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Abstract

Computational analysis is crucial to capitalize on the wealth of spatio-molecular
information generated by mass spectrometry imaging (MSI) experiments. Currently, the
spatial information available in MSI data is often under-utilized, due to the challenges
of in-depth spatial pattern extraction.

The advent of deep learning has greatly facilitated such complex spatial analysis. In
this work, we use a pre-trained neural network to extract high-level features from ion
images in MSI data, and test whether this improves downstream data analysis. The
resulting neural network interpretation of ion images, coined neural ion images, are used
to cluster ion images based on spatial expressions.

We evaluate the impact of neural ion images on two ion image clustering pipelines,
namely DBSCAN clustering, combined with UMAP-based dimensionality reduction,
and k-means clustering. In both pipelines, we compare regular and neural ion images
from two different MSI datasets. All tested pipelines could extract underlying spatial
patterns, but the neural network-based pipelines provided better assignment of ion
images, with more fine-grained clusters, and greater consistency in the spatial structures
assigned to individual clusters.

Additionally, we introduce the Relative Isotope Ratio metric to quantitatively
evaluate clustering quality. The resulting scores show that isotopical m/z values are
more often clustered together in the neural network-based pipeline, indicating improved
clustering outcomes.

The usefulness of neural ion images extends beyond clustering towards a generic
framework to incorporate spatial information into any MSI-focused machine learning
pipeline, both supervised and unsupervised.

Introduction 1

Mass Spectrometry Imaging (MSI) is a powerful, label-free molecular imaging 2

technology that enables mapping the spatial distribution of thousands of biomolecules 3
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in a tissue section, based on a single experiment [13]. Due to its ability to combine rich 4

biochemical characterisation with spatial information, MSI technology is rapidly being 5

adopted for a panoply of applications, including biomarker discovery, clinical diagnostics 6

and drug delivery studies [17,34,35]. While a number of different MSI variants exist [11], 7

in general MSI operates by first overlaying the tissue with a virtual rectangular grid, 8

and then collecting a mass spectrum at each grid location. Each of these collected mass 9

spectra is a histogram of biomolecular ions counts, partitioned by their mass-to-charge 10

values (m/z), within a target mass-to-charge range. MSI experiments result in a three 11

dimensional data cube, with spatial coordinates (x and y) and a m/z axis containing the 12

spectral information. Ion images are constructed by plotting the intensities for a single 13

mass bin (m/z value) for each acquired pixel, i.e., (x, y) grid location in the tissue. 14

15

Technological advancements continue to push the capabilities of MSI, leading to 16

improvements in specificity, sensitivity and speed, which have translated into the 17

detection of larger numbers of biomolecular species at ever-increasing spatial resolution. 18

A corollary of these technological improvements is that MSI datasets have grown 19

substantially over the years. At the time of writing, a single experiment commonly 20

generates tens of gigabytes of raw data, but this can even range into terabytes. 21

Moreover, MSI data analysis is encumbered by the large number of variables measured, 22

in terms of pixels, m/z bins or both. 23

24

Unless prior targets of interest are known, it is infeasible for a researcher to manually 25

investigate and find molecular differences in these large datasets, and, as a result, 26

computational approaches have become indispensable to support data analysis. A wide 27

variety of unsupervised and supervised machine learning methods have been used in a 28

broad range of applications. In this paper, we focus on unsupervised learning methods, 29

which support exploring the underlying patterns within the MSI data, providing 30

open-ended exploratory insights in the data. These methods include factorization 31

methods (i.e. principal component analysis, nonnegative matrix factorization) and 32

clustering methods, e.g. to group spectra or pixels with similar chemical expression into 33

the same cluster [40]. Supervised learning methods, on the other hand, are used when 34

prior knowledge or annotations are available, such as target m/z’s, or regions of interest, 35

which can be used to guide the analysis, and, for example, extract differentially 36

expressed molecular ions between regions in the tissue. 37

38

Using appropriate distance measures can substantially improve the outcomes of both 39

supervised and unsupervised data analysis. A distance measure formalizes how to 40

quantify similarity between data instances, e.g., between spectra originating from 41

different pixels or between ion images associated to different m/z values. A recurring 42

task in MSI data analysis is identifying which ions are co-localized, which translates into 43

the problem of clustering similar ion images. As mentioned previously, such tasks are 44

ideally tackled in a largely automated fashion to deal with the large amount of 45

information in each MSI experiment. In order to answer such questions, a human expert 46

would implicitly rely on his or her excellent visual pattern recognition abilities, and will 47

use morphology, anatomical structure and saliency to assess the ions’ expression. 48

49

Unfortunately, it is difficult to translate the extensive spatial pattern recognition 50

that is so easily performed by humans into robust, automated data analysis pipelines. 51

To this day, most data analysis pipelines in MSI forgo the inclusion of available spatial 52

information altogether [40]. Pipelines that do account for spatial information typically 53

use measures such as spatial correlation or cosine distance to quantify similarity 54

between ion images. As these are global measures, they are prone to miss relevant, 55
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localized differences between ion images. MSI machine learning methods that have 56

explicitly focused on including spatial information into the analysis, generally focus only 57

on either low-level or high-level information (e.g. through the inclusion of local pixel 58

neighborhood information [2, 7] or the inclusion of anatomical information through 59

anatomical atlases [41], respectively). 60

61

In this work, we propose a simple yet powerful approach to replicating human visual 62

pattern matching. Owing to its simplicity, our approach can be incorporated in a wide 63

range of data analysis pipelines, enabling them to exploit spatial information with few 64

to no modifications. Our approach is rooted in deep learning, which is a class of models 65

and associated learning methods based on artificial neural networks (ANNs). ANNs 66

consist of layers of neurons, which are simple mathematical functions capable of doing 67

basic, non-linear transformations of their inputs. By composing and stacking many 68

layers, a deep network becomes able to recognize complex patterns in data, despite 69

consisting of simple building blocks. This layered information processing resembles the 70

workings of the brain, starting from low-level signals in initial layers up to high-level, 71

domain-specific feature recognition in deeper layers. 72

73

In the case of computer vision tasks, the initial layers of the network act as image 74

feature extractors, whereas deeper layers make higher level abstractions over those 75

detected features [38]. In recent years, deep learning has shown tremendous potential in 76

visual recognition tasks, having outperformed the state of the art machine learning 77

algorithms in many computer vision tasks, and even human experts in certain 78

biomedical tasks [19, 33]. The strength of deep learning methods is their ability to learn 79

and combine both low-level and high-level features and abstractions from image data. 80

Deep learning has also previously been used in the context of MSI without the inclusion 81

of spatial information [5, 20,39]. 82

83

While deep neural networks are very powerful, the disadvantage is that they are 84

complex, and have a high number of parameters to be learned, and as such require a 85

huge amount of - ideally labeled - data to learn powerful, high level abstractions. 86

Directly learning those parameters from scratch every time for new datasets poses a big 87

computational challenge, and is prone to overfitting in a setting such as MSI, where a lot 88

of data is available on individual tissues, but the number of different tissues measured in 89

a study is often limited, which is required to achieve good generalization. While it is 90

possible to mitigate the issue of overfitting to a certain extent using data augmentation, 91

for example by applying transformations to the original data [24] or by using generative 92

adversarial networks [3, 16,31] to automatically generate new representative data. 93

94

Moreover, deep learning is highly conducive to transfer learning, in which models 95

trained for a certain task are re-purposed for other, related tasks [8]. In transfer 96

learning, the requirement that the training data must have the same distribution as the 97

test data is relaxed, i.e., a model is trained on one task, and the learned model is (fully 98

or partially) transferred to another task. The more similar the task is, the better this 99

approach generally works. Model-based transfer learning is particularly powerful for 100

computer vision applications [23], because a lot of implicit knowledge, i.e., general 101

image feature recognition, is shared amongst most practical tasks. Oquab et al. [28] 102

have shown that the front layers of a convolutional neural network, that has been 103

pre-trained on a large-scale annotated dataset, can be efficiently transferred to another 104

computer vision task where limited data is available. Furthermore, the researchers 105

noted that the way the neural networks interpreted the images was reminiscent of a 106

human operator. A number of other studies have shown similar potential for 107
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re-purposing of neural networks for various downstream tasks [21,25]. 108

109

In this work we will use the well-known Xception network [14], which has been 110

trained on the ImageNet database [24] consisting of over a million images. Due to the 111

large variety of the images included in this dataset, networks that perform well on this 112

dataset, perform well on many other computer vision tasks [23], and as such can be 113

used as general purpose, image feature extractors. Xception, for example, has previously 114

been successfully used for feature extraction in various life science applications such as 115

microscopy and electron microscopy [32,42]. In the context of MSI, we will pass each 116

ion image in the dataset through the network Xception, which generates a vector 117

representation of each image, that encodes the high-level features within the image. 118

119

Mathematically, we use the neural network as an embedding function for ion images. 120

The aim of this strategy is to map images with a high visual similarity close together, 121

largely in line with how a human observer would interpret spatial resemblance between 122

the original images. We will call these vector representations neural ion images, to 123

highlight their origin and clearly contrast them with regular ion images. Note that these 124

neural ion images are abstract, high-dimensional representations without any direct 125

visual interpretation. 126

127

Ovchinnikova et al. [29] have recently also used Xception for evaluation of MSI ion 128

image co-localization. Here, the Xception model was used to compare the visual ranking 129

of ion image similarity by human experts to those produced by various distance 130

measures and algorithms, such as the Xception network. However, here the network was 131

used in a supervised way, i.e it was further trained using labels provided by human 132

experts. The algorithm showed good performance in this task, albeit similar in 133

performance to standard cosine distance for their use case (assessing the algorithm over 134

different datasets). In contrast, our approach uses the pre-trained Xception model in a 135

completely unsupervised way, without any domain transfer or fine tuning, and as such 136

we show that it is directly usable for a wide breadth of applications in MSI, regardless 137

of how much domain-specific data or computational resources are available. 138

139

It is important to stress that the resulting neural ion images can conceptually 140

replace regular ion images as inputs for most downstream machine learning and 141

statistical analyses, both supervised and unsupervised. Using neural ion images enables 142

improving existing data analysis pipelines to better incorporate spatial expression 143

patterns with minimal change to the full pipeline. 144

145

In this work, we focus on assessing the merits of neural ion images for the 146

unsupervised task of clustering, i.e. grouping together, ion images based on their spatial 147

expression. Similar to how factorization is often used in the context of MSI, the 148

clustering of ion images reveals the different spatial patterns that are present in a MSI 149

dataset. This is done by visualizing the mean ion image for each of the different clusters 150

(or groups) of ion images that are found in the dataset. Furthermore, this method 151

provides direct insight into which m/z values exhibit comparable spatial expressions, 152

compared to factorization where this relationship is not always straightforward [40]. 153

Alexandrov et al. [1] previously applied a probabilistic clustering algorithm (a Gaussian 154

mixture model) to cluster ion images in MALDI MSI datasets based on their spatial 155

similarity. Similarly, by Konicek et al. [22] used k-means to cluster together ion images 156

in a TOF-SIMS dataset. 157

158

Here, our goal is to improve on this work by integrating the pre-trained Xception 159
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model into the clustering pipeline, and as such find clusters with a higher specificity, 160

based on localized spatial features, and with a greater consistency in the images 161

assigned to the same cluster. 162

Methods 163

Materials 164

We demonstrate our proposed method on two MSI datasets, namely one from human 165

lymph node and one from a mouse kidney tissue. 166

167

The first dataset is collected from a human lymph node tissue sample using the 168

Bruker rapifleX MALDI Tissuetyper. The tissue sample was removed and snap frozen 169

in liquid nitrogen (-80 ◦C). Tissue sections of 7 µm thickness were acquired using a 170

cryostat and thaw-mounted onto ITO-coated glass slides, after which 2,5-DHB matrix 171

was deposited by sublimation. Experiments focused on the 620 to 1200 m/z range, 172

using a sampling resolution of 10 µm, collecting roughly 500.000 pixels and 8.000 ion 173

images for this tissue. 174

175

The second dataset is collected from a mouse kidney tissue section. The tissue 176

sample was snap frozen in liquid nitrogen at necropsy. Tissue sections were collected in 177

a cryostat (CM3050S, Leica, Buffalo Grove, IL; chamber temp. −20◦C and object temp. 178

−18◦C) at 10 µm thickness and thaw-mounted onto ITO-coated glass slides. 2,5-DHB 179

matrix prepared at 25 mg/mL in methanol:water (1:1, v:v)(0.5% TFA) was applied to 180

the tissue sections using a TM Sprayer (HTX Technologies, Chapel Hill, NC) automated 181

spray device. The following parameters were used to achieve a target matrix density of 182

0.4938 mg/cm2: flow rate 0.05 ml/min; N2 Pressure 10 psi; Spray temperature 70 ◦C; 183

velocity 1350 mm/min; track spacing 3 mm; track offset 1.5 mm; 16 passes. MALDI 184

MSI was conducted at a sampling resolution of 50 µm on a Bruker scimaX MRMS. 185

Fullscan data was acquired from m/z 200-1200 using 250 laser shots per pixel at a 186

frequency of 2 kHz and an estimated resolving power of 66K at m/z 400. This study 187

was conducted in accordance with the GSK Policy on the Care, Welfare and Treatment 188

of Laboratory Animals and was reviewed by the Institutional Animal Care and Use 189

Committee either at GSK or by the ethical review process at the institution where the 190

work was performed. 191

Ion Image Clustering 192

In order to assess the merits of our deep learning approach, and to demonstrate how it 193

can be easily integrated into any data analysis pipeline, we will investigate two different, 194

well-known clustering methods, both with and without the use of neural ion images. 195

Figure 1 gives an overview of the ion image clustering workflow, and shows three 196

separate processing blocks, which will be discussed in greater detail below. In the first 197

block, ”Shared preprocessing”, all images of the MSI dataset receive a common 198

preprocessing treatment. The second block, ”Generation of neural ion images”, contains 199

the neural network steps, and either passes the ion images through the pre-trained 200

neural network to generate ”neural ion images”, or leaves the images unaltered (”regular 201

ion images”). In the third and final block, ”Clustering steps”, the clustering of the 202

images is done using k-means or a combination of UMAP and DBSCAN (U-D for 203

brevity), and takes as an input either neural or regular ion images. This results in a 204

total of four different ion image clustering pipelines, which we will refer to as regular 205

U-D, neural U-D, regular k-means, and neural k-means. 206
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Figure 1. Pipelines: the top panel contains a series shared preprocessing steps. The
lower left panel shows the additional steps (in blue) from our proposed method compared
with regular clustering pipelines (in red). The additional steps from our proposed model
include spatial patch generation, neural network embedding and neural ion images
access. Finally two different clustering methods are conducted, which are DBSCAN
(after UMAP dimentionality reduction) and k-means.

Shared preprocessing 207

Before applying any clustering pipeline, we perform basic preprocessing on the raw 208

spectra and, afterwards, outlier removal and standardization on the resulting ion images. 209

These procedures are done separately for each dataset. 210

1. Spectral preprocessing The lymph node data is normalized based on Total Ion 211

Current (TIC) and baseline corrected using median filtering. The mouse kidney 212

data is normalized based on TIC and peak-picked. Peak picking was conducted 213

using a S/N threshold of 5 and the Gibbs, harmonic, and magnetron peaks were 214

filtered during acquisition. The SQLite peak list files were processed in MATLAB 215

using custom software to recalibrate each spectrum using a linear best fit model 216

and then bin corresponding peaks across all spectra in the dataset to a common 217

m/z. The binned data was then converted to imzML for further processing. 218

2. Ion image standardization The ion images for both datasets are individually 219

winsorized and then standardized to a common range prior to clustering. 220

Winsorizing is a well known robust statistical estimation technique which limits 221

extreme values to reduce the effect of potential outliers [18,43]. Winsorizing involves 222

clipping extreme values, usually symmetrically on both extremities of a distribution, 223

before computing location statistic(s) of interest such as the mean. In our case, we only 224

winsorized above the 95th percentile to reduce the impact of high intensity outliers 225

commonly found in MSI data. Winsorizing the lower extremity is not necessary for 226

spectral data since there is an explicit limit at 0 intensity. After winsorizing, the 227

resulting pixel intensities for each image are scaled to the range [0, 1]. The resulting 228

preprocessed images will henceforth be referred to as regular ion images, and serve as 229

input for the next stage of the pipeline. 230

Generation of neural ion images 231

Our proposed approach involves a couple of extra steps to convert regular ion images 232

into neural ion images. Generating neural images from individual regular ion images is 233
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done as follows: 234

1. Patch generation A neural network typically requires images of certain shape as 235

inputs. Since ion images can be of any shape, we first define a set of overlapping 236

patches across the ion images, which decouples our pipeline from any specific 237

shape of ion images. 238

2. Generating patch embeddings The pixel data for each patch is fed into the neural 239

network as a single data instance, which results into an associated neural 240

embedding per patch. 241

3. Aggregating patch-level embeddings The neural ion image is constructed by 242

aggregating the embeddings of individual patches into a single vector 243

representation for each regular ion image. 244

We discuss each of the aforementioned steps in more detail below. 245

246

1. Patch Generation Ion images tend to be larger than the default input size 247

expected by neural networks. For example, the Xception network we used [14], accepts 248

square patches of 299× 299 pixels by default, with a minimum of 71× 71 pixels. These 249

shape mismatches can be fixed via patch generation, which is especially common when 250

using convolutional neural networks to analyze high-resolution images. Patch generation 251

means that, rather than providing the full image to the network, the image is instead 252

split up into smaller ”patches” that are then given as an input to the network, thus 253

preserving all the details in the original image in one or several patches. An example of 254

patch generation is shown in Figure 2. The size of the patches is important as it 255

determines the context that the network ”sees” in one go. Therefore, we tested different 256

patch sizes, as described in the Results section. 257

258

2. Generating patch embeddings A neural network is used to generate a vector 259

representation (embedding) of each patch, which ideally captures all relevant 260

morphological information present in the patch. The network itself is pluggable in our 261

pipeline, so other networks could also be used. We leveraged the widely used Xception 262

model because it has shown strong performance on recent benchmarks [14], despite 263

being relatively small compared to other models with only 36 convolutional layers. 264

Owing to its small size, its inference speed is higher then that of many other models 265

with comparable accuracy [10]. Finally, by using a pre-trained network, we avoid the 266

demanding task of designing and training the network, which would require a lot of data 267

as well as computational resources. We use the Xception network as is available in the 268

Keras Python package https://keras.io/. 269

270

3. Aggregating patch-level embeddings Finally, after obtaining an embedding 271

associated to each patch, these must be integrated into a final vector representation that 272

constitutes the neural ion image. We opted to use max-pooling because the neural ion 273

image then essentially captures whether a spatial pattern (single output feature in all 274

patch embeddings) was detected in any of the patches. This optimizes the neural ion 275

images’ sensitivity to detect localized features. 276

Clustering steps 277

We use two different clustering approaches in this work, namely DBSCAN, combined 278

with UMAP, and k-means clustering. As both of these clustering pipelines expect vector 279

inputs, regular ion images were reshaped to vectors (neural ion images are already 280

vectors). In this work, we purposefully selected two fundamentally different clustering 281
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methods to properly assess the merits of using neural ion images instead of regular ion 282

images. 283

284

UMAP-DBSCAN The first approach, DBSCAN, which stands for Density-Based 285

Spatial Clustering of Applications with Noise [15], is a popular density-based clustering 286

algorithm that inspired several extensions (i.e. HDBSCAN [12,37]). DBSCAN aims to 287

find high density regions in feature space where samples are closely packed, i.e. samples 288

that have a lot of other closely resembling samples (neighbors). Based on a user-defined 289

radius, the algorithm estimates a minimum density level (i.e. minimum number of 290

neighbors within a radius). Clusters are then regions where groups of samples exceed 291

this density threshold, whereas points that are in low density regions are put in a 292

common noise cluster. DBSCAN is widely available in different implementations, here 293

we use the scikit-learn implementation [30]. 294

295

Given that we are clustering ion images, each pixel can be seen as a separate feature, 296

or measured variable, and, as such, the number of features per image is very high (e.g. 297

∼ 500.000 pixels per regular ion image for the lymph node dataset, thousands of 298

variables per neural ion image). High-dimensional feature spaces are inherently sparse 299

due to the curse of dimensionality [6], which encumbers the process of identifying 300

clusters based on density [40]. It is therefore advisable to first do a dimensionality 301

reduction step prior to performing DBSCAN, which we did using Uniform Manifold 302

Approximation and Projection (UMAP) [26]. Briefly, UMAP aims to form a topological 303

representation of the original high-dimensional data by finding local manifold 304

approximates using their local fuzzy simplicial set representation. Prior work has shown 305

promising results of applying UMAP on spectra in MSI data [36] (as opposed to ion 306

images as we are doing here). 307

308

In this paper we used UMAP to reduce the dimensionality of regular and neural ion 309

images to three prior to applying DBSCAN. Mapping to three dimensions enables 310

visualizing the resulting embedding, which helps in interpreting the results, and is 311

sufficiently low-dimensional to effectively support DBSCAN. Different parameters were 312

manually optimized for UMAP and DBSCAN for the different models because the 313

inputs for each pipeline are very different. To facilitate a fair comparison, we did a 314

range of experiments and selected the most promising model with selected parameters 315

for each approach. For the regular ion images, each ion image was reshaped to a vector 316

of size one-by-’number of pixels’, and cosine was used as the distance measure between 317

the resulting image vectors in the UMAP algorithm. For the neural ion images, 318

similarly the cosine distance was used as the distance measure between the neural ion 319

image vectors. The Python code by UMAP’s creator was used [27]. For brevity, we will 320

refer to combination of UMAP-DBSCAN as U-D. 321

322

k-means The second clustering algorithm used in this paper is the well-known 323

k-means clustering [9], which is available through scikit-learn [30]. k-means is a highly 324

popular clustering algorithm used in a wide variety of applications owing to its 325

simplicity and speed [4]. Conceptually, it tries to separate objects in a number of groups 326

with low intra-group variance by minimizing the squared distance between samples and 327

the prototype vector (mean) of the cluster they are associated to. The Euclidean 328

distance (standard in k-means) was used for all experiments. 329

330

Practical differences between U-D and k-means In contrast to DBSCAN, 331

k-means requires the number of clusters to be decided in advance, as we will discuss 332

further below. The ability to explicitly reject certain samples from clustering grants 333
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DBSCAN increased robustness to noise and outliers compared to k-means, which always 334

forces each sample into a cluster. Conceptually, owing to its nonlinear nature, U-D is 335

expected to identify more subtle trends within data, but requires more expertise to 336

optimize its various tuning parameters. From a computational perspective, k-means is 337

significantly faster. 338

Evaluation of Clustering Results 339

We proposed different methods to evaluate the quality of the resulting clusters from the 340

different pipelines. 341

Number of Clusters 342

After clustering, we first check the number of meaningful clusters. Meaningful clusters 343

should not include the noise cluster as defined by DBSCAN (as previously discussed) or 344

clusters that contain a single image when using k-means. Furthermore, we also consider 345

clusters that only contain noisy images to be non-meaningful clusters. This is especially 346

relevant in the lymph node data, where no peak-picking was done, and as a result a lot 347

of noisy images are expected in the dataset. We assume that, the more meaningful 348

clusters are extracted, with distinct mean images, the more likely it is that more 349

underlying structures are detected from the dataset. 350

Relative isotope ratio (RIR) 351

In order to objectively compare the performance of different clustering pipelines, we 352

propose a metric that quantifies how well a clustering groups ion images stemming from 353

isotopic m/z values. Two m/z values are considered isotopes if and only if the following 354

criteria are met: 355

1. The spectral distance equals 1.003m/z±δ, where δ 6= 0 allows for small deviations 356

in mass-to-charge values. The value of δ depends on the mass accuracy of the MSI 357

data. This spectral distance is primarily intended to identify carbon isotopes, 358

however if δ is set large enough this will capture other isotopes as well. 359

2. The corresponding ion images should exhibit a clearly similar spatial expression, 360

which we assess using Pearson correlation. Specifically, the correlation between 361

both ion images should be at least 0.85. 362

To assess the quality of isotope grouping for a given clustering, we count the number 363

of isotopes that are correctly grouped in the same clusters and divide this count by the 364

total count of isotopes in the dataset. This fraction F ∈ [0, 1] captures how many of the 365

isotopes in the dataset are clustered together (higher is better). However, this fraction 366

favors large clusters, because then the probability of clustering isotopes together 367

increases. This can intuitively be seen by the trivial edge case of having a single cluster, 368

in which all isotopes are obviously clustered together, thus yielding a seemingly perfect 369

score. 370

371

As such, because the expected value of F depends on the size of the clusters in a 372

clustering, we benchmark the isotope fraction of a given clustering (Fclust) to that of a 373

simulated random clustering with the same cluster sizes (Frandom). This random 374

clustering is simulated in a bootstrap fashion to get a consistent estimate of the 375

expected isotope fraction. Our relative isotope ratio metric R is the relative increase in 376

isotope grouping for a given clustering compared to its random baseline, i.e., 377

R = Fclust/Frandom ∈ [0,∞), where higher is better. Any clustering that is better than 378

random should yield R � 1. 379
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Visualization of Clustering Results 380

In order to visualize the spatial results, we compute the mean ion image for each cluster 381

by first winsorizing each ion image from all clusters, followed by stratified averaging 382

over all m/z images per cluster. Those mean ion images then show the various spatial 383

patterns detected by different clustering pipelines. We also generate a mean spectrum 384

for each dataset with clusters assignment for each m/z value. 385

386

Furthermore, for U-D clustering, we visualize the 3D embeddings after UMAP 387

dimensionality reduction, which results in a 3D scatter plot where each m/z image is a 388

point with clusters assignment. This scatter plot illustrates how all m/z images are split 389

and clustered in different groups, the distance between different clusters, and the 390

tightness of each cluster. 391

392

Finally, we utilize histological information from concomitant microscopy images to 393

check whether the clusters are biologically relevant. These microscopy images were 394

obtained on serial sections to the MSI data. To assess biological relevance, we construct 395

a false color image from the mean ion images of 3 different clusters, where each image 396

uses a separate color channel (RGB), which is then overlaid onto the microscopic image. 397

If the overlay shows a clear co-localization of cluster images and morphological patterns 398

in the associated microscopic images, it can be assumed that the clusters are biologically 399

relevant. 400

Results and Discussion 401

We start by preprocessing the data, as per the ”shared preprocessing” block described 402

in Figure 1. Spectral preprocessing differs for both datasets: the lymph node dataset is 403

TIC normalized and baseline corrected, whereas the mouse kidney dataset is TIC 404

normalized and peak picked. Next, each individual ion image is winsorized, substituting 405

pixels with outlying intensity values, after which it is scaled so that pixel intensities lie 406

between 0 to 1. After the shared preprocessing, we start one of four different clustering 407

pipelines, namely UMAP-DBSCAN on regular ion images (regular U-D), 408

UMAP-DBSCAN on neural ion images (neural U-D), k-means on regular ion images 409

(regular k-means), and k-means on neural ion images (neural k-means). Each of the 410

four clustering pipelines is used to process the human lymph node and mouse kidney 411

datasets separately. 412

Generation of neural ion images 413

Once the MSI data is preprocessed, the regular ion images can be used to create neural 414

ion images using the pre-trained neural network. First, we need to generate image 415

patches with a size appropriate for the pre-trained Xception network. As explained 416

previously, the size of the patches is important, as this determines the context that the 417

network receives as an input. We therefore aimed to select a patch size with a physical 418

size that is large enough to capture morphological patterns and anatomical structures, 419

testing various patch sizes. 420

421

We found that patches with sides of a physical size of around 1-2 mm work well in 422

practice. For the lymph node dataset, at a 10 µm sampling resolution, this results in a 423

patch size of 150× 150 pixels, in a total image size of 1, 183× 696 pixels. For the mouse 424

kidney dataset, we tried to get patches with a similar size, however, given the 50 µm 425

resolution, a patch with the minimum pixel size of 71× 71 for the Xception network 426
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would still be too large (∼ 3.5 mm). We therefore upsample the ion images for mouse 427

kidney data with a factor of two, so that we obtain more, smaller patches with a more 428

appropriate physical size. Figure 2 shows a patch generation example from mouse 429

kidney dataset, with the original patch sizes highlighted in blue and the patches after 430

upsampling indicated in pink. Furthermore, it is important to note that we use 431

overlapping patches to avoid edge artifacts, e.g., missing anatomical structure because it 432

was located at the edge of a patch. In our patch generation procedure, we ensured a 433

40% to 50% spatial overlap between patches. 434

Figure 2. From left to right: a regular ion image from the mouse kidney dataset,
generated patches with different sizes. In order to get the ideal size of patches, we
up-sample the full ion image before splitting into multiple patches. All results were
obtained using up-sampled patches, as indicated in pink, which have a physical size of
roughly 1.85× 1.85 mm.

Using this procedure, we generate image patches for each ion image in the MSI 435

dataset. The image patches are batched per ion image and are sequentially fed to the 436

pre-trained network, which analyzes each patch and extracts low- and high-level image 437

features from them. This translates to a vector per patch, that scores the various 438

features detected by the network. The results for the individual patches are then 439

combined in a max-pooling layer at the end of the network, which registers whether a 440

spatial pattern is detected in any of the patches, to increase sensitivity for localized 441

features. The result is a single vector (of size 2048) per ion image, which captures the 442

”interpretation” of each ion image by the neural network, i.e., the neural ion image. 443

444

With both the regular and neural ion images available, we can use these as input for 445

the clustering algorithms, in order retrieve the different spatial ion expressions in the 446

dataset. 447

Human lymph node dataset 448

UMAP-DBSCAN clustering results 449

We apply each of the four clustering pipelines to the human lymph node dataset, 450

starting with the U-D pipelines. First we perform UMAP dimensionality reduction on 451
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both the regular and neural images, which maps the images from the original 500.000 452

(regular) and 2048 dimensional (neural) space respectively to a three dimensional 453

embedding space. The goal here is to map similar images close together in this new 454

embedding space. The resulting embeddings are shown in the scatterplots in Figure 3, 455

where each point represents a m/z image. 456

457

This dimensionality reduction serves a double purpose, firstmost it serves as an 458

important preprocessing step to facilitate subsequent clustering with DBSCAN, and 459

second, mapping to 3 dimensions allows us to visualize the embeddings and get some 460

insight into what is happening. We then use DBSCAN to find regions of high density 461

(i.e. groups of images that are highly similar in the embedding space) in the data, 462

retrieving 22 and 21 clusters for the regular and neural pipelines respectively, as show in 463

Table 1. The different clusters are assigned different colors in the scatter plot, and we 464

see clear clusters of similar m/z images in the embeddings. 465

466

Figure 3. Scatter plots of resulting embeddings in 3 dimensional space after applying
non-linear UMAP dimensionality reduction and DBSCAN clustering on the lymph node
dataset. Each point represents a m/z image, with its colors showing cluster assignment
as determined by DBSCAN. The left and right panels show clusterings on the regular
and neural ion images respectively. The Neural U-D pipeline shows more localized and
clearly defined clusters of m/z images than the regular U-D pipeline
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Table 1. Overview of experimental results per configuration. RIR indicates relative
isotope ratio (higher is better, best per dataset marked in bold). Noise images shows
the size of the noise cluster identified by DBSCAN.

Dataset Clustering Ion images Clusters RIR Noise Images

lymph node UMAP-DBSCAN neural 22 66.6 517
lymph node UMAP-DBSCAN regular 21 57.7 1671
lymph node k-means neural 20 64.5 /
lymph node k-means regular 20 56.2 /

mouse kidney UMAP-DBSCAN neural 40 35.4 188
mouse kidney UMAP-DBSCAN regular 21 20.4 63
mouse kidney k-means neural 60 35.6 /
mouse kidney k-means regular 20 23.4 /

Overall, the neural pipeline shows more localized clusters than the regular one. This 467

is what we would expect, as the neural pipeline should make a better distinction of 468

images based on localized extracted features by the neural network, than the more 469

global cosine distance used in the regular pipeline. We also see a relatively large 470

localized purple cluster in the neural U-D case, which is the noise cluster that DBSCAN 471

defines (517 images); in the regular U-D pipeline this cluster is larger (1, 671 images, 472

around 20% of total images) and much more spread out in the embedding space. 473

474

On inspection, the noise cluster in the regular pipeline shows a great number of 475

images that still contain spatial structure, and were thus wrongly classified as noise. 476

While the neural pipeline was not perfect, the noise cluster contains far less images with 477

spatial structure. We note that the spatial resolution of this dataset is very high, but as 478

a trade-off the mass resolution is relatively low. As such, even though the dataset is not 479

peak-picked, many of the m/z bins contain spatial signal. 480

481

Overall, when comparing cluster assignments for the neural and regular pipelines, 482

the neural pipeline showed a much better assignment of ion images, and a greater 483

consistency in the spatial structure of images assigned to individual cluster, resulting in 484

better, more representative mean cluster images. Figure 4 shows examples of the 485

clustering of the lymph node dataset for the regular and neural clusterings. The bottom 486

of the Figure shows the full mean spectrum with colors indicating assignments of m/z 487

values to the clusters for neural and regular pipelines (top and bottom, respectively). A 488

zoom-in for part of the spectrum is shown with detailed cluster assignments, showing 489

marked ion images at the top. By their relative spectral distance of ∼ 1 Da, and similar 490

spatial distribution, we can assume that these marked images are probably isotopes, 491

and as such we would expect all of these images to be allocated to the same cluster. In 492

the left panel, in purple, we see assignments for each of these images for the regular 493

pipeline. The images shown are the mean images of the cluster to which the different 494

marked images are assigned. Firstly, we see that only two of the isotope images are 495

assigned to the same cluster, whereas the other two images are assigned to different 496

clusters, and secondly, we see that the mean images of the clusters that the images are 497

assigned to, do not closely resemble the original isotope images. The neural pipeline, on 498

the other hand, uses the features extracted by the neural network to correctly assign all 499

images to the same cluster, with a mean image that closely resembles that of the 500

original ion images, thus performing much better at this task. Furthermore, the mean 501

cluster images of the neural pipeline show better definition of spatial structure, 502

compared to those of the regular pipeline, which are generally much more blurry, 503

indicating a more diverse collection of underlying images. 504
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505

This trend is observable in a large number of the clustered images, as is confirmed 506

when we look at the Relative Isotope Ratio (RIR), in Table 1. This ratio measures the 507

overall number of isotopes in a cluster compared to a randomized clustering, as 508

explained in Relative isotope ratio (RIR). The higher this number, the more isotope ion 509

images are assigned to the same cluster, which is the expected behaviour. Looking at 510

the table, we can see that the neural pipeline scores much better at this metric than the 511

regular one, demonstrating the added benefit of adding a neural network-based 512

interpretation layer to the pipeline. 513

514

Finally, we verify the clustering results by comparing the mean cluster ions with the 515

stained H&E microscopy image of a neigboring tissue section. Figure 5 shows three 516

example mean cluster images, originating from the neural U-D pipeline, on the right, 517

highlighting different salient structures in the lymph node tissue. The center image 518

shows a composite image overlaid on the microscopy, where each mean cluster image is 519

assigned a different color channel, namely red, green and blue, that shows a clear overlap 520

of the anatomical structure observed in microscopy with the biochemical information 521

obtained from the MSI data. The green cluster image clearly shows the Germinal 522

Centers (balloon shaped structures) found in lymphoid tissue. These are important 523

areas for humoral immunity as, at these sites, activated B cells (B lymphocytes) 524

accumulate and undergo further processing. The high-resolution, non-rigid registration 525

was performed using Aspect Analytics’ proprietary registration pipeline. 526

527

k-means clustering results 528

Next, we apply k-means clustering directly on both the regular and neural ion images, 529

as a baseline comparison, and an example of how neural images can be readily plugged 530

in to existing algorithms. We experimented with different numbers of clusters, and 531

found that, in line with the DBSCAN experiments, 20 clusters provided the best results 532

in terms of detected meaningful clusters and RIR (see table 1). For the regular k-means 533

pipeline, this results in 6 clusters which contain only a single image that had no clear 534

spatial structure (and which we thus consider to be noise clusters). This is probably due 535

to the high dimensionality of the data (500.000 pixels - features), and the sensitivity of 536

k-means to noise. The neural pipeline did not show such single image clusters, even 537

when increasing the number of clusters, probably due to the lower dimensionality of the 538

neural images (2048) and a better grouping of the neural ion images due to the feature 539

recognition by the neural network. When comparing the RIR, we see a similar trend to 540

the U-D pipeline, namely an upregulation in the numbers of isotopes that are captured 541

by the same cluster, when using the neural images over the regular ion images. This 542

indicates that clustering results are better with the neural network input than without, 543

which we also saw in manual inspection of the clusters. 544

545
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Figure 4. Ion image clustering results of the lymph node dataset. Panel B shows the full
mean spectrum with cluster assignments for eachm/z bin, for the neural (top) and regular
(bottom) U-D pipelines. Panel A shows a zoom-in of the mean spectrum, highlighting
an isotopic distribution, and four associated ion images. The purple (regular) and blue
(neural) panels show the clusters (shown as mean images) to which the associated ion
images are assigned. The neural pipeline shows better cluster assignments than the
regular pipeline as (i) all isotope images are assigned to one and the same cluster, and
(ii) its mean cluster image matches the associated isotopic ion images more closely than
the regular pipeline.
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Figure 5. (Left) H&E stained microscopy image of neighboring lymph node tissue
section. (Right) Three example mean cluster images for the neural U-D pipeline.
(Center) Composite image combining the three mean cluster ion images overlaid onto
the microscopy, showing clear co-localization of anatomical structures (via morphology)
with the biochemical information obtained through clustering of the ion images from
MSI.

Mouse kidney data 546

In order to assess the general applicability of our methods, we also apply our clustering 547

pipelines on a high mass resolution dataset obtained in mouse kidney, that has a 548

significantly lower spatial resolution than the lymph node dataset, respectively 50 vs. 10 549

µm. 550

551

As the spatial resolution affects the fine structure observed in the ion images, we 552

want to see whether the neural network approach can improve clustering results 553

similarly to the high spatial resolution lymph node dataset. As discussed above, we 554

upsample the image data, so that patches are generated with a similar physical 555

dimension to those in the lymph node data. We then pass the ion images through the 556

neural network to perform feature extraction and generate the neural ion images, 557

exactly as we did in the lymph node data. 558

UMAP-DBSCAN clustering results 559

We first apply the U-D pipeline to the regular and neural ion images. As can be seen in 560

Table 1, DBSCAN finds significantly more clusters in the neural (40) pipeline than the 561

regular (21) one. Furthermore, similarly to the lymph node data, the RIR is 562

significantly higher for the neural pipeline than the regular one, indicating that the 563
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retrieved clusters in the neural pipeline succeed in clustering together more isotopic ion 564

images than the regular one, meaning that we not only get more clusters, but that these 565

are also more relevant. When looking at the noise clusters, we see that this time the 566

noise cluster in the neural pipeline is larger than the regular one, however the size is 567

only 3.8% of the total number of ion images. We note that this time the data is 568

peak-picked, and thus the noise cluster is much smaller. 569

570

The quality of the clustering is illustrated by the example shown in Figure 6, which 571

shows three sets of ion images corresponding to three different isotopical distributions. 572

Again, the blue panel shows mean cluster images for the neural pipeline, whereas the 573

purple panel shows those for the regular pipeline. Similarly to the lymph node dataset, 574

the neural pipeline correctly assigns images of the same isotope distribution to the same 575

cluster. Contrary to the lymph node data, in this example, the regular pipeline also 576

assigns the isotopic images to the same cluster. However, when comparing the mean 577

cluster images to which the isotopic images are assigned, we see that, while not perfect, 578

those of the neural pipeline match the isotopic images much closer than those of the 579

regular pipeline. The neural pipeline succeeds in creating clusters with a higher 580

specificity, which allows for distinguishing of the salient spatial distributions in the 581

isotopic images at m/z 856.63 and 856.66. In contrast, the regular pipeline groups these 582

patterns together, likely because it uses a more ”global” distance measure that is prone 583

to ignoring localized structure. More generally, we see a lot of these clusters that 584

capture fine spatial structure, which are missing in the regular pipeline. Figure 7 shows 585

how different mean ion images obtained with the neural U-D pipeline clearly 586

differentiate distinct anatomical regions in the kidney, overlaying these on the H&E of a 587

neighboring tissue section. 588

589
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Figure 6. Ion image clustering results of the mouse kidney dataset. The Figure shows
a zoom-in of the mean spectrum, highlighting an isotopic distribution, and marked
associated ion images. Cluster assignments in the mean spectrum are shown for each
m/z bin, for the neural (top) and regular (bottom) UMAP-DBSCAN pipelines. The
purple (regular) and blue (neural) panels show the mean images for the clusters to which
the marked ion images are assigned. Similar to the lymph node dataset, the neural
pipeline shows better cluster assignments than the regular pipeline, with mean cluster
images that show a closer match to the assigned cluster images.
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Figure 7. (Left) H&E stained microscopy image of neighboring kidney section. (Right)
Three example mean cluster images for the neural U-D pipeline. (Center) Composite
image combining the three mean cluster ions overlaid onto the microscopy. The co-
localization of morphological patterns in the microscopic image and the spatial expressions
in these mean cluster images corroborates the biological relevance of the clustering results.

k-means clustering results 590

Finally, we apply k-means to the regular and neural ion images. When testing different 591

numbers of clusters on the regular ion images, we run into the same issues as we did 592

with clustering the regular ion images in the lymph node dataset when we increase the 593

number of clusters, namely that we get a lot of clusters with a single ion image, due to 594

the high sparsity of the data in the original feature space. For the best results in terms 595

of detected meaningful clusters and RIR, we obtained around 20 clusters, similar to the 596

regular U-D pipeline, which collects the most meaningful clusters and where there are 597

no trivial clusters containing single ion images. Again, we do not encounter this issue 598

with the neural pipeline, presumably due to a better packing of the data through neural 599

feature extraction, and the lower dimensionality of the data (37, 365 pixels per regular 600

ion image versus 2, 048 dimensions in the neural ion images). As such we are able to 601

explore more clusters via the neural pipeline. Similarly to the U-D results, we find 602

clusters that better highlight localized structure in the neural pipeline, however, 603

interestingly, the RIR for k-means is similar to that of U-D, showing that the relatively 604

simple k-means performs surprisingly well on this dataset, compared to the much more 605

involved U-D pipeline. 606

Conclusions 607

We set out this work with the observation that the spatial information available in MSI 608

is often under-utilized in its computational analysis, in part due to the fact that it is 609

non-trivial to translate the complex spatial pattern recognition that humans perform on 610

a daily basis into simple algorithms. The advent of deep learning, particularly 611

convolutional neural networks and their derivatives, has significantly advanced the state 612
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of the art in computer vision, making it possible to capture high-level abstractions, 613

learned through training complex models based on millions of images. 614

615

Moreover, a key strength of neural networks is the fact they can often be transferred 616

between related tasks, such as object detection in computer vision. This enables the 617

direct use of pre-trained neural networks to detect complex spatial patterns without 618

having to train such a model from scratch for each application, which would often be 619

intractable due to the required amount of data and computational resources. In this 620

work we have used such a general-purpose pre-trained model as a general feature 621

extractor to find spatial similarities between ion images in MSI data. Each ion image 622

was fed through the network, and the resulting network interpretation, the neural ion 623

image, was used for subsequent clustering of ion images. 624

625

We evaluated the clustering results of two different ion image clustering pipelines, 626

namely the density-based DBSCAN clustering algorithm, combined with non-linear 627

dimensionality reduction using UMAP, and the pervasive k-means clustering algorithm. 628

In both pipelines, we compared regular ion images and neural ion images from two 629

different MSI datasets, namely a human lymph node and a mouse kidney dataset. 630

631

All of the tested pipelines allowed for extraction of underlying spatial patterns in 632

both datasets, showing insight in the underlying data. However, in all our experiments, 633

the neural pipelines provided a better assignments of ion images, with more fine-grained 634

clusters, and greater consistency in the spatial structures assigned to individual clusters, 635

resulting in more representative mean cluster images. Specifically, our experiments 636

indicated that using neural ion images enables the subsequent clustering pipelines to 637

better account for localized, salient differences between ion images to obtain a fine 638

clustering result, in contrast to the baseline methods which were less effective in 639

identifying clusters with localized differences. 640

641

To quantify our results, we introduced a new metric called Relative Isotope Ratio, 642

which measures the rate at which ion images of the same isotope are assigned to the 643

same cluster, thus capturing biological relevance to a certain degree based on both 644

spatial and spectral information. The newly introduced RIR metric quantitatively 645

confirmed the merits of using neural ion images, thus corroborating our previously 646

mentioned qualitative observations regarding improved clustering specificity. 647

648

In our experiments, neural networks greatly improved on traditional, global distance 649

measures like cosine distance, whereas a neural network-based approach did not show 650

significant improvement in performance over such distance measures in the work of 651

Ovchinnikova et al. [29]. However, small differences in applied methodology can result 652

in significant differences in outcome, and in our work, selecting a good physical patch 653

size was instrumental in achieving good clustering results, something that was not 654

explicitly mentioned by Ovchinnikova et al. It can be intuitively understood that an 655

optimal patch size depends on the spatial patterns within the data itself, which, in the 656

case of MSI ion images, has a clear link to the physical size of patterns within the 657

underlying tissue, such as anatomical structures. 658

659

The proposed methodology can be readily used to incorporate an advanced form of 660

spatial information into any MSI-focused machine learning pipeline, both supervised 661

and unsupervised, and this without the need for large amounts of training data, or high 662

computational needs. Furthermore, towards the future, a neural network could be 663

trained specifically on MSI data, which we expect will further improve performance of 664
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our proposed pipeline. 665
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