transition, clock,235

and tree models are less well characterized, and earlier236

studies suggest that these model components can have237

strong effects on divergence-time estimates (Rothfels and238

Schuettpelz 2014; Condamine et al. 2015).239

We performed analyses under a range of240

morphological-transition, morphological clock, and241

tree models to explore the relative impact of these three242

model components on phylogenetic estimates of the243

marattialean ferns. In total, these analyses comprised244

72 model combinations: four morphological-transition245

models × two morphological-clock models × nine246

tree models, as described below (a graphical-model247

schematic is shown in Fig. 2; graphical model repre-248

sentations of specific model component are available in249

Supplemental Material S§3).250

Substitution model and molecular clock.—In all analyses, 251

we partitioned the molecular dataset by locus, and then 252

by intronic and exonic regions, and for exonic regions, 253

among codon positions. We assigned an independent 254

GTR+I+Γ substitution model with four rate categories to 255

each data subset. For the molecular clock, we assumed 256

that branch-specific rates of molecular evolution were 257

uncorrelated and drawn from a shared lognormal prior 258

distribution (the UCLN model; Drummond et al. 2006). 259

Morphological transition models.—As with substitution 260

models for molecular evolution (e.g., GTR+I+Γ), the mor- 261

phological transition model is composed of a model that 262

describes how characters are partitioned, a model that 263

describes how rates vary among characters within a par- 264

tition (the among-character rate variation, or “ACRV”, 265

model), and a model that describes the relative rates of 266

change among character states (the morphological ma- 267

trix model) within a partition. 268

For the morphological partition scheme, we parti- 269

tioned characters based on the number of states—such 270

that there was one subset for binary characters, one for 271

three-state characters, etc.—for all analyses. Within each 272

subset, we assumed the characters evolved according to 273

one of the ACRV and morphological matrix models de- 274

scribed below; for a given combination of ACRV and ma- 275

trix model, we assumed each subset evolved under the 276

same type of model, but with parameter values that dif- 277
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6 SENSITIVE MODELS AND THEIR DATING DIFFICULTIES

fered among subsets.278

We used two different morphological matrix models:279

an Mk model (Lewis 2001) that assumes that rates of280

change—and therefore stationary frequencies—are equal281

among states, and a model that allows the stationary fre-282

quencies to vary among character states; the latter model283

is equivalent to the F81 model commonly applied to284

molecular data (Felsenstein 1981), and we therefore refer285

to this model as an F81 model. The Mk model assumes286

that relative rates of transition are the same among char-287

acter states, such that the stationary frequency of each288

state is the same among states and among characters; for289

example, for binary characters, state “0” in one character290

has the same frequency as state “0” in another character.291

Because the relative rates are the same among characters,292

and the overall rate of evolution is described by the mor-293

phological clock model (described below), the Mk model294

has no free parameters. For the F81 model, we relaxed the295

assumption that stationary frequencies are shared across296

characters. Thus, state “0” in one character is permitted297

to have a different stationary frequency than state “0” in298

another character. This feature is particularly important299

in morphological data because, unlike molecular data300

where, for example, a “T” indicates particular features301

regardless of which alignment site it occurs in, the nam-302

ing of morphological character states is arbitrary, with no303

commonalities across characters. For binary characters,304

we discretized a Beta distribution into five categories and305

defined an F81 transition matrix using the value of each306

category as π0 (Wright et al. 2016). We assumed a sym-307

metrical Beta distribution with shape parameter γm; the308

symmetry of the distribution guarantees that the likeli-309

hood does not depend on the labeling of the binary states310

(i.e., which state is labeled “0” or “1”), and the five dis-311

crete categories guarantees that the middle category cor-312

responds to a symmetric (Mk) model. For each multistate313

subset we drew five sets of stationary frequencies from314

a symmetrical Dirichlet distribution with parameter γm,315

and also a vector of mixture weights, ω, which define316

the prior probability that a character evolves according317

to each of the stationary frequencies (Pagel and Meade318

2004). We assumed the parameter γm was shared among319

the Beta distribution for the binary characters and the320

Dirichlet distributions for the multistate characters, and321

estimated γm and ω (one per number of states greater322

than two) from the data (Figure S5). For both models we323

corrected for the fact that only variable characters were324

included (Lewis 2001).325

In addition to the two morphological transition mod-326

els, we also modeled how rates of evolution varied327

among characters within each subset. We used two alter-328

native among-character rate-variation models: a shared-329

rate model and a variable-rate model. The shared-rate330

model assumed that the rate of evolution is the same331

for all characters with the same number of states. For 332

the variable-rate model, we assumed character-specific 333

rates for characters with i states drawn from a discretized 334

Gamma distribution with four categories and parameter 335

αi, which we also estimated from the data. 336

In total, we used four different morphological transi- 337

tion models: Mk, Mk+Γ, F81, and F81+Γ. 338

Morphological clock models.—The morphological clock 339

model describes how rates of evolution vary among 340

branches in the tree. We used two variants of this model: 341

a linked model where the rate of morphological evo- 342

lution on a given branch is proportional to the rate of 343

molecular evolution on that branch, and an unlinked 344

model where the morphological and molecular rates are 345

independent. For the linked model, we included a free 346

parameter, βm, that defines the relative rate of morpho- 347

logical to molecular evolution (Figure S7). For the un- 348

linked model, the free parameter βm describes the rela- 349

tive mean rate of morphological to molecular evolution. 350

We then drew each branch-specific rate, mi, indepen- 351

dently from a lognormal distribution with standard devi- 352

ation σm, which we also estimated from the data (Figure 353

S8). 354

Tree models.—The tree model defines the probability of 355

the tree topology and node ages. We used five differ- 356

ent tree models: 1) a uniform model (Ronquist et al. 357

2012); 2) a constant-rate fossilized birth-death model 358

(CRFBD; Heath et al. 2014); 3) an episodic fossilized 359

birth-death model where fossilization rates were allowed 360

to vary over time (EFBDψ); 4) an episodic fossilized birth- 361

death model where diversification rates (speciation and 362

extinction rates, λ and µ) were allowed to vary over 363

time (EFBDλ,µ), and; 5) an episodic fossilized birth-death 364

model where all rates were allowed to vary over time 365

(EFBDλ,µ,ψ). For the variable-rate episodic models, we 366

divided time into geological epochs defined per the Inter- 367

national Chronostratigraphic Chart (updated from Co- 368

hen et al. 2013), and allowed one or more parameters 369

to vary among epochs according to a mixture model. 370

Specifically, we assumed that there were three mixture 371

categories, each with their own rate parameter and a mix- 372

ture weight κi. The assignments of epochs among mix- 373

ture categories were treated as independent random vari- 374

ables (with values 1 through 3) such that each epoch was 375

assigned to one of the three mixture categories with prior 376

probability κi. For a given assignment, each epoch was 377

associated with a specific rate parameter; we then es- 378

timated the rate and mixture weight for each category, 379

and the assignment of each epoch among categories. By 380

averaging over the assignment of epochs to each mix- 381

ture category, this model also provides an estimate of the 382

epoch-specific parameters. For models where multiple 383
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SENSITIVE MODELS AND THEIR DATING DIFFICULTIES 7

rates varied, we assumed that they varied independently384

(i.e., that they were drawn from separate mixture mod-385

els). This model differs from previous work where each386

time slice was allowed to have an independent rate pa-387

rameter (rather than being drawn from a mixture model),388

but used a small number of time slices (see Zhang et al.389

2016; Wright et al. 2020). Our approach balances model390

complexity (the number of rate parameters) and the tem-391

poral resolution over which rates vary (the number of392

time slices). For all models, we specified a uniform prior393

distribution between 410 and 550 Ma on the age of the394

origin of the tree. The maximum age was conservatively395

selected based on the age of the oldest fossils in our sam-396

ple and on the earliest plant fossil evidence (cryptospores397

from the Ordovician ∼ 470 Ma Rubinstein et al. 2010),398

while the minimum age was old enough to include the399

age of the oldest sample in our extended “ancient plants”400

dataset (see below). Additionally, we accommodated401

uncertainty in the ages of each fossil, which has been402

demonstrated to be important for accurate divergence-403

time estimates (Barido-Sottani et al. 2019).404

The final component of the FBD tree models is the405

mechanism for accounting for incomplete sampling of406

extant taxa. The diversified sampling approach devel-407

oped by Zhang et al. (2016) assumes that all unsampled408

extant taxa diverge from the tree of sampled taxa af-409

ter (i.e., more recently than) the youngest node in that410

tree. Unfortunately, many clades in our extant sam-411

ple are expected to be extremely young, which makes412

this model of incomplete sampling inapplicable to our413

study. In addition, our taxon sample includes a relatively414

well-sampled extant ingroup (27 of 111 extant taxa), and415

a very sparsely sampled outgroup (nine of ∼ 12000;416

Schuettpelz et al. 2016). To accommodate this heteroge-417

neous taxon sampling we therefore conducted each fos-418

silized birth-death analysis twice, once with a sampling419

fraction, ρ, corresponding to the ingroup portion of the420

tree (ρ = 27÷ 111), and once corresponding to the full421

tree (ρ = 36÷ 12000).422

In total, we used nine different tree models: the uni-423

form tree model, plus four fossilized birth-death models424

× two taxon-sampling fractions.425

Analyses426

MCMC analyses.—For each combination of the above427

model components, we estimated the posterior distri-428

bution using four replicate Metropolis-coupled MCMC429

with five coupled chains in RevBayes (Höhna et al. 2016).430

We performed all of our analyses on the University of431

California, Berkeley HPC cluster, Savio. We assessed432

whether each chain failed to converge to, or sample ade-433

quately from, the joint posterior distribution using proto-434

cols described in the Supplemental Material (S§4.1). All435

of the scripts used for analysis and post-processing are436

available in the Data Dryad repository DOI:X and the 437

GitHub repository XXXX. 438

Comparing estimates of topology and branch lengths.—We 439

employed two techniques to summarize differences in 440

phylogenetic estimates under the model combinations 441

that we explored. First, we used multidimensional scal- 442

ing (MDS) of tree-distance metrics (following Hillis et al. 443

2005) to compare the distributions of tree topologies 444

and branch lengths inferred under these models. MDS 445

projects the pairwise distance between each tree in a sam- 446

ple of trees into a lower dimensional—and therefore eas- 447

ier to visualize—representation of tree space. To facili- 448

tate automated MDS for a large number of comparisons, 449

we implemented these MDS analyses using the R pack- 450

ages phangorn and smacof (de Leeuw and Mair 2009; 451

Schliep et al. 2017; R Core Team 2019). We compared the 452

distribution of phylogenies using MDS with three differ- 453

ent metrics: 1) the Robinson-Foulds distance (RF, a mea- 454

sure of topological distance; Robinson and Foulds 1981); 455

2) the Kühner-Felsenstein distance (KF, a distance met- 456

ric that incorporates both topology and branch lengths; 457

Kühner and Felsenstein 1994) between time-scaled phy- 458

logenies (chronograms), and; 3) the KF distance be- 459

tween phylogenies with branch lengths proportional to 460

the expected amount of morphological evolution (“mor- 461

phograms”). Computing distances among phylogenies 462

with sampled ancestors is difficult, since the number of 463

tips and branches depends on the inferred number of 464

sampled ancestors. We therefore resolved all sampled 465

ancestors onto zero-length branches before computing 466

distances among trees. We included 100 trees from the 467

posterior distribution of each of the models in our MDS 468

plots, and colored each point in the resulting tree space 469

according to one of the TED model components to visu- 470

ally compare the relative impact of each model compo- 471

nent on the posterior distribution of trees. 472

Second, we used lineage-through-time (LTT) curves to 473

summarize divergence-time estimates under each model. 474

An LTT curve displays the number of branches in the in- 475

ferred tree at any given time, and therefore provides a 476

less abstract summary of divergence-time estimates than 477

MDS; however, in contrast to MDS plots, the LTT ap- 478

proach is unable to capture differences in topology. We 479

compute the average LTT curve under a given model by 480

calculating the average number of branches present at 481

each time point for each tree in the posterior distribution; 482

similarly, we compute the 95% credible interval (CI) of 483

the number of branches at a given time. To compare the 484

relative impact of the three model components, we com- 485

pute the average LTT curve for each model, then com- 486

pute the average of these curves among all model combi- 487

nations that share the focal model component. 488
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8 SENSITIVE MODELS AND THEIR DATING DIFFICULTIES

Stochastic character mapping.—We used stochastic charac-489

ter mapping (Huelsenbeck et al. 2003) to visualize pat-490

terns of morphological character evolution across the491

phylogeny. In these analyses, we conditioned on the492

maximum-clade-credibility (MCC) tree inferred for each493

model, as well as posterior mean estimates of all relevant494

model parameters, and simulated stochastic maps using495

the R package phytools (Revell 2012).496

Implied total diversity over time.—We simulated lineages497

under each of the fossilized birth-death models, with-498

out fossilization, to generate the implied total number of499

lineages present at each point in time. For each model,500

we sampled the origin time and diversification parame-501

ters from the corresponding posterior distribution, then502

simulated lineages forward in time until the present to503

generate the posterior-predictive distribution of the full504

diversification process. We computed the median and505

95% CI of the number of lineages at a large number of506

evenly spaced time points to summarize the distribution507

of the implied total diversity over time. These simula-508

tions do not condition on the sampled tree, and therefore509

should not be interpreted as the posterior distribution of510

the number of missing taxa in our inferred tree. Rather,511

these simulations represent the distribution of the num-512

ber of lineages if we were to repeat the inferred lineage-513

diversification process many times.514

Assessing absolute model adequacy.—We assessed the ade-515

quacy of each model using posterior-predictive simula-516

tion (PPS; Bollback 2002; Höhna et al. 2018). The premise517

of PPS is that, if a given model provides an adequate de-518

scription of the true process that generated the observed519

data, then datasets simulated by the model should re-520

semble the observed data. The degree of resemblance521

for a given simulated dataset is described by a summary522

statistic that is designed to capture relevant aspects of the523

data-generating model. If the distribution of this statis-524

tic computed across simulated datasets (the posterior-525

predictive distribution, PPD) contains the statistic for the526

observed data with high probability, then the model is527

deemed adequate, i.e., the model provides a reasonable528

description of the true data-generating model.529

We assessed the adequacy of our models from the per-530

spective of the morphological data. For a given model,531

we drew random samples from the posterior distribution532

of model parameters (including the phylogeny and pa-533

rameters of morphological evolution). For each sample,534

we simulated a morphological dataset, the same size as535

the original and with the same patterns of missing data,536

given the model parameters and computed two sum-537

mary statistics: 1) S, the total parsimony score (number538

of steps computed on the sampled tree) for the simulated539

characters minus the total parsimony score for the ob-540

served characters, and; 2) V, the variance in parsimony 541

scores among simulated characters minus the variance 542

in parsimony scores among observed characters. The 543

S statistic is intended to assess whether the model ade- 544

quately characterized the average rate of evolution, while 545

the V statistic is intended to assess if the model captures 546

how the rate and process of evolution vary among char- 547

acters. If the 95% interval of the posterior-predictive dis- 548

tribution of these statistics for a given model did not in- 549

clude 0, we deemed that model inadequate. We provide 550

further details of these simulations in the Supplemental 551

Material (S§5). 552

The structure of the TED model provides some expec- 553

tations about the sensitivity of PPS to the different model 554

components we explored. Specifically, the PPD will be 555

sensitive to model components that have a strong im- 556

pact on the likelihood function, but insensitive to non- 557

identifiable model components. We therefore expect the 558

morphological-transition model to influence the PPD be- 559

cause this model component is identifiable. By contrast, 560

for a given morphological-clock model, the tree model 561

may have little influence on the PPD because rate and 562

time are nonidentifiable: tree models that prefer dif- 563

ferent node ages may nonetheless have similar likeli- 564

hoods because the clock model can compensate for dif- 565

ferent node ages. However, for a given tree model, the 566

two clock models we used can in principle influence the 567

PPD because the models with separate relaxed clocks can 568

achieve sets of branch rates that models with one relaxed 569

clock cannot (Zhu et al. 2015). For example, if the un- 570

linked model is true (i.e., if rates of morphological and 571

molecular evolution are not proportional), then estimates 572

of branch-specific rates of morphological evolution un- 573

der the linked model will be influenced by the molecular 574

data and therefore be unable to attain values that fit the 575

morphological data. 576

Assessing relative model fit.—We compared the relative fit 577

of competing models using Bayes factors, which are the 578

ratio of the marginal likelihood for each model (Kass 579

and Raftery 1995). We estimated the marginal likelihood 580

for a given model using four replicate power-posterior 581

analyses in RevBayes, and computing the path-sampling 582

(Lartillot and Philippe 2006) and stepping-stone estima- 583

tors (Xie et al. 2011). Given the computational expense 584

of marginal-likelihood estimation, we only calculated 585

Bayes factors among the tree models (conditional on the 586

preferred morphological-transition and morphological- 587

clock models). 588

Assessing the effect of the taxon sample and rooting.—Our 589

fossil dataset is dominated by a cluster of late Car- 590

boniferous taxa whose relationships to each other and 591

to surviving lineages are apt to be highly uncertain, 592
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SENSITIVE MODELS AND THEIR DATING DIFFICULTIES 9

which may limit our ability to infer ancient divergences.593

Additionally, the inclusion of a sparsely sampled out-594

group makes it difficult to specify an appropriate taxon-595

sampling fraction for the fossilized birth-death models.596

We performed additional analyses to understand the ro-597

bustness of divergence-time estimates within the Marat-598

tiales to different taxon samples and rooting strategies599

(described in more detail in the Supplemental Material600

S§6). In particular, in addition to our “standard” taxon set601

(the ingroup Marattiales plus an outgroup of leptospo-602

rangiate ferns) we performed analyses with only ingroup603

taxa, with the addition of the ancient land-plant fossils604

described above, and by polarizing a subset of charac-605

ters for which we are confident in their ancestral states a606

priori (our “ingroup-only”, “ancient plants”, and “polar-607

ized” analyses, respectively). In each of these analyses,608

we assumed the best-performing morphological transi-609

tion model, morphological clock model, and tree model,610

as determined in the core analyses.611

RESULTS612

Modeling results613

Here, for the fossilized birth-death models, we present614

the results for the analyses that assume the ingroup sam-615

pling fraction, for a total of 40 distinct model combina-616

tions (four morphological transition models × two mor-617

phological clock models × five tree models); results us-618

ing the overall sampling fraction are qualitatively simi-619

lar, and are presented in the Supplemental Material S§7.2.620

LTT curves for each individual model combination are621

available in the Supplemental Material. We also com-622

pared the ages of individual clades for each pair of mod-623

els (Figs. S18, S19, S20), and between ingroup and overall624

sampling fractions (Fig. S51).625

Topological distance.—The greatest differentiation in topo-626

logical space is between models with and without the627

uniform tree model (Fig. 3, top row); the individual fos-628

silized birth-death tree models each have weak effects on629

topology (Fig. 3, top right). The morphological transi-630

tion model has a strong influence on topologies (Fig. 3,631

top left), whereas the morphological clock models have a632

mild effect (Fig. 3, top middle).633

Chronogram distance.—Similar to the pattern observed in634

topological distances, the uniform tree model has the635

most striking impact on Kühner-Felsenstein distances636

among chronograms (Fig. 3, middle row). However,637

in contrast to topological distances, KF distances among638

chronograms are differentiated by the FBD models, with639

the EFBDλ,µ and EFBDλ,µ,ψ models sampling from a re-640

gion of tree space (Fig. 3, middle right, central region)641

that is rarely visited by the other models. The morpho- 642

logical transition and clock models appear to have a mild 643

effect on KF distances (Fig. 3, middle row, left and mid- 644

dle columns). 645

Morphogram distance.—In contrast to its weak effect on 646

topological and chronogram distances, the morphologi- 647

cal clock model has the strongest impact on KF distances 648

among morphograms (Fig. 3, bottom middle). Within 649

the clusters defined by the clock models, there is clear 650

differentiation among transition models, with the Mk+Γ 651

and F81 models being intermediate between the Mk and 652

F81+Γ models (Fig. 3, bottom left). The tree models have 653

a mild affect on distances among chronograms (Fig. 3, 654

bottom right). 655

Lineages through time.—Consistent with our MDS plots, 656

the greatest differences among LTT curves are between 657

model combinations with and without the uniform tree 658

model; however, there are also consistent differences in 659

LTT curves among the fossilized birth-death models (Fig. 660

4, right). In particular, the EFBDλ,µ and EFBDλ,µ,ψ mod- 661

els indicate a later origin for the Marattiales and a more 662

rapid increase to peak diversity at the end of the Car- 663

boniferous, whereas the EFBDψ model predicts a more 664

gradual accumulation of diversity. Overall, the EFBDλ,µ 665

and EFBDλ,µ,ψ models estimate very similar LTT curves, 666

and the influence of the tree model on LTT curves de- 667

creases toward the present. 668

The morphological transition model has a mild but 669

consistent impact on lineage-accumulation leading up to 670

the Carboniferous (Fig. 4, left). Following the Carbonifer- 671

ous, the transition models generally result in very similar 672

LTT curves, with the exception of the Mk model, which 673

infers generally fewer lineages through the Cenozoic. 674

Whether rates of morphological evolution are linked or 675

unlinked to rates of molecular evolution has almost no 676

impact on LTT curves in the early history of the Marat- 677

tiales. However, LTT curves for the clock models begin 678

to diverge beginning about 175 Ma, after which the un- 679

linked model infers younger clade ages (Fig. 4, middle). 680

Absolute model fit.—The morphological transition model 681

had a strong impact on model adequacy (Fig. 5, col- 682

ored boxplots). In particular, transition models without 683

among-character rate variation did the worst according 684

to the parsimony variance statistic, V; additionally, the 685

F81+Γ model did the best at describing the amount of 686

evolution, according to the total parsimony score statis- 687

tic, S. We therefore identified the F81+Γ as the preferred 688

morphological transition model. 689

Posterior-predictive distributions were largely insensi- 690

tive to the morphological clock model (Fig. 5, shaded 691
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10 SENSITIVE MODELS AND THEIR DATING DIFFICULTIES

Figure 3: Comparing distributions of trees among model combinations. We compute the Robinson-Foulds distance (RF, a measure of topological
distance, top row), the Kühner-Felsenstein distance (KF, a distance metric that incorporates both topology and branch lengths) between chrono-
grams (middle row) and morphological phylograms (“morphograms”, bottom row). We then plot the (square-root transformed) distances in
two-dimensional space using multi-dimensional scaling (MDS); each point represents the location of a given sampled tree in tree space according
to the distance metric. We color points according to the morphological transition model (column 1), the morphological clock model (column 2), or
the tree model (column 3). These results assume the ingroup sampling fraction for all of the fossilized birth-death models; see Figure S25 for the
results with the overall sampling fraction.

regions), a result that is in strong contrast to the influ-692

ence of the clock model on the posterior distributions of693

morphograms (Fig. 3, bottom middle). The strong ef-694

fect of the clock models on the morphograms indicates695

that the absence of a signal in the PPS is not related to696

nonidentifiability. Instead, the fact that PPS under the697

unlinked clock produces very similar datasets to those698

under the linked clock model suggests that the unlinked699

clock is overparameterized (its additional parameters fail700

to improve model adequacy); we expand on this inter-701

pretation in the Supplemental Material S§8). We there-702

fore identified the linked model as the preferred morpho-703

logical clock model.704

As predicted based on nonidentifiability, the tree 705

model had essentially no impact on posterior-predictive 706

distributions (Fig. 5, columns), consistent with its 707

very limited impact on posterior distributions of mor- 708

phograms (Fig. 3, bottom right). We therefore compared 709

the relative fit of the tree models using Bayes factors. 710

Relative model fit.—Bayes factor comparison of the tree 711

models were decisive (Table 1). The uniform tree model 712

is by far the worst model: it is very strongly outper- 713

formed by the second worst model, the constant-rate 714

FBD model (2 ln BF > 40). Interestingly, models that al- 715

low fossilization rates to vary among epochs do not im- 716
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Figure 4: Comparing lineage-through-time curves among model combinations. For each focal model component (morphological transition
model, and morphological clock model, and the the tree model, respectively), we compute the LTT curve averaged over the remaining model
components, i.e., the average number of branches in the phylogeny at a given time, averaged over all model combinations that share the focal
model component. We removed outgroup taxa to emphasize the influence of model specification on age estimates within our ingroup. Left) We
compute the average LTT for each of the 40 models (from 2000 sampled trees for each model), then compute the mean of the resulting average LTT
among models with the same morphological-transition model. Middle) As in left, but we compute the mean of the average LTT among models
with the same morphological clock model. Right) As in left, but we compute the mean of the average LTT among models with the same tree
model.

prove model fit: the EFBDψ is disfavored compared to717

the constant-rate FBD, and the EFBDλ,µ,ψ model is dis-718

favored compared to the EFBDλ,µ model. Overall, the719

EFBDλ,µ model is the best-performing model, and is very720

strongly favored over the second-best model, EFBDλ,µ,ψ721

(2 ln BF = 14.25; Table 1).722

Taxon sample and rooting analyses.—The broad topologi-723

cal patterns and timing of divergences are similar among724

these analyses (Figs. S49, S50, S51). Nevertheless, there725

are some notable trends in the effect of the different ap-726

proaches on inferred ages of specific clades, which we727

discuss in the Supplemental Material (S§6). Notably, the728

similarity between ages inferred from our primary analy-729

ses with the ingroup sampling fraction and those inferred730

under the ingroup-only analysis suggests that ages esti-731

mates based on the ingroup sampling fraction are reli-732

able. By contrast, those under the overall sampling frac-733

tion are probably overestimates (S§7.3). Because they734

used different datasets, we can not correctly compare735

among these analyses with posterior predictive simula-736

tion or Bayes factors. However, given that these analyses737

provided broadly consistent results, we ultimately base738

our discussion of marattialean phylogeny on the most in-739

clusive dataset (i.e., the “ancient plants” analysis).740

Phylogenetic results741

Topological results.—Topologies varied among analyses,742

but all analyses except those under the uniform tree prior743

resolved a clade of extant Marattiaceae (exclusive of any 744

fossil representatives), a grade of fossil taxa related to this 745

extant clade, and a Psaroniaceae clade comprising many 746

Carboniferous to Triassic (– Cretaceous) taxa (Figs. 6, S21, 747

S35, S44, S47). In the MCC tree for our focal phylogeny 748

(from the “ancient plants” analysis), Scolecopteris species 749

do not fall within a single clade (Fig. 6). Instead, most 750

Scolecopteris representatives, along with a few other tradi- 751

tional psaroniaceous fossil genera, fall in a “core” Psaro- 752

niaceae clade, while other Scolecopteris species along with 753

Grandeuryella renaulti and Floratheca apokalyptica form a 754

small grade of lineages at the base of the remaining 755

Marattiales with which they share a reduced number of 756

sporangia per synangium (Fig. S62) and spore ornamen- 757

tation characteristics (Figs. S65, S66). The analyses with 758

polarized-character rooting and the ingroup-only dataset 759

produced similar results but with different arrangement 760

of taxa in the grade (Figs. S43, S47). 761

The “standard dataset” results weakly support an al- 762

ternative hypothesis, in which there is an expanded Psa- 763

roniaceae clade that consists of all Scolecopteris species 764

plus representatives of other genera, most of which 765

have traditionally been considered to belong to Psa- 766

roniaceae (e.g., Araiangium pygmaeum, Acaulangium bul- 767

baceum, Grandeuryella renaulti, Convexocarpus distichus, 768

Floratheca apokalyptica, Buritiranopteris costata, and Gemel- 769

litheca saudica; Fig. S21). This topology does not appear to 770

be supported by conspicuous character-state transitions. 771

In each case, support for the topology is low, as it is in 772

all fossil-rich regions of the tree (Figs. 6, S21, S43, S47). 773
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Figure 5: Comparing model adequacy among model combinations. Each boxplot represents the posterior-predictive distribution for a given
model for a given statistic. The top row of panels correspond to the posterior-predictive distributions of the total parsimony score statistic, S; the
bottom row of panels are for the variance in parsimony score statistic, V. Each column of panels corresponds to analyses under a given tree model.
Within each panel, boxplots are colored by the morphological matrix model, and regions of the panel are shaded according to the morphological
clock model. Models that are inadequate at the α = 0.05 level are indicated with an asterisk. These results assume the ingroup sampling fraction
for all of the fossilized birth-death models; see Figure S34 for the results with the overall sampling fraction.

Table 1: Comparing the fit of alternative tree models with Bayes factors. We report the average marginal likelihood ± the standard deviation
among four runs computing using the stepping-stone estimator, and the 2 ln Bayes factor between each pair of models. Marginal likelihoods
computed using the path-sampling estimator were essentially identical.

2 LN BF AGAINST ALTERNATIVE

MODEL MARGINAL LIKELIHOOD Uniform CRFBD EFBDψ EFBDλ,µ EFBDλ,µ,ψ

Uniform −25941.74± 0.60 –
CRFBD −25920.73± 0.78 42.03 –
EFBDψ −25922.00± 0.59 39.49 −2.54 –
EFBDλ,µ −25908.05± 1.02 67.39 25.36 27.90 –
EFBDλ,µ,ψ −25915.17± 0.59 53.14 11.11 13.65 −14.25 –

Support for the monophyly of the ingroup was greatest774

for the ancient and polarized analyses (i.e., the ones with775

additional information available to inform the root po-776

sition; posterior probabilities 0.43 and 0.85, respectively,777

compared to 0.33 with the standard dataset; Figs. 6, S43).778

Conversely, the ingroup-only analysis was the most topo-779

logically distinct in this fossil-rich region of the tree (Figs.780

S49, S47), and in general has lower posterior support for781

divergences along the backbone of the tree.782

The “early diverging” stem lineages related to Marat-783

tiopsis and extant Marattiaceae consistently include Rad-784

stockia kidstonii, Qasimia shyfsmae, and Rothwellopteris785

pecopteroides, as well as a clade comprising Millaya tu-786

larosana, Eoangiopteris goodii, and Danaeites rigida (Figs. 6,787

S21, S22, S43, S44, S46, S47, S48). Escapia christensenioides788

and Danaeopsis fecunda were highly unstable and inferred 789

in various positions among these stem lineages (Figs. 6, 790

S21, S47) or with Scolecopteris species (Fig. S43). Pruning 791

these two taxa did not have an appreciable effect on clade 792

support (not shown). 793

Marattiopsis fossils, from the Triassic through Juras- 794

sic, are morphologically very similar to extant marat- 795

tialeans and, with “Marattiaceae indet. Vera (2016)” form 796

a grade of lineages most closely related to the extant taxa. 797

Qasimia shyfsmae and/or Rothwellopteris pecopteroides are 798

often inferred to be directly ancestral to the Marattiop- 799

sis + extant Marattiaceae clade. Notably, the phyloge- 800

netic separation of the extant Marattiaceae genera from 801

the morphologically nearly indistinguishable Marattiop- 802

sis species (see Fig. 1I)and the superficially similar Da- 803
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Marattiaceae indet Vera 2016
Marattiopsis anglica

Marattiopsis asiatica
Marattiopsis vodrazkae

Marattiopsis patagonica
Marattiopsis crenulatus
Danaeopsis fecunda

Escapia christensenioides
Radstockia kidstonii

Eoangiopteris goodii
Millaya tularosana

Danaeites rigida
Scolecopteris guizhouensis

Scolecopteris shanxiensis
Scolecopteris majopsis

Floratheca apokalyptica
Scolecopteris alta

Grandeuryella renaultii
Scolecopteris oliveri

Buritiranopteris costata
Gemellitheca saudica

Scolecopteris mamayi
Scolecopteris latifolia
Scolecopteris monothrix

Scolecopteris calicifolia
Scolecopteris antarctica

Scolecopteris parkerensis
Scolecopteris fragilis
Scolecopteris incisifolia
Scolecopteris dispora
Scolecopteris vallumii

Scolecopteris minor
Scolecopteris saharaensis

Scolecopteris charma
Scolecopteris iowensis

Scolecopteris shadensis
Araiangium pygmaeum

Convexocarpus distichus
Scolecopteris nigra

Scolecopteris parvifolia
Acaulangium bulbaceum
Scolecopteris illinoensis

Grammatopteris freitasii
Botryopteris tridentata

Corynepteris involucrata
Pertica quadrifaria

Psilophyton crenulatum
Rhacophyton ceratangium

Ptisana melanesica
Ptisana squamosa
Ptisana pellucida
Ptisana sylvatica
Ptisana attenuata
Ptisana mertensiana
Ptisana oreades
Ptisana fraxinea
Ptisana purpurascens
Eupodium kaulfussii
Eupodium laeve
Angiopteris evecta
Angiopteris smithii
Angiopteris itoi
Angiopteris lygodiifolia
Angiopteris tonkinensis
Angiopteris boninensis
Christensenia aesculifolia
Marattia excavata
Marattia laxa
Marattia alata
Marattia douglasii
Danaea elliptica
Danaea leprieurii
Danaea grandifolia
Danaea nodosa

Cyathea multiflora
Saccoloma inaequale
Schizaea elegans
Dipteris conjugata
Matonia pectinata
Diplopterygium glaucum
Hymenophyllum holochilum

Osmunda regalis
Osmundastrum cinnamomeum

● ●

●

●

● ●

1 2

3

4

5 6

1: Qasimia schyfsmae
2: Rothwellopteris pecopteroides
3: Marattiopsis aganzhenensis
4: Pekinopteris auriculata
5: Szea sinensis
6: Hopetedia praetermissa
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Figure 6: The maximum clade credibility tree under the preferred model with the “ancient plants” analysis. Bars correspond to the 95% credible
interval of clade ages (for internal nodes) and tip ages (for fossils). Numbers on branches and associated age bars correspond to sampled ancestors
(key bottom left). Bars are colored in proportion to the posterior probability of the clade for internal nodes, by the probability that the specimen is
not a sampled ancestor for tips, and by the probability that the specimen is a sampled ancestor for sampled ancestors (legend, left). We plot time
intervals according to the International Chronostratigraphic Chart (2020, updated from Cohen et al. 2013)

neopsis fecunda, only occurs when temporal data are in-804

corporated in the models: in a separate analysis under805

an unrooted tree model (i.e., without temporal data), the806

support for the monophyly for the extant clade dropped807

dramatically (to < 0.001 posterior probability, Fig. S68).808

Relationships within crown Marattiaceae are consistent809

among analyses (Figs. 6, S21, S35, S43, S47). Danaea is810

sister to the remaining genera and Marattia is sister to a811

weakly supported Christensenia + Angiopteris clade; they 812

are in turn sister to Eupodium + Ptisana. Our leptosporan- 813

giate outgroup taxa are themselves also monophyletic, 814

although the position of fossils within the group varies 815

among analyses (Figs. 6, S21, S35, S43), with the Per- 816

mian Szea sinensis and in some cases the Triassic Hopete- 817

dia praetermissa inferred to be directly ancestral to extant 818

taxa. 819
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Figure 7: Diversification over time under the preferred model. The top panel shows the implied total number of lineages over time (before
pruning unsampled lineages); the median value is shown on the linear scale in orange, and the median value and 95% credible interval are shown
on a log scale, in blue. The next four panels correspond to the posterior distribution of epoch-specific net-diversification rates, speciation rates,
extinction rates, and fossilization rates, respectively. In the top panel, the dark line represents the posterior median estimate, in the remaining
panels it represents the posterior mean estimate. In all cases, and the shaded region corresponds to the 95% credible interval. Note that the
preferred tree model, EFBDλ,µ, assumes that fossilization rates are constant (contrast against the model with fossilization-rate variation, Figure
S23).

Divergence-time estimates.—The overall temporal pattern820

we infer suggests that the Marattiales and leptosporan-821

giate fern lineages diverged from each other in the Lower822

or Middle Devonian (posterior mean 414.84 Ma, 95% CI823

= [350.90− 505.74]; Fig. S50, Table S.3).824

Early-diverging stem lineages of Marattiales, mostly825

involving taxa traditionally assigned to Psaroniaceae, di-826

verged through the earliest Permian. Fossil taxa at-827

tributed to Marattiopsis begin to diverge in the Triassic828

(Fig. 6, S43, S47), followed by a gap of ∼ 115 million829

years (Table S.5) before the inferred divergence of the830

crown Marattiaceae in the Upper Cretaceous, although831

there is considerable uncertainty around the age of this832

crown node (posterior mean 85.50 Ma, 95% CI = [37.44−833

173.74], Table S.4). While all extant genera are inferred to834

have diverged from each other by the Eocene, the extant835

species diverged from each other beginning in the Neo-836

gene (Figs. 6, S21, S43, S47).837

DISCUSSION 838

Our results bear both on broad methodological issues, 839

and on details of marattialean phylogeny and biology. 840

We begin by discussing the consequences of model speci- 841

fication on total-evidence dating, as well as prospects for 842

future model and method development. Next, we dis- 843

cuss the implications of our results in the context of ex- 844

isting work on the phylogeny of Marattiales. Finally, we 845

reconcile our methodological results with prior knowl- 846

edge about the fossil record and marattialean paleoecol- 847

ogy to draw a synthetic inference about the evolutionary 848

history of the group, and to demonstrate the harmony be- 849

tween our inferences—particularly under the fossilized 850

birth-death model—and the fossil record. 851

Model specification and total-evidence dating 852

The fundamental advance of total-evidence dating is that 853

fossil specimens are included as tips in the tree, and 854

their topological and temporal relationships to extant lin- 855

eages are inferred from the available data, rather than 856

assumed a priori (or inferred in separate cladistic anal- 857
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yses) as in traditional node-based fossil calibration ap-858

proaches. Estimating the phylogenetic position of fossils859

requires that we specify models that describe how mor-860

phological characters evolve, how rates of morphologi-861

cal evolution vary among lineages, and how lineages are862

distributed in time (Warnock and Wright 2020). As with863

any model-based method, the inferences we make will864

naturally be influenced by these modeling choices. How-865

ever, this sensitivity is of special concern for divergence-866

time estimation analyses because some parameters in the867

model—namely, the node ages and clock rates—are non-868

identifiable (Rannala 2002; Stadler and Yang 2013): the869

data cannot distinguish, for example, between a branch870

having a fast rate and a short duration, or a slow rate871

and a long duration. This pathology makes it difficult to872

use standard maximum-likelihood methods to estimate873

divergence times because the ML divergence-time esti-874

mates will not be unique (though see Sanderson 1997,875

2002; Paradis 2013, for almost-Bayesian ML solutions to876

this problem). In a Bayesian framework the problem is877

less acute, but at the cost of posterior estimates of time878

and rate that are very prior sensitive, even with large879

datasets. Specifically, the clock and tree models are the880

priors on time and rate in the Bayesian total-evidence881

dating model, and it is therefore critical to understand882

their role in total-evidence dating analyses.883

We discuss the influence of each model component—884

and the prospects for elaborating upon these models—in885

the following sections.886

The relative impact of model components: Which models887

matter?.—Among the three model components, the tree888

model had the greatest influence on divergence-time es-889

timates (Fig. 3, row 2, column 3), consistent with the890

expected prior sensitivity of this portion of the model.891

In particular, chronograms inferred under the uniform892

model strongly differed from those under the other mod-893

els, which we attribute, counter-intuitively, to the uni-894

form prior being very informative (as we discuss in the895

next section). However, distributions of chronograms896

were markedly different even among the fossilized birth-897

death models. Lineage-through-time curves indicate that898

the influence of these models was greatest in (but not899

restricted to) the older, fossil-rich parts of the tree (Fig.900

4, right), presumably because there is less information901

available from the molecular data to constrain older902

branch lengths, particularly for extinct clades.903

Consistent with previous simulation results (Klopf-904

stein et al. 2019), the model of morphological evolution905

had a negligible impact on divergence-time estimates in906

our study (Fig. 3, row 2). This result held after pruning907

extant taxa (Fig. S15) or taxa without molecular data (Fig.908

S14), suggesting that this phenomenon is not the result909

of the information in the molecular data overwhelming910

the information in the morphological data. However, the 911

morphological transition model had an obvious impact 912

on the posterior distribution of tree topologies (Fig. 3, 913

row 1 column 1), especially for fossil taxa (Fig. S15). The 914

discrepancy between the impact of the transition model 915

on chronograms (negligible) and topology (considerable) 916

may be due to the fact that our fossil dataset is dominated 917

by a large number of closely related and similarly-aged 918

taxa: there may be subtle (and weakly supported) dif- 919

ferences about inferred relationships among these taxa 920

that ultimately have little impact on clade ages. Simi- 921

larly, the two morphological clock models we compared 922

(rates linked to the molecular clock, or not) had a pro- 923

found influence on inferred morphograms (Fig. 3, row 3 924

column 2) but only a minor impact on chronograms (Fig. 925

3, row 2, column 2). As expected, the linked model had 926

the largest consequences on the inferred ages of young 927

clades (Fig. 4, middle), where the influence of the molec- 928

ular data should be strongest. 929

The contrasting influence of the tree model and 930

morphological-clock model on old and young clades 931

makes sense in light of what we know about divergence- 932

time estimation under relaxed-clock models. Specifically, 933

divergence-time estimates are a compromise between the 934

plausibility of the node ages (from the perspective of 935

the tree model) and the plausibility of the branch rates 936

(from the perspective of the relaxed-clock model) that 937

are needed to explain the effective branch lengths (the 938

product of rate on time of each branch). Where there is a 939

lot of information about effective branch lengths (e.g., in 940

clades with extant species and therefore abundant molec- 941

ular data), the tree model and clock model must come to 942

a compromise about how to explain the effective branch 943

lengths, and the constraints of the clock model may re- 944

duce differences among the tree models. Where there 945

is less information about effective branch lengths (e.g., 946

in fossil clades), then the tree model will be less con- 947

strained by the clock model and will have a larger role 948

in determining the branch lengths; in the extreme case 949

when there are no character data, the tree model will 950

completely determine the length of branches subtend- 951

ing fossils (as in Heath et al. 2014). However, the rel- 952

ative impact of these models in our analyses could be 953

a consequence of the topological and temporal distribu- 954

tion of our fossil accessions, and should not be taken 955

as a general pattern. We emphasize that we did not 956

compare different (prior) forms of clock models, as the 957

only difference in the morphological clock models that 958

we examined was whether the morphological rates were 959

linked to the molecular ones or not. As molecular clock 960

models are known to have a strong potential influence 961

on divergence-time estimation—both from first princi- 962

ples (the nonidentifiability of rate and time) and from 963

empirical results (e.g., Ronquist et al. 2012; Rothfels and 964

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.313643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313643
http://creativecommons.org/licenses/by-nc/4.0/


16 SENSITIVE MODELS AND THEIR DATING DIFFICULTIES

Schuettpelz 2014; Crisp et al. 2014; Zhang et al. 2016)—965

further studies are needed to examine the impact of these966

models, and their interaction with the tree models.967

The uniform tree model.—A noninformative prior is one968

that maximizes the ability of the data to express its pref-969

erence for different parameter values, a property often970

attributed to “uniform” priors. However, the informa-971

tiveness of a particular prior can depend on what as-972

pect of the model is being conceived; for example, a uni-973

form prior over tree topologies is not uniform over clades974

(Pickett and Randle 2005). Technically, a noninforma-975

tive prior expresses the same amount of prior evidence976

regardless of how we parameterize the model (Jaynes977

1968); this is rarely (if ever) the case with uniform priors978

(Zwickl and Holder 2004, and references therein).979

The uniform tree model (sensu Ronquist et al. 2012)980

is likewise informative (i.e., not noninformative) about981

node ages (Warnock and Wright 2020); however, our re-982

sults suggest that the strength of the uniform tree prior983

on node-age estimates has been underappreciated. Con-984

ceptually, this prior distribution on node ages is con-985

structed as follows: for each tip, draw a uniform random986

variable between the age of the tip and the origin time987

(stem age) of the tree, order the resulting uniform ran-988

dom variables, then use the smallest (i.e., youngest) uni-989

form random variable as the first node age (looking back-990

ward in time), the second smallest as the second node991

age, and so forth. Perhaps counter-intuitively, ordering992

the uniform random variables results in a prior distribu-993

tion on node ages that becomes increasingly informative994

as the number of tips increases. To develop an intuition995

for why this is the case, we can imagine the procedure for996

a set of n contemporaneous (extant) tips with stem age997

of 1 arbitrary time unit, so that each (unordered) node998

age is a uniform random variable between 0 and 1. As999

the number of random variables increases, the variance1000

around any given (ordered) node age shrinks (Figs. S38,1001

S39). Formally, the ith node age is the ith order statistic1002

of a uniform distribution, which is a Beta random vari-1003

able with α = i and β = n + 1− i. The variance of this1004

Beta random variable approaches zero as n → ∞, indi-1005

cating that the prior distribution on node ages becomes1006

increasingly narrow as the number of tips increases (Figs.1007

S38, S39). The exact distribution is somewhat different1008

with extinct tips because the uniform random variables1009

are not identically distributed, but the same general logic1010

applies.1011

The distribution of node ages in a birth-death tree (of1012

extant taxa) can also be represented by order statistics1013

(Yang and Rannala 1997) and one may worry that they1014

could exhibit similar behavior. However, in the case of1015

birth-death models, the distribution of order statistics de-1016

pends on the hyperparameters of the model (speciation1017

and extinction rates), which are typically (effectively al- 1018

ways) estimated from the data. The birth-death (and the 1019

fossilized birth-death) prior should therefore be able to 1020

adjust the distribution of order statistics to suit the data, 1021

especially if rates are allowed to vary over time. Indeed, 1022

the fossilized birth-death model with fixed hyperparam- 1023

eters also appears to be very informative, and can mimic 1024

the uniform tree model when rates are arbitrarily low 1025

(Fig. S40). 1026

Consistent with its high informativeness, the uniform 1027

tree model had a profound impact on divergence times 1028

in our analyses (Figs. 3 and 4), and resulted in system- 1029

atically increased estimates of clade ages (to the point of 1030

absurdity, such as Cambrian age for the Marattiales stem 1031

and Silurian for the crown group). On a finer scale, when 1032

compared to the fossilized birth-death models, the uni- 1033

form tree model tends to spread node ages out as evenly 1034

as possible, which resulted in older ages for large, closely 1035

related clades, such as Scolecopteris and the extant Marat- 1036

tiaceae. These results are consistent with previous work, 1037

which reported unexpectedly ancient divergences under 1038

the uniform tree prior (Slater 2013; Wood et al. 2013; Ar- 1039

cila et al. 2015). As a consequence of clades being very 1040

old, there was also an increased opportunity for fossils 1041

to be nested within clades that would otherwise be too 1042

young to contain them, resulting in large differences in 1043

the inferred topologies (Figs. 3 and S42). 1044

Model evaluation: Which model is best?.—There is strong 1045

evidence that rates of morphological evolution vary 1046

among characters: transition models that exclude 1047

gamma-distributed rates fail to generate patterns of vari- 1048

ation among characters that are similar to those in the 1049

observed morphological dataset (Fig. 5). There is also 1050

evidence that the process of evolution is not the same 1051

among characters and states, as the F81 models gener- 1052

ally simulate more realistic datasets than the Mk mod- 1053

els. By contrast, posterior-predictive simulations were 1054

unable to detect differences among the morphological 1055

clock models (Fig. 5). This result is somewhat surpris- 1056

ing because, in principle, different posterior distributions 1057

of morphograms (as observed under the morphological- 1058

clock models, Fig. 3) could affect model adequacy (see 1059

Supplemental Material S§8). The fact that no difference 1060

was apparent is likely due to the topological and tempo- 1061

ral distribution of fossils in our tree: morphological-clock 1062

model adequacy is probably driven by our large cluster 1063

of ancient fossils, and the lengths of branches subtend- 1064

ing those fossils are not informed by molecular data, and 1065

are therefore unaffected by being linked to the molecular 1066

rates. 1067

In contrast to the molecular-clock models, all of the 1068

tree models estimated very similar morphograms (Fig. 1069

3), and consequently, the posterior-predictive distribu- 1070
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tion for these models are expected to be the same. The1071

failure of the PPS approach to differentiate among the1072

tree models, despite the extreme effect of these models1073

on the resulting inference (Figs. 3, 4) is a manifestation1074

of the nonidentifiability of this model component: differ-1075

ences in time (node heights) can be compensated for by1076

differences in rates, with no effect on the expected dis-1077

tribution of the data. However, Bayes factors (which are1078

sensitive to differences in prior distributions), clearly dif-1079

ferentiated among the tree models (Table 1). The low1080

marginal likelihood under the uniform tree model pre-1081

sumably reflects the fact that the clock rates necessary to1082

achieve a reasonable fit to the data given the highly dis-1083

torted node ages are implausible from the perspective of1084

the relaxed-clock model.1085

The other major, and surprising, result of our Bayes1086

factor comparisons was the relatively poor performance1087

of the FBD models that allow fossilization rates to vary.1088

Considering that our fossils are overwhelmingly from1089

the Pennsylvanian, and that this concentration appears1090

to be due (at least in part) to the unique preservation1091

potential of that epoch (via the formation of coal balls),1092

we expected that fossilization-rate variation would be an1093

important model component. However, the number of1094

fossils in a given time interval is a function of both the1095

fossilization rate and the number of lineages in that time1096

interval. The EFBDψ model struggles to produce enough1097

lineages in the Pennsylvanian to generate a sufficient1098

number of fossils, even with an elevated fossilization rate1099

(Fig. S24); presumably, increasing the diversification rate1100

would increase the number of lineages available to fos-1101

silize, but would also predict many more extant taxa than1102

we observe. By contrast, the EFBDλ,µ model implies a1103

spike of diversity in the Pennsylvanian (Fig. 7, top), and1104

is therefore able to explain both the large number of fos-1105

sils in that time period and the observed diversity at the1106

present. Allowing fossilization rates to vary on top of1107

diversification-rate variation does not appear to improve1108

model fit, i.e., the epoch-specific diversification-rate vari-1109

ation appears to be sufficient to describe the observed1110

patterns of fossil and extant diversity.1111

Modeling prospects.—While divergence-time estimates ap-1112

pear to be relatively insensitive to the morphological1113

transition model—despite the fact that we investigated1114

arguably the most biologically realistic morphological1115

models applied in a TED analysis to date—these mod-1116

els still provide the opportunity to learn about the pro-1117

cesses that govern morphological evolution. It is no-1118

table, for example, that the best overall morphological1119

transition model—the F81+Γ mixture model—is also the1120

most parameter-rich. This result may indicate that our1121

morphological dataset could support even more com-1122

plex models, for example, ones that allow the process1123

of evolution to vary among branches (Beaulieu et al. 1124

2013; Goloboff et al. 2019), or that accommodate cor- 1125

related evolution among characters (Pagel and Meade 1126

2006; Meyer et al. 2019) and other complex dependencies 1127

(Maddison 1993; Tarasov 2019). However, such models 1128

generally require increasing the state-space of the char- 1129

acters, which complicates the calculations used for cor- 1130

recting for variable-only characters, so more work is nec- 1131

essary before they should be used in total-evidence dat- 1132

ing analyses. Our models also assume that morphologi- 1133

cal data subsets (defined by the number of states) evolve 1134

at different relative rates, and that rate variation within 1135

data subsets follows a gamma distribution. Models that 1136

accommodate variation in the rate and process of evo- 1137

lution using biologically meaningful data partitions (for 1138

example, partitioning between feeding and non-feeding 1139

characters, as in Wright et al. 2020, or between reproduc- 1140

tive and vegetative characters, etc.) provide another op- 1141

portunity to improve model realism. 1142

Ultimately, our choice of candidate morphological 1143

clock models was guided by practical considerations, 1144

but, as with the morphological transition models, it is 1145

easy to imagine more biologically rich and meaning- 1146

ful models. Autocorrelated relaxed clocks, which as- 1147

sume that rates of evolution themselves evolve over the 1148

branches of the tree, are a biologically natural class of 1149

models with a long history in Bayesian divergence-time 1150

estimation (Heath and Moore 2014), and can accom- 1151

modate gradual patterns of rate change (Thorne et al. 1152

1998; Thorne and Kishino 2002), rare episodic changes 1153

(Huelsenbeck et al. 2000), clade-specific rates (Drum- 1154

mond and Suchard 2010), and complex mixtures of grad- 1155

ual and episodic change (Lartillot et al. 2016). We at- 1156

tempted to use autocorrelated Brownian motion and 1157

random-local-clock models (Thorne et al. 1998; Thorne 1158

and Kishino 2002; Drummond and Suchard 2010) in the 1159

early stages of our study, but were unable to make the 1160

MCMC analyses function adequately: as the number of 1161

branches in the tree grows, the dependency between the 1162

autocorrelated rates and the tree topology makes it in- 1163

creasingly difficult to efficiently sample over tree space. 1164

As total-evidence-dating approaches gain in popularity, 1165

it will be desirable to develop more efficient MCMC pro- 1166

cedures for sampling tree and branch rates under auto- 1167

correlated models. 1168

Consistent with previous studies (Zhang et al. 2016; 1169

Wright et al. 2020), our results suggest that the tree model 1170

can have a large—or, in the case of the uniform tree 1171

model, overwhelming—impact on total-evidence dating 1172

analyses. While the fossilized birth-death model im- 1173

proves our ability to jointly model extinct and extant di- 1174

versity, and to have a biologically meaningful tree model, 1175

it is nonetheless limited in some important ways. For 1176

example, our results assume that the sampling fraction 1177
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applies uniformly to all extant taxa. While the qual-1178

itative impact of each model component was consis-1179

tent regardless of whether we assumed the total extant1180

sampling fraction (ρ = 36÷ 12000) or the ingroup frac-1181

tion (ρ = 27÷ 111; Supplemental Material S§7.2), exact1182

age estimates are different between the two assumed1183

sampling fractions, with the outgroup sampling fraction1184

driving older age estimates (see Supplementary Material1185

S§7.2). Unfortunately, neither of these sampling fractions1186

is realistic, given that the sampling intensities for our in-1187

group and outgroup are highly imbalanced.1188

While a model of “diversified” taxon sampling exists1189

for the fossilized birth-death process (Zhang et al. 2016),1190

this model assumes that all unsampled extant lineages at-1191

tach to the tree more recently than the youngest internal1192

node or fossil. This assumption is clearly inappropriate1193

for the Marattiales, where most extant species arose rel-1194

atively recently (Fig. 6). Given that empirical datasets1195

frequently exhibit imbalanced taxon sampling schemes,1196

and some degree of “diversified” or “deep-node” sam-1197

pling, an important avenue of development for the fos-1198

silized birth-death process will be to derive more flexible1199

models of incomplete taxon sampling. Beyond the de-1200

tails of accommodating incomplete taxon sampling, the1201

fossilized birth-death models we used in this study make1202

many simplifying assumptions about the diversification1203

and sampling process. For example, they assume that di-1204

versification and fossilization rates are constant among1205

lineages and within epoch, and do not depend on ecol-1206

ogy, morphology, geography, etc. Tree models that al-1207

low for state-dependent and lineage-specific rates exist1208

(in principle) for phylodynamic (epidemiological) mod-1209

els (Kühnert et al. 2016), but while the theoretical machin-1210

ery underlying the phylodynamic and fossilized birth-1211

death models is nearly identical, to our knowledge these1212

models have not been adapted for the fossilized birth-1213

death model. They therefore represent a major untapped1214

resource for future development and application.1215

Finally, our use of posterior-predictive simulation to1216

assess the adequacy of morphological models assumes1217

that the statistics we have chosen—the total parsimony1218

score, S, and the variance in parsimony scores, V—are1219

sensitive to realistic violations of our models. More work1220

is needed to determine the power and utility of these1221

model evaluation tools to assess different components of1222

the total-evidence model.1223

Marattiales phylogeny and divergence times1224

Extant relationships.—Topologically, our results for extant1225

relationships are generally consistent with other molec-1226

ular studies of Marattiales phylogeny, including in sup-1227

porting Danaea as sister to the rest of the extant marat-1228

tialeans (Murdock 2008b; Lehtonen et al. 2020), and sup-1229

porting the monophyly of each genus (Murdock 2008b;1230

Rothwell et al. 2018b; Lehtonen et al. 2020). Among the 1231

extant taxa, the main point of uncertainty remains the po- 1232

sition of Christensenia. Whereas Murdock (2008b) found 1233

Christensenia sister to the remainder of the Christensenia + 1234

Marattia s.str. + Angiopteris clade, in our results Marat- 1235

tia is in that position. However, support is relatively 1236

weak for these relationships in our results as well as 1237

in Murdock (2008b). Lehtonen et al. (2020), while like- 1238

wise having only weak support, resolve the third possi- 1239

ble relationship: Christensenia sister to Marattia, and that 1240

clade sister to Angiopteris. This phylogenetic uncertainty 1241

is mirrored in previous morphological cladistic studies 1242

(see Hill and Camus 1986), as well as the sampling- 1243

focused analyses of Rothwell et al. (2018b), which have 1244

supported each of these positions for Christensenia, in ad- 1245

dition to placing it sister to Danaea or to all other ex- 1246

tant genera. Morphologically, our topological resolu- 1247

tion of Christensenia sister to Angiopteris is supported by 1248

spherical spores (Fig. S56), synangia oval in longitudi- 1249

nal section (Fig. S59), and a raised stomatal complex 1250

(Fig. S67). Regardless of its precise position, Christense- 1251

nia is clearly nested within extant Marattiaceae and the 1252

characters that it shares with Psaroniaceae species (most 1253

notably, its radially symmetrical synangia; Fig. 1K) are 1254

independently derived, a result that contrasts strongly 1255

with pre-phylogenetic and early morphological cladistic 1256

hypotheses (e.g., Campbell 1911; Hill and Camus 1986). 1257

In the tree of extant species (Fig. 6) Marattiales are 1258

deeply isolated from their closest extant relatives, the 1259

leptosporangiate ferns, as has been repeatedly demon- 1260

strated (Pryer et al. 2001; Qiu et al. 2007; Murdock 2008b; 1261

Rai and Graham 2010; Lehtonen 2011; Rothfels et al. 1262

2015b; Lehtonen et al. 2020). Given this situation—a 1263

very long stem branch connecting to a series of much 1264

shorter branches within the Marattiales crown group— 1265

one might expect uncertainty within the crown group re- 1266

lationships driven by uncertainty in the attachment posi- 1267

tion of the stem branch (Huelsenbeck et al. 2002; Roth- 1268

fels et al. 2012), as in the maximum likelihood results 1269

of Murdock (2008b) and as has been seen in other sim- 1270

ilarly isolated groups (e.g., Isoetes, Equisetum, and Cycas; 1271

Des Marais et al. 2003; Schuettpelz and Hoot 2006; Na- 1272

galingum et al. 2011). With this concern in mind, we 1273

questioned whether Danaea was correctly inferred as sis- 1274

ter to the remaining extant taxa. Our analyses allow for 1275

the long stem branch to be broken up by fossil acces- 1276

sions, which may additionally provide important infor- 1277

mation about the polarity of morphological characters 1278

(i.e., which character states are ancestral for crown Marat- 1279

tiaceae), potentially allowing for more reliable inference 1280

of the “root” position for this crown clade (Doyle and 1281

Donoghue 1987; Gauthier et al. 1988; Donoghue et al. 1282

1989; Huelsenbeck 1991; Smith 1998; Wills and Fortey 1283

2000; Mongiardino Koch and Parry 2020). Nonetheless, 1284
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our results further support the growing consensus (Pryer1285

et al. 2001; Schuettpelz et al. 2006; Qiu et al. 2007; Mur-1286

dock 2008b; Rai and Graham 2010; Lehtonen et al. 2020)1287

that Danaea is sister to the remaining extant lineages; it1288

shares synapomorphic states of the extant clade (e.g., the1289

presence of stipules), and has apomorphic states (e.g.,1290

once-pinnate, dimorphic leaves), but few character states1291

argue for it being nested among the other extant taxa;1292

those that do appear to be homoplastic.1293

Overall relationships.—Our results depart in significant1294

ways from classic interpretations of Marattiales evolu-1295

tion (see Rothwell et al. 2018a), the topologies inferred1296

by previous total-evidence analyses (Rothwell and Good1297

2000; Lehtonen et al. 2020), and the morphological cladis-1298

tic analysis by Liu et al. (2000). Namely, in our MCC1299

trees Psaroniaceae appears paraphyletic, comprising a1300

grade of early-diverging lineages in Marattiales, a com-1301

ponent of which eventually gave rise to the Marattiaceae1302

(Figs. S21, 6). To a lesser extent, Lehtonen et al. (2020)1303

found a similar pattern, with a polytomy comprised of1304

Araiangium, Danaeites rigida + Millaya tularosana, and Syd-1305

neia + Radstockia sister to the remaining Psaroniaceae and1306

Marattiaceae clades, and Liu et al. (2000) also recovered a1307

non-monophyletic Psaroniaceae, even though they used1308

a much different fossil sample.1309

In contrast to Rothwell et al. (2018b), we find little ev-1310

idence for the alternative hypothesis that Psaroniaceae1311

and Marattiaceae are reciprocally monophyletic clades1312

that diverged from a common ancestor and thereafter1313

had separate evolutionary histories (Figs. S46, S22).1314

Nonetheless, we do resolve a large Psaroniaceae clade1315

that includes most (Fig. 6) or all (Fig. S21) of the1316

Scolecopteris species along with, at least, Araiangium pyg-1317

maeum, Acaulangium bulbaceum, Convexocarpus distichus,1318

and Buritiranopteris costata + Gemellitheca saudica. Lehto-1319

nen et al. (2020) and Rothwell et al. (2018b) found sev-1320

eral other genera to be included in the large Psaroniaceae1321

clade—such as Zhutheca, Taiyuanitheca, Acitheca, Pecti-1322

nangium, Acrogenotheca, Symopteris, and Sydneia—but we1323

did not include these taxa in our analyses. Notably, Rad-1324

stockia is inferred by both Rothwell and Good (2000) and1325

Lehtonen et al. (2020) (the latter with Sydneia), to be sis-1326

ter to the rest of Marattiales (Psaroniceae + Marattiaceae),1327

whereas our analyses place Radstockia well within the1328

Marattiales, consistent with Hill and Camus (1986).1329

Overall, the grade of lineages recovered in our MCC1330

trees (which, other than Scolecopteris species, was largely1331

consistent among our different empirical consideration1332

analyses) captures the morphological transitions accom-1333

panying the floristic turnover in the late Pennsylva-1334

nian and Permian that resulted in the modern Marat-1335

tiaceae. These critical transitional forms, for example,1336

Eoangiopteris goodii, Millaya tularosana, and Radstockia kid-1337

stonii, could be assignable to a broad interpretation of 1338

Marattiaceae, owing to their morphological departure 1339

from most Psaroniaceae, and specifically in their ses- 1340

sile bilateral synangia that contain numerous sporangia 1341

borne on flattened rather than downturned pinnules, and 1342

by having spores with an ornamented exine (Fig. S63). In 1343

other respects, however, these plants retain traits charac- 1344

teristic of Psaroniaceae, such as highly dissected leaves 1345

(Fig. S55). The picture that emerges is of a remnant 1346

of the formerly diverse Psaroniaceae that, through a se- 1347

ries of morphological changes (some of which are cap- 1348

tured in the fossil record) evolves into the ecologically 1349

and morphologically distinct modern Marattiaceae (Liu 1350

et al. 2000). 1351

The position of Escapia—another potentially “transi- 1352

tional” taxon—is highly uncertain in our analyses, and 1353

its alternative phylogenetic resolutions have notable im- 1354

plications for the interpretation of the temporal history 1355

of the Marattiales, particularly the persistence of Psaro- 1356

niaceae. Escapia is a fragmentary fossil (Rothwell et al. 1357

2018a) that exhibits a unique suite of character states, 1358

including autapomorphies such as synangia served by 1359

transfusion tracheids (Fig. S60), and states that are oth- 1360

erwise found in the Scolecopteris clade, namely having 1361

both radial and bilateral synangia (Fig. S58), with ovate 1362

eusporangium cavities (Fig. S64), and extended spo- 1363

rangium tips (Fig. S61). In long-section, the synan- 1364

gia shape appear as two crescents (Fig. S59), a state 1365

which otherwise only occurs within our dataset in Scole- 1366

copteris alta. In consequence, in some of our analyses Es- 1367

capia is resolved sister to Scolecopteris alta (Fig. S43), or 1368

nested among Scolecopteris species (Fig. S35), support- 1369

ing the hypothesis that multiple lineages of Pennsylva- 1370

nian Psaroniaceae persisted into the early Cretaceous and 1371

that psaroniaceous species may have extensively coex- 1372

isted with members of the Marattiaceae (Rothwell et al. 1373

2018a,b). However, in our favored model Escapia is re- 1374

solved among stem groups more closely related to the 1375

extant clade (Fig. 6; see also Figs. S21, S47). In this case, 1376

Escapia would not be interpreted as the last vestige of the 1377

Psaroniaceae extending into the Cretaceous, but instead 1378

as another unusual transitional form, which converged 1379

upon synangial morphology similar to Scolecopteris alta. 1380

The Permian Qasimia schyfsmae has been generally re- 1381

garded as the oldest representative of the Marattiaceae 1382

(e.g., Hill et al. 1985; Hill and Camus 1986; Rothwell et al. 1383

2018a) based on synangial characters and foliage simi- 1384

larities with Marattiopis species. Similar to other analy- 1385

ses (Rothwell and Good 2000; Lehtonen et al. 2020), we 1386

found Qasimia schyfsmae to be most closely related to the 1387

clade of Marattiopsis + extant Marattiaceae (Fig. 6, and 1388

in many cases we reconstruct it as a direct ancestor of 1389

the extant species (as was suggested by Hill and Camus 1390

1986). 1391

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.313643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.313643
http://creativecommons.org/licenses/by-nc/4.0/


20 SENSITIVE MODELS AND THEIR DATING DIFFICULTIES

Our other major phylogenetic result, and one of our1392

most surprising inferences, is that the extant marat-1393

tialeans form a clade (with 0.96 posterior support) phy-1394

logenetically apart from any of the fossils (Fig. 6), de-1395

spite the fact that a number of these fossils closely re-1396

semble extant taxa and have in the past even been con-1397

sidered congeneric with extant species (see discussions1398

in Bomfleur et al. 2013; Escapa et al. 2015). This result1399

only holds when temporal data are incorporated; in the1400

unrooted analyses (Fig. S69) some of these fossils are re-1401

solved among the extant species, as they were in, e.g.,1402

Rothwell et al. (2018b) and Lehtonen et al. (2020).1403

The position of these fossil taxa outside the crown1404

group is not completely unexpected: the extant genera1405

mostly lack unique apomorphies and are instead defined1406

by suites of states (see Murdock 2008a; Escapa et al. 2015).1407

Marattiopsis species, in turn, are mostly based on frag-1408

mentary fossils, and generally exhibit combinations of1409

states that do not match any of the extant genera. There1410

is, therefore, enough homoplasy that the fossils could be1411

placed in a number of positions among extant taxa or on1412

the stem, as exemplified by their alternative placements1413

in other analyses (Rothwell and Good 2000; Lehtonen1414

et al. 2020; Liu et al. 2000).1415

Timescale of Marattiales evolution.—Our mean Marattiales1416

stem-age estimate (414 Ma, 95% CI = [351, 505]; Fig. 6,1417

Table S.3) is older than, but broadly consistent with, ear-1418

lier studies that have inferred ages for this node using1419

node-dating approaches (e.g., ∼ 325 Ma (Rothfels et al.1420

2015b),∼ 366 Ma (Testo and Sundue 2016), and∼ 360 Ma1421

(Qi et al. 2018); Shen et al. (2018) infer a much younger1422

date, ∼250 Ma, but they also infer a different topology).1423

Similarly, our inferred stem age for the Marattiaceae is1424

consistent with other analyses, both when defined as the1425

clade including extant taxa + Marattiopsis spp. + Qasimia,1426

or more narrowly as the extant taxa + Marattiopsis spp.1427

(Lehtonen et al. 2020; Rothwell et al. 2018b). Previous1428

node-based estimates of the crown group age, however,1429

have varied tremendously. On the younger end, Qi et al.1430

(2018) estimated an age of ∼ 75 Ma, and Testo and Sun-1431

due (2016) place this node at ∼ 160 Ma. Even the 1601432

Ma estimate, however, is dramatically younger than the1433

185− 224 Ma or∼ 200 Ma inferences from Lehtonen et al.1434

(2017) and Smith et al. (2010), respectively. The latter1435

two inferences differed from the studies that inferred a1436

younger crown age in assuming that a fossil marattialean1437

was congeneric with an extant taxon, and thus they con-1438

strained the Marattiales crown node to be older than1439

the fossil. Based on morphological similarities, this as-1440

sumption is well-justified: parsimony analyses of mor-1441

phology (e.g., Rothwell et al. 2018b; Lehtonen et al. 2020)1442

consistently resolve fossils among the extant taxa, as do1443

our non-clock trees (Fig. S69); the (effectively non-clock)1444

parsimony-based dating analyses of Lehtonen et al. 2020 1445

also infer a very old date, of ∼ 220 Ma). 1446

The influence of temporal data on estimates of topology and 1447

divergence times 1448

Discrepancies between the clock and non-clock analyses 1449

(see Fig. S69), and between node-based and TED analy- 1450

ses, provide a strong example of the potential for tempo- 1451

ral data to alter our inferences of phylogenetic relation- 1452

ships (Drummond et al. 2006; Gavryushkina et al. 2017; 1453

Wright et al. 2020). TED analyses, by co-estimating the 1454

position of the fossils and the divergence times of the 1455

tree, allow for both the morphological characteristics and 1456

the temporal data associated with the fossils (their ages) 1457

to influence their position in the phylogeny. Effectively, 1458

if the full model—incorporating morphological and tem- 1459

poral information from all the samples, as well the in- 1460

fluences of the tree and clock priors—prefers a clade age 1461

that is younger, such that it overwhelms the specific mor- 1462

phological data that might resolve the fossil inside the 1463

clade, the model can place the fossil elsewhere. This out- 1464

come might be more likely if there is considerable ho- 1465

moplasy in the morphological data (as there is in extant 1466

Marattiales, and in fossil Marattiopsis; see Escapa et al. 1467

2015), resulting in a high inferred rate of morphological 1468

evolution and a reasonable chance of repeated evolution 1469

of particular character states. We infer strong support for 1470

a monophyletic crown group comprising all extant taxa 1471

to the exclusion of any fossils (see Marattiales phylogeny 1472

and divergence times, above) and a relatively young age 1473

for the crown Marattiales (mean = 84 Ma, CI = [46, 169]; 1474

Fig. 6, Table S.4), in marked contrast to studies that as- 1475

sumed that fossils fell among the extant species. The 1476

Marattiales, then, provide a powerful illustration of dan- 1477

gers of the a priori assignment of fossils to nodes that is 1478

required for node-based divergence-time dating: phylo- 1479

genetic positions of fossils that seem compelling based 1480

on morphology may not be supported in the context of 1481

the morphological and temporal data of the full sample. 1482

Reconciling model inferences with marattialean biology 1483

Inferred diversification dynamics.—While not the primary 1484

focus of our analyses, our application of the FBD model 1485

allowed us to infer the fine-scale (epoch-level) diversi- 1486

fication dynamics of this clade, informed by the fossil 1487

record. Throughout its history, we estimate a diversifi- 1488

cation rate for the Marattiales near zero, with both spe- 1489

ciation and extinction rates being low. There is some 1490

notable variation around this trend, however. Specifi- 1491

cally, speciation rates increase in the Carboniferous (and 1492

particularly in the Mississippian), the middle Permian 1493

(Guadalupian), and to a lesser extent, the late Triassic, 1494

whereas extinction rates spike in the early Permian and 1495
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lower and middle Triassic (the latter potentially reflect-1496

ing the end-Permian mass extinction; Fig. 7). In combi-1497

nation, these rates result in a picture of Marattiales evolu-1498

tion where species-level diversity increases rapidly in the1499

Pennsylvanian, culminating in a peak of ∼ 2800 species1500

(median estimate) before crashing abruptly in the early1501

Permian (Fig. 7). However, allowing fossilization rates1502

to vary reduces the inferred peak diversity: the EFBDλ,µ,ψ1503

model, while disfavored over our optimal tree model by1504

Bayes factors [Table 1], infers a peak of “only” ∼ 12001505

species, which may be more biologically plausible. The1506

other major pattern in our diversification inferences—1507

the sudden spike in speciation rates in the Pliocene—1508

coincides with the modern taxa and likely relates to a1509

switch in species concepts rather than underlying biol-1510

ogy (neontologists, by virtue of having much more data1511

available to them, divide diversity more finely than do1512

paleontologists).1513

Instead of reflecting the reality of the fossil record,1514

the apparent lack of a signal of fossilization-rate varia-1515

tion may be due to a combination of confounded epoch-1516

specific diversification and fossilization rates, taxonomic1517

practice, our sampling regime, or simply a lack of power.1518

Given that most preserved Pennsylvanian marattialeans1519

were wetland species (DiMichele and Phillips 2002), the1520

early Permian aridification of the tropics would have re-1521

duced both their fossilization potential and their diver-1522

sity (Montañez et al. 2007); by modeling the latter, we1523

may have been able to simultaneously account for the1524

former. In addition, fossilization-rate variation is likely1525

muted by the tendency for taxonomists to pay greater1526

attention to taxa that are unexpected or otherwise inter-1527

esting. In the case of the Marattiales, this bias results in1528

small fragmentary Cretaceous fossils being described in1529

great detail owing to their rarity (i.e., Escapia; Rothwell1530

et al. 2018a) and therefore included in our dataset, while1531

the great bulk of the fossils—fine anatomical preserva-1532

tions in Pennsylvanian coal balls—are relatively under-1533

represented. Our sampling regime likely exacerbates this1534

bias: of the many Carboniferous and Permian Marattiales1535

fossils, we included relatively few (e.g., only 12 of the1536

over 30 described genera; Lundgren et al. 2019; Rothwell1537

et al. 2018a). A final potential explanation is that we sim-1538

ply do not have enough information to distinguish be-1539

tween models with and without fossilization-rate varia-1540

tion, and that with more fossil data we would have re-1541

jected the constant-fossilization-rate model. Regardless,1542

our primary results are nearly the same when we allow1543

fossilization rates to vary (Figs. 3, 4).1544

A paleoecological perspective.—While the Devonian origin1545

time inferred here for the Marattiales significantly pre-1546

dates any known fossils, we find that the major initial1547

diversification of the Marattiales likely began in the Mis-1548

sissippian (359 − 323 Ma). Although there is not a lot 1549

of unequivocal evidence of Mississippian marattialeans 1550

in the macrofossil record, such a pattern is expected for 1551

the initial diversification of a group; the existence of only 1552

a few lineages, likely with small geographical ranges, 1553

would lead to exceedingly low probability of fossil recov- 1554

ery, which is compounded by the difficulty in recogniz- 1555

ing, or preserving, the defining characteristics of a group 1556

early in its evolution (Marshall 2019). 1557

The first potential macrofossil evidence of marat- 1558

tialeans, from the earliest stage of the Mississippian 1559

(Tournaisian, 359− 347 Ma), is Burnitheca pusilla, an iso- 1560

lated permineralized synangium (Meyer-Berthaud and 1561

Galtier 1986). Compression fossils of trunks with dis- 1562

tichous or helically arranged leaf scars have also been 1563

described from Mississippian localities (Crookall 1959); 1564

these fossils have a growth habit similar to early Marat- 1565

tiales taxa, but, like Burnitheca pusilla, lack the details 1566

needed to confidently assign them to the order. Spec- 1567

imens of the genus Megaphyton, stem compression and 1568

impressions from latest Mississippian-age sediments, are 1569

generally regarded as the oldest evidence for Marat- 1570

tiales (Pfefferkorn et al. 1976). The relatively small size 1571

of the early specimens, and the absence of more deli- 1572

cate leaf fragments, indicate that they likely represent 1573

allochtonous plant material, meaning they were trans- 1574

ported from their habitat before ending up in the de- 1575

positional environment in which they were preserved 1576

(Greenwood 1991). This pattern implies that marat- 1577

tialeans initially grew in habitats with a low preservation 1578

potential, which could reconcile their scarcity in the fossil 1579

record with the high diversification rates we infer during 1580

the Mississippian (Fig. 7). During the Mississippian-to- 1581

Pennsylvanian transition, the climate in the Euramerican 1582

tropics during the glacial intervals changed from season- 1583

ally dry to tropical everwet (Calder and Gibling 1994); 1584

both the wetter climate and the associated expansion of 1585

peat swamp habitats substantially increased chances of 1586

structural preservation of the swamp vegetation (Cecil 1587

2003; Gastaldo and Demko 2011). The earliest commonly 1588

accepted, unequivocal marattialeans are stems known 1589

from these conditions of high fossilization potential. 1590

All finds suggest that the early Psaroniaceae were 1591

trees of relatively small stature, with monocyclic steles, 1592

distichous leaf arrangement, and a small root mantle 1593

(DiMichele and Phillips 1977; Millay 1997). It was not 1594

until the middle Pennsylvanian that Psaroniaceae species 1595

became important understory elements and common 1596

canopy trees (with thick root mantles and large decom- 1597

pound leaves) in lowland clastic swamp communities 1598

and more widely distributed in Euramerica (DiMichele 1599

and Phillips 2002; Millay 1979, 1997). After an initial de- 1600

cline during the late Middle Pennsylvanian lycopod col- 1601

lapse, Psaroniaceae further increased in size and ecolog- 1602
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ical importance, became canopy dominants in the clas-1603

tic swamps, and firmly established themselves in the1604

dryer part of the peat swamps (Cleal 2015; DiMichele1605

and Phillips 1996, 2002; Phillips et al. 1985). These, and1606

the earlier taxa, had highly dissected leaves and synan-1607

gia with small numbers of sporangia, traits that we re-1608

construct as persisting until the early Permian (Figs. S54,1609

S57). The well-known members of the Psaroniaceae, in-1610

cluding most in our analysis, are plants from these peat1611

swamps, depositional environments where chances of1612

preservation were high. Given that we have a good idea1613

how plant communities changed over time in the wet-1614

ter parts of the landscape, less information from the local1615

drier habitats, and very little information on the evolu-1616

tion of plants and their communities in the extrabasinal1617

environments (Looy et al. 2014), the drop in diversifica-1618

tion in the early Permian (Cisuralian; Fig. 7) likely repre-1619

sents the extinction of the swamp taxa, associated with1620

the aridification of the Euramerican tropics (Montañez1621

et al. 2007).1622

Marattialeans produce massive amounts of spores and1623

more than a dozen dispersed spore taxa have been1624

found in situ in marattialean sporangia (for an overview1625

see Balme 1995). The taxonomic resolution of these1626

spores is quite variable; some are known from multiple1627

distantly related taxa (e.g., Verrucosisporites and Granu-1628

latisporites), while others have only been recorded from1629

members of the Psaroniaceae or Marattiaceae (see e.g.,1630

Millay and Taylor 1984; Lesnikowska 1989; Lesnikowska1631

and Willard 1997). The more taxonomically restricted1632

taxa, including the genera Fabasporites, Spinosporites, Thy-1633

mospora, Torispora, and smaller forms of Cyclogranis-1634

porites and Laevigatosporites, can be used as evidence for1635

Marattiales in the absence of distinctive larger fossils1636

(Lesnikowska 1989; Looy and Hotton 2014). Combined1637

with the initial rarity of the marattialeans in the fossil1638

record, the spore record corroborates our inferred diver-1639

sification patterns (Fig. 7). Small amounts of minute Cy-1640

clogranisporites and Punctatisporites (Lesnikowska 1989)1641

spores have been described from the Tournasian on, and1642

are followed by a stepwise increase in species diversity1643

and abundance when marattialeans become dominant el-1644

ements of the swamp communities.1645

CONCLUSION1646

While our focus was on the Marattiales, our results per-1647

tain to the general power and utility of the total-evidence1648

dating framework, in conjunction with the fossilized1649

birth-death class of tree models. The arguments in sup-1650

port of TED approaches and FBD models are not trivial:1651

as our results show, different modeling choices can cause1652

dramatic differences on the resulting phylogenetic infer-1653

ences, owing in large part to the nonidentifiability inher-1654

ent to these models. Fortunately, statistical models are 1655

accompanied by a robust toolkit that allows us to assess 1656

the influence of model and prior specification on param- 1657

eter estimates, to compare the fit of competing models, 1658

to assess their ability to describe the true data-generating 1659

process, and to identify ways in which the models can 1660

be made more realistic. These features are most avail- 1661

able in biologically interpretable models, like the FBD 1662

model, because the parameter estimates can be compared 1663

against empirical expectations. With the support of this 1664

toolkit, these modeling choices transform from an ana- 1665

lytical nuisance into an opportunity to learn about the 1666

processes that produced our data, and subsequently to 1667

identify avenues for increasing the biological realism of 1668

our models. 1669

By applying this toolkit to the Marattiales, we were 1670

able to infer a nuanced picture of the evolution and di- 1671

versification of this clade over its ∼ 400-million-year his- 1672

tory. This inference was possible despite the fact that 1673

much of the abundant Marattiales fossil record was left 1674

by lineages without extant descendants, the extant taxa 1675

are a young clade very distant from their closest liv- 1676

ing relatives, and the placement of fossils is compro- 1677

mised by their often fragmentary nature and morpholog- 1678

ical homoplasy among fossil and extant species. We infer 1679

that the Marattiales began to diversify in the Mississip- 1680

pian, prior to a well-established fossil record. Considera- 1681

tions of the ecology of potential early marattialeans sug- 1682

gest that this timescale may be reasonable: early marat- 1683

tialeans appear to be small, uncommon taxa, which oc- 1684

curred in habitats with low preservational potential. We 1685

also infer that the Marattiales experienced peak diver- 1686

sity at the end of the Pennsylvanian, before a sharp de- 1687

cline in the Permian to relatively stable levels of standing 1688

diversity that persisted throughout the Mesozoic to the 1689

present. Again, this pattern makes sense in light of the 1690

ecology of marattialeans and our understanding of pale- 1691

oclimate: the relatively wet climate in Euramerica during 1692

the Pennsylvanian would have been ideal for the prolif- 1693

eration of wetland-adapted marattialeans, while subse- 1694

quent aridification of that region during the early Per- 1695

mian would have driven high rates of extinction. The 1696

broad concordance of phylogenetic, ecological, and pale- 1697

oclimatological evidence demonstrates the potential for 1698

total-evidence dating—particularly in conjunction with 1699

the fossilized-birth-death model—not only to harmonize 1700

“rocks and clocks”, but also to elucidate macroevolution- 1701

ary processes. 1702

SUPPLEMENTARY MATERIAL 1703

Supplementary scripts and data can be found in the Data 1704

Dryad repository DOI:X and the GitHub repository XXXX. 1705
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B., Edwards, S. V., Rahbek, C., Mirarab, S., Warnow, T., Gilbert, M. 1767

T. P., Zhang, G., Braun, E. L., and Jarvis, E. D. (2015). Response to 1768

Comment on ”Whole-genome analyses resolve early branches in the 1769

tree of life of modern birds”. Science, 349(6255):1460. 1770

Crisp, M. D., Hardy, N. B., and Cook, L. G. (2014). Clock model makes 1771

a large difference to age estimates of long-stemmed clades with no 1772

internal calibration: a test using australian grasstrees. BMC Evolu- 1773

tionary Biology, 14(1):1–17. 1774

Crookall, R. (1959). Fossil plants of the carboniferous rocks of great 1775

britain: Memoirs of the geological survey of great britain. Palaeontol- 1776

ogy, 4:85–216. 1777

de Leeuw, J. and Mair, P. (2009). Multidimensional scaling using ma- 1778

jorization: SMACOF in R. Journal of Statistical Software, 31(3):1–30. 1779

Des Marais, D. L., Smith, A. R., Britton, D. M., and Pryer, K. M. (2003). 1780

Phylogenetic relationships and evolution of extant horsetails, Equi- 1781

setum, based on chloroplast DNA sequence data (rbcL and trnL-F). 1782

International Journal of Plant Sciences, 164(5):737–751. 1783

DiMichele, W. A. and Phillips, T. L. (1977). Monocyclic Psaronius from 1784

the lower pennsylvanian of the illinois basin. Canadian Journal of 1785

Botany, 55(19):2514–2524. 1786

DiMichele, W. A. and Phillips, T. L. (1996). Climate change, plant ex- 1787

tinctions and vegetational recovery during the Middle-Late Pennsyl- 1788

vanian transition: The case of tropical peat-forming environments 1789

in North America. Geological Society, London, Special Publications, 1790

102(1):201–221. 1791

DiMichele, W. A. and Phillips, T. L. (2002). The ecology of paleozoic 1792

ferns. Review of Palaeobotany and Palynology, 119(1-2):143–159. 1793

Dittrich, H. S., Matten, L. C., and Phillips, T. L. (1983). Anatomy of 1794

Rhacophyton ceratangium from the Upper Devonian (Famennian) of 1795

West Virginia. Review of Palaeobotany and Palynology, 40:127–147. 1796

Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, a. G., and Rowe, T. 1797

(1989). The importance of fossils in phylogeny reconstruction. An- 1798

nual Review of Ecology and Systematics, 20(1):431–460. 1799

Donoghue, P. C. and Yang, Z. (2016). The evolution of methods for 1800

establishing evolutionary timescales. Philosophical Transactions of the 1801

Royal Society B: Biological Sciences, 371(1699):20160020. 1802

Doran, J. B. (1980). A new species of Psilophyton from the Lower Devo- 1803

nian of northern New Brunswick, Canada. Canadian Journal of Botany, 1804

58(21):2241–2262. 1805

dos Reis, M. and Yang, Z. (2012). The unbearable uncertainty of 1806

Bayesian divergence time estimation. Journal of Systematics and Evo- 1807

lution, 51(1):30–43. 1808

Doyle, J. A. and Donoghue, M. J. (1987). The importance of fossils in 1809

elucidating seed plant phylogeny and macroevolution. Review of 1810

Palaeobotany and Palynology, 50(1-2):63–95. 1811

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). 1812

Relaxed phylogenetics and dating with confidence. PLoS Biology, 1813

4(5):699–710. 1814

Drummond, A. J. and Suchard, M. A. (2010). Bayesian random local 1815

clocks, or one rate to rule them all. BMC Biology, 8(114):1–12. 1816
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