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Abstract: 

Drug repositioning is emerging as an increasingly relevant option for rare disease therapy and 

management. Various methods for identifying suitable drug candidates have been tried and 

range from clinical symptomatic repurposing to data driven strategies which are based on the 

disease-specific gene or protein expression, modification, signalling and physiological 

perturbation profiles. The use of Artificial Intelligence (AI) and machine learning algorithms 

(ML) allows one to combine diverse data sets, and extract disease-specific data profiles which 

may not be intuitive or apparent from a subset of data. In this case study with Fragile X 

syndrome and autism, we have used multiple computational methodologies to extract profiles, 

which are then combined to arrive at a comprehensive signature (disease DEG). This DEG 

was then used to interrogate the large collection of drug-induced perturbation profiles present 

in public databases, to find appropriate small molecules to reverse or mimic the disease-

profiles. We have labelled this pipeline Drug Repurposing using AI/ML tools - for Rare 

Diseases (DREAM-RD). We have shortlisted over 100 FDA approved drugs using the 

aforementioned pipeline, which may potentially be useful to ameliorate autistic phenotypes 

associated with FXS. 

Introduction: 

Fragile X syndrome is a rare disease that occurs due to a loss of function of the Fragile-X 

mental retardation protein (FMRP) in humans (1,2) Symptoms characteristic of FXS include 

craniofacial elongation, macroorchidism, elongated limbs, cognitive deficits and behavioural 

abnormalities like anxiety, irritability and aggression (3). FXS is the leading monogenic cause 

of Autism spectrum disorders (ASD) (4). 

FMRP is known to be a selective RNA binding protein, and contains two independent RNA 

binding domains. In adult neurons, FMRP is known to interact with several mRNAs (5,6) as 

well as associate with elongating polyribosomes (7,8). FMRP is believed to regulate the 

translation of these mRNAs by various mechanisms, and influences their transport to dendritic 

shafts, spines and growth cones thus directly affecting synaptic plasticity and development 

(9). FMRP has been shown to associate with over 800 mRNAs in adult neurons, and loss of 
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FMRP is therefore likely to affect the functional network of a large number of gene products 

and signalling cascades.  

The disruption of a key protein (FMRP) that drives an important function (synaptic 

development and plasticity), and directly impacts hundreds of gene products (via translation 

elongation), is likely to result in measurable and profound changes at the level of gene 

expression. These changes will include those that are a direct result of the loss of FMRP 

function, and compensatory changes to adjust for the said loss. And these changes form the 

primary starting point, of a cascade that results in cellular phenotypes which then manifest as 

behavioural symptoms in an FXS patient. Therefore the differential gene expression patterns 

present in FXS patients as compared to the normal populace can be used to identify potential 

intervention points for therapy. 

Rare genetic diseases like FXS, are aetiologically well defined, but therapeutically challenging 

because of the nature and complex cellular roles of FMRP. The diverse array of symptoms 

stem from disparate pathways that are dysregulated, therefore the traditional target based 

drug discovery approaches have not been successful (10,11). In order to tackle such a 

problem a) multiple targets or pathways that drive the core “phenotypes” of FXS need to be 

identified and b) therapeutics (or combinations) which impact multiple targets need to be 

prioritised.  

Drug repurposing has been the favoured approach to discover therapies for rare diseases, 

because of the significant time and cost saving it offers. Repurposing involves the use of a 

drug with proven efficacy for a particular indication and regulatory approval, for a different 

indication, irrespective of the original target. In order to repurpose a drug for a new indication, 

the consequence of the drug or the disease on the entire cellular network (transcriptome, 

proteome, signalling network or all of these) must be known, in order to extract potentially new 

overlaps or non-obvious connections, which may not have been considered important for each 

(drug or new indication) in isolation. The larger the number of data features and sample 

numbers available for generating such a comprehensive map, the stronger the likelihood of 

identifying a drug repurposing candidate(12,13). However, gene expression profiles are the 

only type of data available for most diseases and drug treatments and therefore form the basis 

of a large part of repurposing efforts in current times.  

The general workflow of computational methods for drug repurposing, involves the extraction 

of a disease specific gene expression signature from patient transcriptomics data using 

computational methods. The signature becomes the input parameter set to filter and find drug 

induced perturbations that are similar (mimic) or opposite in direction (reverse) and to find 

dysregulated pathways which may reveal non-obvious drug targets. The drug specific gene 

expression profiles are inferred from cell line data available from public datasets like CMAP 

(14) and LINCS (15), or experimental datasets deposited in GEO (16). 

Several strategies for drug repurposing have been tried in the case of FXS, such as clinical 

phenotype matching, based on molecular mechanisms and empirical observations and a 

number of these are summarised in Tranfaglia et al (17). Two key points differentiate our 

approach from the previously reported studies for FXS repurposing. The first, is the use of 

gene expression profiles from FXS as well as autism patients, in order to derive a disease 

signature that represents the autistic spectrum of phenotypes specific to FXS. Since FMRP 

may have broad roles during early development and translation regulation, and the aetiology 

of ASD could be varied, combining the two may add weight to and highlight the truly causative 

changes underlying the autistic phenotypes. Second, we have combined ML methods to the 
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traditional statistical methods of gene expression analysis, in order to derive a robust and 

comprehensive disease signature of differentially expressed genes (DEGs) from relatively 

small amount of data. ML algorithms are increasingly favoured for their computational 

efficiency in extracting important features from high dimensional data. 

Methods: 

Datasets: Gene expression data was obtained from NCBI GEO and the accession number 

are listed in Table 1.  

Data analysis to derive lists of differentially expressed genes (DEGs): 

Individual analysis:  The analysis of differentially expressed genes (DEG) for each dataset 

was performed with “Limma” package (linear models for Microarray data, a Bioconductor 

package), in R programming. Genes meeting the chosen criteria (P value) were selected as 

DEGs. The method involved the following steps: automated download of microarray datasets 

using getGEO to obtain expression values, background correction and normalization, fitting 

each probe set to a linear model with subsequent empirical Bayes adjustment. To identify 

DEGs between “disease” and “control”, Student’s t-test was performed. Fold change values 

were calculated, adjusted P-values were obtained. An adjusted P-value of P<0.01 was used 

as the criterion to identify DEGs. 

Meta-Analysis: Chosen datasets were downloaded and the probe IDs were converted into 

gene symbols. For genes with multiple matched probe Ids, the average value of the probes 

was taken into account and finally converted to the format prescribed by MetaDE. All the 

datasets were read using MetaDE and merged using MetaDE.merge, to form a meta dataset 

containing the common gene profiles. For further analysis, using MetaDE.filter, 30% of un-

expressed or un-informative genes were filtered out and the rest of the genes were used. 

Moderate t test was used to determine the difference in gene expression in each dataset and 

Fishers method was used to combine the P values. Benjamini-Hochberg method FDR , an 

adjusted P value <0.001  was used as the selection criteria of  the DEGs.  

Random forest: 

Data pre-processing: To observe the performance of Random forest two types of data were 

used. 1. The raw values of gene expression data set 2. The normalized gene expression data 

were used, both having the gene names as features (columns) and the samples as the rows. 

Model: The random forest model was implemented by Python’s SKLEARN library. It creates 

multiple CART trees based on “bootstrapped” samples of data followed by voting approach of 

predictions leading to uncorrelated trees. After plotting OOB error estimate “100 trees” were 

chosen as n_estimators. Hence “n_estimators” here 100 bootstrap samples were drawn from 

the original data and for each bootstrapped data a tree was grown. At each node of the tree 

the “max_features (auto)” were randomly selected for splitting and the tree was grown until 

the terminal node had no lesser cases than “min_samples_leaf” (2). Then from all the trees 

the prediction was aggregated through voting approach. Subsequently OOB error rate was 

computed by using the data not present in the bootstrap samples. To reduce the classification 

error and to provide the best branch split of the trees gini index was used as the impurity 

measure metric.  

The statistical formula of gini index is:  

1 – ( P(c1)^2 + P(c2)^2 + … + P(cN)^2)  

where p stands for probabilty and c stands for classes. Cross validation on our data was 

skipped since random forest has inbuilt bootstrap sampling and for hyper parameter tuning 

“Grid search CV” was used to get the best hyper prameters. 
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To validate the stability of the genes which were picked by variable importance and to 

understand the redundancy of the genes we performed bootstrap sampling, built 5-7 models 

and the variable importance (gene list) of bootstrap models were downloaded for a comparison 

study, shown in Fig. S3. The models were built with bootstrap sampling and different 

n_estimators, and all of the genes with variable importance greater than zero were chosen (to 

have a wide scope and large number of genes). The overlaps in these gene lists between 

models were analysed (Fig S3B) to assess model stability. The final gene list was found to be 

preserved in all other models (83% gene overlap) thus confirming good performance. 

Hyper parameter tuning was carried out in two steps here. The first parameter the “number 

of estimators” was selected through the OOB (out-of-bag) error estimate (Fig S1). From the 

OOB error estimate, we found that  at and beyond the n_estimator value of 100, the error rate 

was reduced and maintained. Therefore, considering the computational cost, a value of 100 

was chosen as the n_estimator. “GRIDSEARCH CV” was used as a second criterion to find 

the other hyper parameters And the best parameters were selected and used for the final 

model building. The final set of hyperparameters were as follows: 

N_estimator =100 

Max_depth= None 

Oob_score=True 

Max_features=’auto’ 

Criterion=’gini’ 

Support vector machines (SVMs): To implement SVM, we chose to use sklearn feature 

selection “SelectFromModel” a meta transformer  which selects features (genes) based on 

importance weights. SVM learns to differentiate between  control and disease class by 

learning from examples, making it a pattern recognition algorithm. The SVM classifier was 

trained by 80% of data for our problem, that is these data points where taken to a high 

dimensional space and we tried finding the best hyperplane to classify. To do this the Kernel 

function was selected through  GridSearch CV and “linear” kernel [k(x1,x2)=x1.x2] was 

selected as the best option as expected, based on nature of our data  which is linearly 

seperable. The hyperparameter “c” was tuned using various options and 0.1 came out as best 

option for this problem. The results of the confusion matrix and classification reports, after 

tuning, are shown in Figure S4. 

PCA: Principal component analysis (PCA) is a variance maximizing task, therefore 

standardization of gene expression values was carried out. The standardized data consists of 

only the features and not the dependent variable or outcome. For this study, PCA was 

implemented through the Python SKLEARN library. The number of principal components were 

given as the total components shaped as described “n_pcs = model.components_.shape[0]” 

leading  to 209 components  discovered as the direction of maximal variances in the data.  

Results and Discussion: 

Identification of differentially expressed genes (DEGs) in FXS/Autism: 

In order to identify a gene signature that captures the changes that are strongly correlated 

with FXS, we started with transcriptomics or microarray data acquired from FXS patients. From 

NCBI GEO, we identified five FXS datasets, of which only one had sufficient sample number 

and data quality to be included in the analysis. FXS is part of the Autism spectrum, and a lot 

of the neurological symptoms in FXS patients match those seen in ASD patients. Therefore, 

on the assumption that that a core set of gene expression changes may be at the heart of both 

these syndromes, we expanded our scope to include autism datasets, of which we found three 
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additional ones which were of sufficient quality and match between datasets, to be included 

in the current analysis.  

Our goal was to use the gene expression information from these datasets, to compute a robust 

signature of “differentially expressed genes” (disease DEG) which would be characteristic of 

the core symptoms of FXS and autism (Figure 1). Several computational methods were used 

to determine this signature.  

1. Individual analysis: Each dataset was analysed individually as described in the methods, 

and a list of genes with significant changes in expression between the control and disease 

samples, was found. At this stage, if the number of gene features present in the dataset 

was low, or if the magnitude of gene expression changes observed was not satisfactory, 

the dataset was not included in the combined analysis. Individual analysis was used to 

compute the fold-change in gene expression between disease and control samples. 

2. Meta Analysis: Meta-analysis of gene expression data was done using the METADE 

package in R (MetaDE: Microarray meta-analysis for differentially expressed gene 

detection) (18), which implements 12 major meta-analysis methods for differential 

expression analysis. The output was in the form of a list of gene names, and an associated 

statistical significance measure (p-value) with meta.stat, meta.pvalue and meta.fdr and this 

list was considered the MetaDE- DEG signature. 

3. Gene selection using Machine Learning (ML) algorithms: Machine learning can be 

used for gene profiling and selection. Feature selection, feature elimination and extraction 

algorithms were used to achieve the “gene selection” objective for this study. Feature 

selection algorithms are separated into three categories: i) Filters, which extract features 

from the data without any learning involved; ii) Wrappers, that use learning techniques to 

evaluate which features are useful and iii) Embedded techniques which combine the 

feature selection step and the classifier construction. Feature extraction creates new 

variables as combinations of others to reduce the dimensionality of the selected features. 

Hence, gene selection can also be considered a process of dimension reduction which 

allows one to narrow down the list of “important” genes. In this study, three different 

algorithms were used to find the disease DEGs. These were Principal Component analysis 

(PCA), Random forest (RF) and support vector machine (SVM). We chose these algorithms 

because of their use and proven track record with biological data(19–23). We selected three 

algorithms, each working on a different basis: RF- a tree based ensemble algorithm, PCA- 

a dimensionality reduction algorithm and SVM- a supervised algorithm taking the data into 

a higher dimension. The purpose of this pipeline was to understand which algorithm 

performs the best for these specific datasets and has the best classification scores.  

3a. Random forest is an ensemble algorithm for classification and regression 

developed by Leo Breiman, which can also be used to determine a list of “important 

features” along with “variable importance”. The datasets listed in Table 1 were used, 

and the results on the evaluation set of the final model after hyper parameter tuning 

are shown in Figure S2A (F1 score 2*((precision*recall)/(precision+recall)))) and the 

area under the curve (AUC) in Figure S2B. These metrics were used to assess 

performace, and the model appeared to have performed well  with AUC = 93% and F1 

score 90%. Since the intended objective in this problem was to find the significant 

genes (important features) we considered this as our best performing model and the 

significant genes were extracted from this model using inbuilt feature called “variable 

importance”.  
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3b. Support vector machine (SVM) is a supervised algorithm used for both 

classification and regression, but is preferred for classification due to its powerful 

classifiers built through kernel function and hyperlane concept. It is an ideal algorithm 

for high dimesional data such as gene expression values for a large set of 

genes/features. F1 score (2*((precision*recall)/(precision+recall))) and area under 

curve (AUC) were used as metrics to check the model performance , the model 

appeared to have performed good with AUC = 76% and F1 score 76%. The list of 

genes contributing to disease classification were extracted from the meta estimator 

“select from model “ with threshold mean  and the details  of significant genes are 

presented in Figure 2. 

3c. PCA: Principal component analysis is a feature extraction algorithm and 

unsupervised learning approach, which projects the original data into a low 

dimensional feature space and constructs the new dimensions. PCA is traditionally 

used in high dimensional data for reducing computational expense, increased error 

rate and noise and  can also be used for gene selection. The high dimensional gene 

expression values can be reduced to low dimensional feature space with minimal loss 

of information, using this simple yet powerful unsupervised algorithm. PCA is one of 

the frequently used methods for feature extraction of microarray data. In this study, 

using the aforementioned datasets, we obtained an output of 209 Principal 

components resulting in gene list of 209 genes or features. The first four principal 

components (out of 209) of the PCA model are shown in Figure S5 and display the 

variance ratios captured.   

Among the machine learning algorithms, the performance of the RF algorithm was better than 

the other two in terms of classification, which implies that random forest and the “feature 

importance” assigned by the algorithm is a good metric to distinguish “control” and “disease” 

data. In general, ensemble algorithms are known for better performance and the same was 

true in the current study.  

The number of genes that comprised the disease signature as determined by each of the 

methods described above, and the extent of overlap between them, is summarised in Figure 

2. The DEG lists identified by Meta-analysis and machine learning, did not overlap significantly 

since the rationale behind each of the methods is different. However, since we had no way of 

knowing which method is better, we used these each of these gene lists to identify differentially 

affected pathways as the next step. 

Enriched pathways in FXS/Autism:  

Pathways represent groups of genes which are functionally linked, and together contribute to 

a cellular process or activity. A change in the expression of individual gene in a pathway may 

affect the function of the entire pathway, and conversely, dysregulated pathways may be 

manipulated by targeting any or several of the individual genes in a pathway. Therefore we 

sought to find the pathways that map to the DEG sets, which may characterize the FXS/autism 

disease state. The Enrichr tool (24) was used to identify enriched pathways in each of the 

identified DEG lists, using the KEGG 2019 database as a source of pathway information. The 

number of pathways identified for each gene list is indicated in Figure 3. We find that despite 

the poor overlap among the gene lists identified by MetaDE and RF, a majority of the enriched 

pathways are common. From this, we understand that a) no matter which algorithm is used, 

the core functional alteration present in the disease is captured by way of dysregulated 
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pathways and b) using DEG lists derived from a single method as a basis for studying disease 

biology or therapeutic strategies may lead to incomplete or variable conclusions. 

Linking FMRP function to DEGs:  

Darnell et al reported the association of over 800 mRNAs with FMRP in neurons (5,25). As a 

protein known to interact with the ribosome and play a role in regulating translation elongation, 

it is likely that FMRP’s interaction with these mRNAs (referred to hereon in as FMRP-regulons) 

is probably to control their translation. FMRP mediated translation regulation has been 

demonstrated only for some of these target mRNAs, however it seems likely that several more 

could be regulated by FMRP in a similar manner. Therefore we looked for pathways enriched 

in these FMRP-regulons, and found that a significant number overlapped with the FXS 

pathways identified on the basis of DEGs (Figure 3). To summarise, the DEGs identified on 

the basis of the gene expression profile of human FXS and autism patients, and the targets of 

translation regulation by FMRP as identified in neurons, appear to be connected via the same 

pathways. A list of the top 20 enriched pathways are shown in Table 2. These results 

strengthen our inference that the DEG analysis has indeed identified a core set of features 

(genes and pathways) which are central to the nature of this disease, and may therefore be 

the most logical starting point for therapeutic intervention. 

Drug selection based on the disease DEG and enriched pathways: 

Just as a genetic change that leads to a disease can be correlated to a gene expression 

signature, drug treatment is also expected to result in predictably associated gene expression 

changes. The Connectivity map (CMAP) and Library of Integrated network-based signatures 

(LINCS) databases provide a readily accessible catalogue of such drug induced gene 

expression profiles, based on a panel of cell lines, for a large number of small molecules and 

other perturbagens. Similarly, the NCBI GEO database also provides access to gene 

expression data from drug treated samples (cell lines, animal models, human samples). These 

databases can be queried using tools such as Gene2drug (CMAP)(26), iLINCS (LINCS) (27) 

and Enrichr (GEO), wherein the DEG list is used as the input to extract drugs which result in 

similar or reverse DEG profiles. In this study, the MetaDE DEG and RF DEG lists were used 

to query all three databases, the resultant list of small molecules were filtered on the basis of 

current FDA approval and are presented in Table 3. The MetaDE DEG list is associated with 

a direction of change in gene expression, and was therefore used to identify only those 

treatments which reversed the change. Since the RF DEG list is not associated with direction 

(due to the nature of the algorithm), drugs that were associated with the DEG irrespective of 

direction, were identified. The master list could therefore include compounds which will 

ameliorate or worsen the phenotypes associated with FXS/ASD. 

Characteristics of identified drugs: 

Among the drugs identified on the basis of multiple DEG lists, over 30% are known to cross 

the blood brain barrier or are approved for a neurology indication; over 25 drugs have a 

reported previous association with FXS and/or ASD in the published literature; at least 3 have 

been previously identified in an AI-based repurposing study by Healx Ltd. UK, and reported to 

improve outcomes in the FXS mouse model (Table 3). Therefore there is a high likelihood that 

one of these drugs could potentially be repurposed to treat ASD symptoms. A mechanistic link 

to FXS/autism is apparent for some drugs and a few examples are as follows: Chlorpropamide 

is an oral antihyperglycemic agent which is known to increase the secretion of vasopressin, 

which may have a positive impact on social functioning (28); Tazarotene is a retinoid 

compound approved for skin disorders, and through its action on the RAR family, could 
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influence autistic phenotypes (29); Pioglitazone, a PPAR agonist has just recently been 

shown to improve behavioural deficits in FXS mice by limiting the excessive diacylglycerol 

signalling in the brain (30) and  low dose Trifluoperazine treatment, acting via the PI3K/Akt 

pathways has been proposed as a potential therapeutic for FXS based on in silico analysis of 

gene expression data and studies in mice (31). The rationale for drugs belonging to certain 

drug classes such as immunomodulators and anti-infectives, can be explained on the basis of 

the link between autism, neuroimmune dysregulation and microbial dysbiosis (32). Based on 

these examples and reports from the literature, it appears that the candidates picked by the 

DREAM-RD pipeline have a high likelihood of positive impact for FXS/autism therapy. 

While these small molecules were identified on the basis of the changes they induce at the 

level of gene expression, practical considerations such as blackbox warnings, acute toxicities 

and side effects may preclude their use for FXS treatment. A filtered list without these 

incompatible drugs is shown in Table 4, and this could be the starting point for testing 

molecules for efficacy in FXS models.  

In this study, we have identified both a list of characteristic gene expression level changes that 

represent the altered cellular state of FXS/Autism, and a list of accompanying small molecules 

that could perturb this state and potentially restore the imbalance. The next steps will involve 

conducting screens in appropriate models to test the efficacy of the drug in reversing 

symptoms, and validation of the underlying mechanism. While there are many subsequent 

steps required for validation and drug development before a clinical outcome may be reached, 

such a strategy is likely to be more successful than both the completely random and expert-

intuition based approaches which have been in place thus far since it allows for the inclusion 

of the non-obvious, yet significant changes found across multiple diverse datasets.  

Our approach, once validated, can easily be applied to any number of diseases, rare or 

otherwise. One major limitation is the availability of good quality data in sufficient quantity, 

from human patients. This deficit needs to be corrected and is possible with the rapidly 

reducing costs and increasing availability of transcriptomics facilities. The second caveat is 

the use of drug DEG profiles obtained from cell line experiments, which could be misleading 

and inappropriate especially for repurposing, where the effect on the whole organism is likely 

to contribute to the overall outcome. Therefore, generation of such drug induced profiles in 

model organisms, in a temporal as well as tissue specific manner is likely to add immense 

value and contribute to a greater chance of success during the transition to the clinic. 
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Tables and Figures 

Table 1 List of datasets (human) for FXS and ASD from NCBI GEO 

No GEO 

Number 

Source Number Inclusion and criteria 

1 GSE103965 Human iPS derived 

neural progenitors 

from FXS patients 

6 No (did not pass quality 

check) 

2 GSE108560 FMR1 disruption in 

male human iPSCs 

4 No (did not pass quality 

check) 

3 GSE21348 Human iPS cells 

from FXS fibroblasts 

13 No (did not pass quality 

check) 

4 GSE7329 Human 

lymphoblastoid cell 

lines (FXS and 

autism) 

30 Yes 

5 GSE76490 Human fibroblasts 

converted to iPS 

cells and 

differentiated into 

neurons (FXS) 

4 No (did not pass quality 

check) 

6 GSE15402 Human 

lymphoblastoid cell 

lines (Autism) 

116 No (insufficient number of 

matched records) 

7 GSE29691 Human 

lymphoblastoid cell 

lines (Autism) 

15 Yes 

8 GSE62632 Human embryonic 

stem cells, dental 

pulp cells and iPS 

cells (Autism) 

18 Yes 

9 GSE25507 Human peripheral 

blood lymphocytes 

(Autism) 

146 Yes 

10 GSE28521 Human temporal 

cortex (Autism) 

26 No (insufficient number of 

matched records) 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.311142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.311142
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Figure 1: Overall Workflow 
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Figure 2: Summary of DEGs for FXS/ASD obtained using various computational methods 

 

Figure 3: Venn diagrams to illustrate the overlap between pathways enriched in the gene lists 

from MetaDE, RF and regulons. 
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Table 2: Enriched pathways identified on the basis of disease DEGs 

Enriched pathway 
Overlap 

(Regulon) 

Overlap 

(DEG) 

Synaptic vesicle cycle 22/78 14/78 

Adrenergic signalling in 

cardiomyocytes 

26/145 

19/145 

Endocytosis 24/244 28/244 

Dilated cardiomyopathy (DCM) - 13/91 

Dopaminergic synapse 26/131 17/131 

Fc gamma R-mediated phagocytosis  17/91 

Human cytomegalovirus infection 24/225 26/225 

Endocytosis 24/244 25/244 

Human papillomavirus infection 25/330 30/330 

Pathways in cancer 35/530 42/530 

Cholinergic synapse 18/112 14/112 

Hepatocellular carcinoma 17/168 18/168 

MAPK signaling pathway 27/295 26/295 

Sphingolipid signaling pathway 11/119 14/119 

Parathyroid hormone synthesis, 

secretion and action 
15/106 13/106 

Estrogen signaling pathway 16/137 15/137 

Cushing syndrome 16/155 16/155 

Long-term potentiation 18/67 - 

Autophagy 18/128 13/128 

HIF-1 signaling pathway 11/100 11/100 

Dopaminergic synapse 26/131 13/131 

cGMP-PKG signaling pathway 23/166 15/166 

Focal adhesion 16/199 17/199 

Amphetamine addiction 13/68 - 

Wnt signaling pathway 16/158 14/158 
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Table 3: List of FDA approved drugs identified by the pipeline (organized by therapeutic 

class)1: 

Drugs with predicted BBB permeability  

ADENOSINE 

ALBENDAZOLE 

ALCLOMETASONE-

DIPROPIONATE 

ALITRETINOIN 

ALPROSTADIL 

BEXAROTENE 

BRINZOLAMIDE 

CALCITRIOL 

CEFOTIAM 

CEPHALEXIN 

CHLORPROPAMIDE 

CICLOPIROX 

CLOBETASOL-

PROPIONATE 

CLOFARABINE 

CYCLOPHOSPHAMIDE 

CYTARABINE 

DECITABINE 

DEOXYCHOLIC ACID 

DEXAMETHASONE 

DICLOXACILLIN 

DINOPROSTONE 

DISULFIRAM 

EPIRUBICIN 

ESTRADIOL 

FINASTERIDE 

FLUDARABINE-

PHOSPHATE 

FLUTICASONE- 

PROPIONATE 

FULVESTRANT 

HEXACHLOROPHENE 

IFOSFAMIDE 

LETROZOLE 

LOVASTATIN 

MEFLOQUINE 

METHYLPREDNISOLONE 

METRONIDAZOLE 

MINOCYCLINE 

MYCOPHENOLATE- 

MOFETIL 

NICOTINE 

NIMODIPINE 

NITROFURANTOIN 

PERHEXILINE 

PHENOXYBENZAMINE 

PIOGLITAZONE 

PROGESTERONE 

RIBAVIRIN 

ROSIGLITAZONE 

SIMVASTATIN 

SULINDAC 

TAZAROTENE 

TIGECYCLINE 

TRETINOIN 

TRIAMCINOLONE- 

ACETONIDE 

TROVAFLOXACIN 

VORINOSTAT 

ZALCITABINE 

CNS drugs: Miscellaneous 

ACLIDINIUM BROMIDE 

BACLOFEN 

DEXTROMETHORPHAN 

EMTRICITABINE 

FLUOXETINE 

GLYCOPYRROLATE 

HALOPERIDOL 

ISOCARBOXAZID 

ISOFLURANE 

LEVETIRACETAM 

METIXENE 

NALOXONE 

NALTREXONE 

OLANZAPINE 

PERAMPANEL 

PERPHENAZINE 

PHENYTOIN 

PINDOLOL 

PROCHLORPERAZINE 

PYRIDOSTIGMINE 

RILUZOLE 

ADENOSINE 

ALBENDAZOLE 

ALITRETINOIN 

ALPROSTADIL 

ATENOLOL 

BRINZOLAMIDE 

CHLORPROPAMIDE 

CICLOPIROX 

CLOFARABINE 

CREATINE 

CYANOCOBALAMIN 

DEOXYCHOLIC ACID 

DEXTROMETHORPHAN 

DISULFIRAM 

EMTRICITABINE 

FINASTERIDE 

GLYBURIDE 

GUANADREL 

INSULIN 

ISOFLURANE 

LOVASTATIN 

NAPROXEN 

NICLOSAMIDE 

NICOTINE 

NIMODIPINE 

ORLISTAT 

PERHEXILINE 

PHENOXYBENZAMINE 

PINDOLOL 

PIOGLITAZONE 

RIBAVIRIN 

ROSIGLITAZONE 

SIMVASTATIN 

TAZAROTENE 

TRETINOIN 

TRIAMTERENE 

VERTEPORFIN 

ZALCITABINE 

 
1 Blue – identified by Healx Ltd. UK, Green – prior reported connection to Autism/FXS 
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TOPIRAMATE 

TRIAMTERENE 

TRIFLUOPERAZINE 

VIGABATRIN 

Immunomodulators  Hormone (Hormone-like) 

ALCLOMETASONE-

DIPROPIONATE 

CALCITRIOL 

CLOBETASOL- 

PROPIONATE 

COLCHICINE 

CYCLOPHOSPHAMIDE 

DEXAMETHASONE 

FLUTICASONE-

PROPIONATE 

HALCINONIDE 

METHYLPREDNISOLONE 

MOMETASONE 

FUROATE 

MYCOPHENOLATE-

MOFETIL 

MYCOPHENOLIC ACID 

PIMECROLIMUS 

SULFASALAZINE 

SULINDAC 

TRIAMCINOLONE-

ACETONIDE 

CLOMIFENE 

DINOPROSTONE 

ESTRADIOL 

FULVESTRANT 

LETROZOLE 

MEDROXYPROGESTERONE-

ACETATE 

PROGESTERONE 

TAMOXIFEN 

Anti infectives Cancer (Oncology) drugs 

CEFOTIAM 

CEPHALEXIN 

CHLORHEXIDINE 

CIPROFLOXACIN 

DICLOXACILLIN 

HEXACHLOROPHENE 

LEVOFLOXACIN 

MEFLOQUINE 

METRONIDAZOLE 

MINOCYCLINE 

NITROFURANTOIN 

TIGECYCLINE 

TROVAFLOXACIN 

BEXAROTENE 

CYCLOPHOSPHAMIDE 

CYTARABINE 

DACTINOMYCIN 

DECITABINE 

DOCETAXEL 

EPIRUBICIN 

ESTRADIOL 

FLUDARABINE PHOSPHATE 

FULVESTRANT 

IFOSFAMIDE 

LAPATINIB 

LETROZOLE 

MITOXANTRONE 

PACLITAXEL 

VORINOSTAT 

 

Table 4: Shortlist of drugs identified by the pipeline without severe blackbox warnings or 

acute toxicities.: 

Drugs with no blackbox warnings or chronic toxicity 

ACLIDINIUM BROMIDE 

ALBENDAZOLE 

ALCLOMETASONE-DIPROPIONATE  

ALITRETINOIN 

BACLOFEN 

BRINZOLAMIDE 

CALCITRIOL 

CEPHALEXIN 

CHLORPROPAMIDE 

CICLOPIROX 

CLOBETASOL-PROPIONATE 

CLOMIFENE 

COLCHICINE 

HEXACHLOROPHENE 

INSULIN 

LETROZOLE 

LEVETIRACETAM 

LOVASTATIN 

METHYLPREDNISOLONE 

METIXENE 

MINOCYCLINE 

MOMETASONE FUROATE 

NALOXONE 

NALTREXONE 

NICLOSAMIDE 

NICOTINE 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.25.311142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.311142
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

CREATINE 

CYANOCOBALAMIN 

DECITABINE 

DEOXYCHOLIC ACID 

DEXAMETHASONE 

DEXTROMETHORPHAN 

DICLOXACILLIN 

DINOPROSTONE 

FINASTERIDE 

FLUTICASONE- PROPIONATE 

FULVESTRANT 

GLYBURIDE 

GLYCOPYRROLATE 

GUANADREL 

HALCINONIDE 

NITROFURANTOIN 

ORLISTAT 

PERHEXILINE 

PINDOLOL 

PYRIDOSTIGMINE 

RILUZOLE 

SIMVASTATIN 

SULFASALAZINE 

TAZAROTENE 

TOPIRAMATE 

TRIAMCINOLONE- ACETONIDE 

VERTEPORFIN 

VORINOSTAT 

ZALCITABINE 
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Supplementary information: 

Figure S1: OOB error rate across various forest sizes (10-200) 

 

Figure S2: Evaluation set for the final RF model 

A 
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Figure S3:  

Models  

Number of genes 

picked 

overlapping genes( with other 

models) 

Model1- 50-n -estimator 789 341 

Model2-100-n-estimator 1463 1463 

Model3-200-n-estimator 2774 2774 

Model4-300-n-estimator 3906 3906 

Model5-400-n-estimator 4950 3973 

 

 

Figure S4: Evaluation report for the SVM algorithm. 
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Figure S5: Variance ratios in the first four PCs 
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