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1 Abstract

2 We report the likely most recent common ancestor of SARS-CoV-2 — the coronavirus that causes COVID-
3 19. This progenitor SARS-CoV-2 genome was recovered through a novel application and advancement of
4 computational methods initially developed to reconstruct the mutational history of tumor cells in a
5 patient. The progenitor differs from the earliest coronaviruses sampled in China by three variants,
6  implying that none of the earliest patients represent the index case or gave rise to all the human
7  infections. However, multiple coronavirus infections in China and the USA harbored the progenitor
8  genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide as
9  soon as weeks after the first reported cases of COVID-19. Mutations of the progenitor and its offshoots
10  have produced many dominant coronavirus strains, which have spread episodically over time.
11  Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated
12 North America for most of the pandemic. There have been multiple replacements of predominant
13 coronavirus strains in Europe and Asia and the continued presence of multiple high-frequency strains in
14 Asia and North America. We provide a continually updating dashboard of global evolution and
15 spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).
16
17 Main

18 Despite an unprecedented scope of global genome sequencing of Severe acute respiratory syndrome
19 coronavirus 2 (SARS-CoV-2) and a multitude of phylogenetic analyses!™, the early evolutionary history
20 of SARS-CoV-2 remains unclear. Sophisticated investigations have found that traditional molecular
21 phylogenetic analyses do not produce reliable evolutionary inferences about the early history of SARS-
22 CoV-2 due to low sequence divergence, a limited number of phylogenetically informative sites, and the
23 ubiquity of sequencing errors®®. In particular, the root of the SARS-CoV-2 phylogeny remains elusive®!°
24 because the closely-related non-human coronavirus (outgroups) more than 1,100 base differences
25  from human SARS-CoV-2 genomes, as compared to fewer than 30 differences between human SARS-
26  CoV-2 genomes’ sequenced early on (December 2019 and January 2020)7°7*. Without a reliable root
27 of the SARS-CoV-2 phylogeny, one cannot accurately reconstruct the most recent ancestor sequence.
28 Consequently, we cannot determine if any of the coronaviruses isolated to date carried the genome of
29  the most recent common ancestor (progenitor) of all human SARS-CoV-2 infections. Knowing the
30 progenitor genome will help us determine how close the earliest patients sampled in China represent

31 are to “patient zero,” i.e., the first case of human transmission.

32  The orientation and order of early mutations giving rise to common coronavirus variants will be misled
33 if the earliest coronavirus isolates are incorrectly used to root the SARS-CoV-2 phylogenies*!¢8 The
34 earliest investigations of COVID-19 patients and their coronaviruses' genomes already reported the

19,20

35 presence of multiple variants™<°, and genomes of viral samples from December 2019 had as many as
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36  five differences from each other. These observations require an explicit test of the assumption that one
37 of the early sampled coronavirus genomes was the most recent common ancestor (progenitor) of all
38 the strains infecting humans. Traditionally, the ancestral sequence of organisms is estimated by using
39 a rooted phylogeny?>?2. This ancestral sequence can then be compared with sequenced genomes to
40  find the one that is most similar to that of the inferred progenitor and/or placed closest to the root in
41  the phylogeny. However, as noted above, attempts using ad hoc and traditional methods are fraught
42 with difficulties and have produced contradictory results”*°. Some methods also incorporate sampling
43 times in phylogenetic inference, but they favor placing the earliest sampled genomes at or near the
44 root of the treel®. This practice introduces a degree of circularity in testing the hypothesis that the

45 earliest sampled genomes were ancestral because sampling time is used in the inference procedure.

46 Results and Discussion

47 A mutational order approach for SARS-CoV-2

48  We applied a mutation order approach (MOA) that directly reconstructs the ancestral sequence and
49  the mutational history of genomes?* % without inferring a phylogeny as an intermediate step. MOA is
50 often used to reconstruct the evolutionary history of tumor cells that evolve clonally and without
51 recombination. This approach is well-suited for analyzing SARS-CoV-2 genomes because of their quasi-
52 species evolutionary behavior (clonal) and because of the lack of evidence of significant recombination
53 within human outbreaks, both of which preserve the collinearity of variants in genomes. This feature
54 permits effective use of shared co-occurrence of variants in genomes, as well as the frequencies of
55 individual variants, to infer mutational history, notwithstanding the presence of sequencing errors and
56  other artifacts?>% (see Methods). We advanced MOA for application in the analysis of SARS-CoV-2
57  genomes because the normal cell sequence in tumors provides a direct way to establish the ancestral
58 (non-cancerous) genome. Such a direct ancestor is not available for coronaviruses in which the closest
59 outgroup sequences are over 30-times more different than any two human strains. We also devised a
60 bootstrap approach to place confidence limits on the inferred mutation order in which bootstrap

61 replicate datasets are generated by sampling genomes with replacement (see Methods).

62 We analyzed two snapshots of the fast-growing collection of SARS-CoV-2 genomes to make inferences
63 and assess the robustness of the inferred mutational histories to the growing genome collection,
64  expanding at an unprecedented rate. The first snapshot was retrieved from GISAID?’ on July 7, 2020,
65 and consisted of 60,332 genomes. Of these, 29,681 were selected because they were longer than the
66 28,000 bases threshold imposed (29KG dataset) and did not include an excessive number of unresolved
67 bases in any genomic regions. This second snapshot was acquired on October 12, 2020, from GISAID

68 and contained 133,741 genomes, of which 68,057 genomes met the inclusion criteria (68KG dataset).

69  Inthe following, we first present results from the 29KG dataset and then evaluate the concordance of
70  the mutational history inferred by using an expanded 68KG dataset, which establishes that the

71 conclusions are robust to the sampling of genomes. We then applied mutational fingerprints inferred
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72 using the 68KG dataset to an expanded dataset of 172,480 genomes (sampled on December 30, 2020;
73 172KG) to track global spatiotemporal dynamics SARS-CoV-2. We have also set up a live dashboard
74 showing regularly updated results because the processes of data analysis, manuscript preparation, and
75 peer-review of scientific articles are much slower than the pace of expansion of SARS-CoV-2 genome
76 collection. Also, we provide a simple “in-the-browser” tool to classify any SARS-CoV-2 genome based

77 on key mutations derived by the MOA analysis (http://sars2evo.datamonkey.org/).

78  Mutational history and progenitor of SARS-COV-2

79  We used MOA to reconstruct the history of mutations that gave rise to 49 common single nucleotide
80  variants (SNVs) in the 29KG dataset (Fig. 1). These variants occur with greater than 1% variant frequency
81 (vf > 1%; Fig. 2a). For ease of reference, we used the inferred mutation history to denote key groups of
82 mutations by assigning Greek symbols (u, v, a, B, y, §, and €) to them. Individual mutations were
83 assigned numbers and letters based on the reconstructed order and their parent-offspring relationships
84 (Extended Data Table 1). We estimated the timing of mutation for each mutation based on the
85  timestamp of the viral samples' genome sequences in which it first appeared (Extended Data Table 1,
86  see Methods). The inferred mutation order generally agreed with the temporal pattern of the first
87 appearance of variants in the 29KG dataset. The sampling time of 47 out of 49 mutations was greater
88  than or equal to the first appearance of the corresponding preceding mutation in mutational history.
89  The exceptions were seen only for two low-frequency offshoot mutations (Bs, and Bsc; see Methods).
90 This concordance provides independent validation of the reconstructed mutation graph because

91 neither sampling dates nor locations were used in MOA analysis.

92  We found that new variants occurred in the genomic background of the variants preceding them in the
93 reconstructed mutation history with a very high propensity (co-occurrence index, COl > 96.7%; Fig. 1).
94  This suggests a strong signal to infer a sequential mutational history. Indeed, a bootstrap analysis
95 involving genome resampling to assess the robustness of the mutation history produced high bootstrap
96 confidence levels (BCLs) for key groups of mutations as well as many offshoots (Fig. 1; BCL > 95%).
97 However, the order of some mutations was not established with a high BCL, e.g., the relative order of
98 €1, €2, and &3 mutations. This is because the three € variants almost always occur together (7,624
99  genomes), and the intermediate combinations of € variants occurred in only 42 genomes. Similarly, the
100 count of genomes harboring all three B variants (22,739 genomes) far exceeded those with two or
101  fewer B variants (201 genomes). There is a strong temporal tendency of variants to be sampled together
102 (e.g., €1 - €5 and ai,-a14), suggesting an episodic spread of variants (P << 0.01; see Methods). This
103 episodic spreading of variants, which do not allow for determining the precise order of mutation
104  appearance, may be caused by founder effects, positive selection, or both (e.g., ref.?®). It may
105 sometimes be an artifact of highly uneven regional and temporal genome sequencing that will produce

106 a biased representative sample of the actual worldwide population (Fig. 2b).
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107 The progenitor genome

108  The root of the mutation tree is the most recent common ancestor (MRCA) of all the genomes analyzed,
109  which gave rise to two early coronavirus lineages (v and a; Fig. 1). The MRCA genome was the
110 progenitor of all SARS-CoV-2 infections globally, henceforth proCoV2, and was likely carried by the first
111 case of human transmission in the COVID-19 pandemic (index case)?. It existed on or before December
112 24, 2019, a date for which we have the sequence of SARS-CoV-2 infection in Wuhan, China (Wuhan-1;
113 EPI_ISL 402123). A comparison of proCoV2 with Wuhan-1 genomes revealed three differences in the
114 49 positions, which was also true for other reference genomes (Fig. 2¢). This suggests that the Wuhan-
115 1 and the other earliest sampled genomes are derived coronavirus strains that arose from proCoV2
116 after the divergence of v and a lineages (Fig. 1). The Wuhan-1 strain evolved by three successive a
117 mutations in the progenitor (as, a,, and as), a progression that is statistically supported (BCL = 100%).
118  This high resolution is made possible by 896 intermediate genomes containing one or two a variants in
119  the 29KG dataset. Importantly, three closely-related non-human coronavirus genomes (bats and
120 pangolin) all have the same base at these positions as does the proCoV2 genome, suggesting that the
121 ancestral genome did not contain a variants. Furthermore, genomes with v variants of proCoV2 do not
122 contain the other 47 variants, all of which occurred on the genomes containing a;-as that supports the
123 inference that coronaviruses lacking a variants were the ancestors of Wuhan-1 and other genomes
124 sampled in December 2019 in China (Fig. 2c). Therefore, we conclude that Wuhan-1 was not the direct

125 ancestor of all the coronavirus infections globally.

126 Did proCoV2 propagate in the human population in 2020? A comparison of the proCoV2 genetic
127  fingerprint (49 positions) in the 29KG collection revealed three matches in China (Fujian, Guangdong,
128  and Hangzhou) and three in the US (Washington) in January 2020 (Fig. 2c). One more match was found
129 in New York in March 2020, and the v mutant of proCoV2 was first sampled 59 days after the Wuhan-
130 1 strain. This means that the progenitor coronavirus spread and mutated in the human population for

131 weeks and months after the first reported COVID-19 cases.

132 Because proCoV?2 is three bases different from the Wuhan-1 genome sampled on December 24, 2019,
133 we estimate that the divergence of earliest variants of proCoV2 occurred 5.8 - 8.1 weeks prior based
134 on the range of possible mutation rates of coronavirus genomes?. This timeline puts the presence of
135 proCoV?2 late-October to mid-November 2019 that is consistent with some other reports, including the
136  report of a fragment of spike protein identical to Wuhan-1 in early December in Italy!®202°31 The
137  sequenced segment of the spike protein is short (409 bases). It does not span positions in which 49
138  major early variants were observed, which means that the Italian Spike protein fragment can only

139 confirm the existence of proCoV2 before the first coronavirus detection in China.

140 Comparisons of the protein sequences encoded by the proCoV2 genome revealed 131 other genomic
141 matches, which contained only synonymous differences from proCoV2. A majority (89 genomes) of
142  these matches were from coronaviruses sampled in China and other Asian countries (Fig. 2d). The first

143 sequence was sampled 12 days after the earliest sampled virus, whose genome became available on
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144 December 24, 2019. Multiple matches were found in all sampled continents and detected as late as
145  April 2020 in Europe. These spatiotemporal patterns suggest that proCoV2 already possessed the
146 repertoire of protein sequences needed to infect, spread, and persist in the global human population
147 (see also ref.?8). Notably, none of these coronavirus genomes contained widely-studied Spike protein
148 mutant (D614G), a B mutation that occurred in the genomes carrying all three a variants and was first

149 seen in late January 2020.

150  We then analyzed a later snapshot of SARS-CoV-2 genome collection, consisting of genomes obtained
151  from GISAID, acquired three months after the 29KG dataset. This dataset expanded the collection of
152 coronavirus genomes from viral isolates collected after July 7, 2020 (16,739 genomes) and added
153 20,004 genome sequences from viral isolates dated before July 7, 2020. In the expanded MOA analysis,
154  we retained 49 variants found with frequency > 1% in the 29KG dataset and added variants found with
155  afrequency > 1% in the 68KG dataset (84 total variants; see Extended Data Table 2). MOA analysis of
156  the 68KG dataset produced the proCoV2 genome identical to that inferred using the 29KG dataset (see
157 Methods). We found one additional genome with a proCoV2 fingerprint sampled in Hubei, China, four

158  weeks after the Wuhan-1 strain was reported.

159  The inferred mutation history from the 68KG dataset was well-supported with high COI and BCLs
160 concordance with the mutation history produced using the 29KG dataset (Fig. 3b). Therefore, all the
161 inferences reported for the 29KG dataset were robust to the expanded sampling of genomes. In the
162 expanded mutation history, two new groups of variants were identified (C and n), which originated in
163 mid-March 2020 and are found in relatively high frequency in the 68KG dataset (~4.4% and 8.0%,
164 respectively; Extended Data Table 2). Variants in { and n groups also showed episodic accumulation of
165 mutations, e.g., the count of genomes containing three { mutations ((1-(s; 2,955 genomes) was much
166 larger than those with a subset of these variants (148 genomes). The episodic nature of mutational
167  spread for 84 variants in the 68KG is statistically significant (P < 10®), i.e., clusters of mutations together

168 have become common variants (see Methods).
169  Coronavirus fingerprints and spatiotemporal tracking

170  The progression of mutations in the mutation history directly transforms into a collection of genetic
171  fingerprints or signatures. Each fingerprint represents a genome type containing all the variants on the
172 path from that node up to the progenitor proCoV2. These fingerprints can classify genomes and track
173 spatiotemporal patterns of dominant lineages genomes (see Methods). We use a shorthand to refer to
174  each barcode in which only the major variant type is used. For example, a fingerprint refers to genomes
175  that one or more of the a variants and no other major variants, and af fingerprint refers to genomes
176  that contain at least one q, at least one B variant, and no other major variants. This nomenclature is
177 intuitive and provides a way to glean evolutionary information from the coronavirus lineage's name. In
178  the 68KG dataset (October 12, 2020 GISAID snapshot), global frequencies of major proCoV?2 fingerprints
179  were afe (32.1%), afyd (17.7%), ap (16.7%), afen (9.9%), af (9.8%), aBy (6.8%), apf (4.5%), and v
180  (2.4%).
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181 Figure 4 shows the evolving spatiotemporal of all major fingerprints in Asia, Europe, and North America
182 inferred for an expanded dataset of 172,480 genomes (December 30, 2020 snapshot). Spatiotemporal

183 patterns in cities, countries, and other regions are available online at http://sars2evo.datamonkey.org/.

184  We observe the spread and replacement of prevailing strains in Europe (afe with afg) and Asia (a with
185 aBe), the preponderance of the same strain for most of the pandemic in North America (afyd), and the
186 continued presence of multiple high-frequency strains in Asia and North America. Spatiotemporal
187 patterns of strain spread converged for Europe and Asia by July-August 2020 to ae genetic fingerprints.
188  These patterns diverged from North America, where aff along with its mutant (aBy6) were common.
189  Afterthat, Europe saw {variants of af grow (aBQ), replacing aBe genomes and its new n offshoot (afen)
190 (e.g., ref.3?). The { mutations were first detected three weeks after the sampling of the first € variants.
191  Remarkably, aBy6 has remained the dominant lineage in North America since April 2020, in contrast to
192  theturn-overseenin Europe and Asia. More recently, novel fast-spreading variants have been reported
193 (e.g., ref®). In particular, an S protein variant (N501Y) from South Africa and London has rapidly
194 increased®. Coronaviruses with N501Y variant in South Africa carry the aBy§ genetic fingerprint,
195 whereas those in London carry the aPe genetic fingerprint. This means that the N501Y mutation arose
196 independently in two coronavirus lineages that show convergent patterns of increased spread. At
197  present, aB{ dominates the UK, and the number of genomes publicly available from South Africa is

198 relatively small to make reliable inferences at present (see http://sars2evo.datamonkey.org for future

199 updates). Overall, our mutational fingerprinting and nomenclature provides a simple way to glean the

200 ancestry of new variants in contrast to phylogenetic designations (e.g., B.1.350 and B.1.1.7%3).

201 Conclusions

202  Through innovative analyses of two large collections of SARS-CoV-2 genomes, we have consistently
203 reconstructed the same progenitor coronavirus genome and identified its presence worldwide for
204 many months after the pandemic began. The progenitor genome is a better reference for rooting
205 phylogenies, orienting mutations, and estimating sequence divergences. The reconstructed mutational
206 history of SARS-CoV-2 revealed major mutational fingerprints to identify and track the novel
207 coronavirus's spatiotemporal evolution, revealing convergences and divergences of dominant strains

208 among geographical regions from an analysis of more than 174 thousand genomes.

209 Furthermore, the approach taken here to reconstruct the progenitor genome and discover key
210 mutational events will generally be applicable for analyzing pathogens during the early stages of
211 outbreaks. The approach is scalable for even bigger datasets because it does not require more
212 phylogenetically informative variants with an increasing number of samples. In fact, it benefits from
213 bigger datasets as they afford more accurate estimates of individual and co-occurrence frequencies of
214  variants and enable more reliable detection of lower frequency variants. Its continued application to

215 SARS-CoV-2 genomes and other pathogen outbreaks will produce their ancestral genomes and their
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216  spatiotemporal dynamics, improving our understanding of the past, current, and future evolution of

217 pathogens and associated diseases.

218  Methods

219 Genome data acquisition and processing

220  We first downloaded 60,332 SARS-CoV-2 genomes from the GISAID?’ database, along with information
221 on sample collection dates and locations (until July 7, 2020). Of all the genomes downloaded, we only
222 retained those with greater than 28,000 bases and were marked as originating from human hosts and
223 passing controls detailed below. Similarly, the second dataset, the 68KG dataset, was assembled from
224 133,741 genomes and downloaded on October 12, 2020. Again, we retained only those with greater

225  than 28,000 bases and marked as originating from human hosts.

226 Each genome was subjected to codon-aware alighnment with the NCBI reference genome (accession
227 number NC_045512) and then subdivided into ten regions based on CDS features: ORFla (including
228 nsp10), ORF1b (starting with nsp12), S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10. Gene ORF7b
229  was removed because it was too short for alignment and comparisons. For each region, we scanned
230 and discarded sequences containing too many ambiguous nucleotides to remove data with too many
231  sequencing errors. Thresholds were 0.5% for the S gene, 0.1% for ORFla and ORF1b genes, and 1% for
232 all other genes. We mapped individual sequences to the NCBI reference genome (NC_045512) using a
233 codon-aware extension to the Smith-Waterman algorithm implemented in HyPhy3
234 (https://github.com/veg/hyphy-analyses/tree/master/codon-msa), translated mapped sequence to
235 amino-acids, and performed multiple protein sequence alignment with the auto settings function of
236 MAFFT (version 7.453)*°. Codon sequences were next mapped onto the amino-acid alignment. The
237 multiple sequence alignment of SARS-CoV-2 genomes was aligned with the sequence of three closest
238 outgroups, including the coronavirus genomes of the Rhinolophus affinis bat (RaTG13), R. malayanus
239  bat (RmYNO2), and Manis javanica pangolin (MT121216.1)3%%7. The alignment was visually inspected

240 and adjusted in Geneious Prime 2020.2.2 (https://www.geneious.com). The final alignment contained

241 all genomic regions except ORF7b and non-coding regions (5' and 3' UTRs, and intergenic spacers). After
242 thesefiltering and alignment steps, the multiple sequence alighment contained 29,115 sites and 29,681
243 SARS-CoV-2 genomes for the July 7, 2020 snapshot, which we refer to as the 29KG dataset. For the
244 October 12 snapshot, there were 68,057 sequences, which we refer to as the 68KG dataset. We also
245 conducted a spatiotemporal analysis on an expanded dataset containing 172,480 genomes (172KG)
246 acquired on December 30, 2020.

247 Reference genomes and collection dates

248  We used the dates of viral collections provided by the GISAID database?” in all our analyses if they were
249 resolved to the day (i.e., we discarded data that only contained partial dates, e.g., April 2020). All

250 genomes were used in the mutation ordering analyses, but genomes with incomplete sampling dates
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251  were excluded from the spatiotemporal analyses and derived interpretations. We noted that the
252 earliest sample included in GISAID (ID: EPI_ISL_402123) was collected on December 24, 2019, although
253  the NCBI website lists its collection date as December 23, 2019 (GenBank ID: MT019529). Therefore,
254  we used the GISAID collection date for the sake of consistency. Regarding the NCBI reference genome
255 (GenBank ID: NC_045512; GISAID ID: EPI_ISL_402125)%*, this sample was collected on December 26,
256 2019%. We also used the GIS reference genome in our analysis (ID: EPI_ISL_402124), collected on
257  December 30, 2019%.

258 Mutation order analyses (MOA)

259 First, we analyzed the 29KG dataset. We used a maximum likelihood method, SCITE %3, and variant co-
260 occurrence analyses for reconstructing the order of mutations corresponding to 49 common variants
261 (frequency > 1%) observed in this dataset. MOA has demonstrated high accuracy for analyzing tumor
262 cell genomes that reproduce clonally, have frequent sequencing errors, and exhibit limited sequence
263 divergence?®*. In MOA, higher frequency variants are expected to have arisen earlier than low-
264  frequency variants in clonally reproducing populations?®?%. We used the highest frequency variants to
265 anchor the analysis and the shared co-occurrence of variants among genomes to order mutations while
266 allowing probabilistically for sequencing errors and pooled sequencing of genomes?:. MOA is different
267  from traditional phylogenetic approaches where positions are treated independently, i.e., the shared
268 co-occurrence of variants is not directly utilized in the inference procedure. Notably, both traditional
269 phylogenetic and mutation order analyses are expected to produce concordant patterns when
270  sequencing errors and other artifacts are minimized. However, sequencing errors and limited
271 mutational input during the coronavirus history adversely impact traditional methods, as does the fact
272 that the closest coronaviruses useable as outgroups have more than a thousand base differences from

273 SARS-CoV-2 genomes that only differ in a handful of bases from each other’°.

274 MOA requires a binary matrix of presence/absence (1/0) of mutants, which is straightforward in
275 analyzing cell sequences from tumors because they arise from normal cells that supply the definitive
276 ancestral state. To designate mutation orientations for applying MOA in SARS-CoV-2 analysis, we
277 devised a simple approach in which we began by comparing nucleotides at the 49 genomic positions
278 among three closely-related genomes (bat RaTG13, bat RmYNO2, and pangolin MT121216.1)*. We
279 chose the consensus base to be the initial reference base, such that SARS-CoV-2 genome bases were
280  coded to be “0” whenever they were the same as the consensus base at their respective positions. All
281 other bases were assigned a “1.” There were 39 positions in which all three outgroup genomes were
282 identical to each other and 9 in which two of the outgroups showed the same base. In the remaining
283 position (28657), all three outgroups differed, so we selected the base found in the gene with the
284 highest sequence similarity to the human SARS-CoV-2 NCBI reference genome (NC_045512) because
285 SARS-CoV-2’s ancestor likely experienced genomic recombination before its zoonotic transfer into

286  humans?®4% At one position, both major and minor bases in humans were different from the
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287 consensus base in the outgroups, so we assigned the mutant status to the minority base (U; vf=29.8%).

288  All missing and ambiguous bases were coded to be ignored (missing data) in all the analyses.

289  These initially assigned mutation orientations were tested in a subsequent investigation of variants' co-
290 occurrence index (COIl). COI for a given variant (y) is the number of genomes that contain y and its
291 directly preceding mutation (x) in the mutation history, divided by the number of genomes that contain
292  y. When COI was lower than 70%, we reversed each position's mutation orientation individually and

293  selected the mutation orientation that produced mutation histories with the highest COI.

294 In the SCITE analysis of 49 variants and 29,861 genomes, we started with default parameter settings of
295  false-negative rate (FNR = 0.21545) and false-positive rate (FPR = 0.0000604) of mutation detection.
296  We carried out five independent runs to ensure stability and convergence to obtain 29KG collection-
297  specific estimates of FNR and FPR by comparing the observed and predicted sequences based on this
298 mutation graph. The estimated FNR (0.00488) and FPR (0.00800) were very different from the SCITE
299  default parameters, where the estimated FNR was much lower. This difference in error rates is
300 unsurprising because we used only common variants (vf > 1%), and the 29KG dataset was not obtained
301 from single-cell sequencing in which dropout during single-cell tumor sequencing elevates FNR, i.e.,

302 mutant alleles are not sequenced.

303  Asnoted above, the initial mutation orientations were simply the starting designations for our analysis,
304  which are subsequently investigated by evaluating the COIl of each variant in the reconstructed
305 mutation history. In this process, we reverse ancestor/mutant coding for variants that received low COI
306  to examine if a mutation history with higher COI can be generated. Two positions (3037 and 28854)
307  received low COI (<70%). At position 3037, the reversed encoding (C—>U) received significantly higher
308 COI (100%) than the starting encoding (U->C; 60%), so the position was recoded. At position 28854,
309  the ordering and direction of mutation remained ambiguous despite extensive analyses, but it did not
310 impact the predicted MRCA sequence. Therefore, we only recoded the column for position 3037 and

311  generated a new 49 x 29861 (SNVs x genomes) matrix to conduct a SCITE analysis.

312 At one position (28657), all three outgroup sequences had different bases, so we initially selected the
313 base found in the gene with the highest sequence similarity to the human SARS-CoV-2 NCBI reference
314  genome. We next tested if reversed encoding produced a better mutation graph. The reversed
315 encoding produced a mutation graph with a much higher log-likelihood (-32355.58 and -30289.92, for
316  the initial and reversed encoding, respectively; P << 0.01 using the AIC protocol in ref.**). Therefore,

317  we recoded position 28657 and generated a new 49 x 29861 (SNVs x genomes) matrix.

318 It was subjected to SCITE analysis and produced a mutation graph for 49 variants in the 29KG dataset.
319  This graph predicts an FNR of 0.00418 and FPR of 0.00295 per base. Using these new FNR and FPR, we
320 again performed SCITE analysis and produced the final mutation history graph. Starting from the top of
321 a mutation graph, a distinct Greek symbol was assigned to a group of mutations that were occurred
322 sequentially, and variants with similar frequency were assigned the same Greek symbol (i, v, a, B, v, 6,
323 and €). The high-frequency variants with the same Greek symbol were distinguished by numbers to
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324 represent the sequential relationship, e.g., az and a,. When an offshoot of a high-frequency mutation
325 had low variant frequency, we assigned it the same Greek symbol and number to represent the parent-

326 offspring relationship and further distinguished descendants by adding a small letter, e.g., a12 and dp.

327 In this mutation graph, the most recent common ancestor (MRCA) corresponds to the progenitor that
328  gave rise to v and a lineages. MRCA is the progenitor of all human SARS-CoV-2 infections (proCoV2),
329  which descended from the parental lineage that divergence form and its closest relatives, including bats
330 and pangolins. We estimate that proCoV2 existed 5.8 to 8.1 weeks before December 24, 2019, on which
331  the Wuhan-1 was sampled, by using SARS-CoV-2 HPD mutation rate range of 6.64x10* — 9.27x10™
332 substitutions per site per year?®. We have made available the proCoV2 genome sequence in FastA

333 format at http://igem.temple.edu/COVID-19, which is the same as the NCBI reference genome with

334 base differences corresponding to a;— as mutations at positions 18060, 8782, and 28144, as discussed

335 in the main text. In this mutation graph, COI for each variant is shown next to the arrow.

336 Bootstrap analysis

337  We assessed the robustness of the mutation history inference to genome sampling by bootstrap
338 analysis. We generated 100 bootstrap replicate datasets, each built by randomly selecting 29,861
339  genomes with replacement. Then, SCITE was used to infer the mutation graph for each replicate
340 dataset. Bootstrap confidence level, scored for each variant pair, was the number of replicates in which
341  the given pair of variants were directly connected in the mutation history in the same way as shown in
342  figure 1. BCLs were often lower for major variants within groups (e.g., €1 — €3) because they occur with
343 very similar frequencies. This feature adversely affected the BCL values of mutation orders between
344  groups, e.g., B and €. In this case, we considered each group as a single entity. We computed BCL to be
345  the proportion of replicates in which pairs of groups were directly connected in the mutation history in
346 the same way as shown in figure 1. Groups used were B1-B3, €1-€3, and a12-014. All of these BCL values

347 are shown with an underline.

348 Temporal concordance

349 Because mutation ordering analysis analyses did not use spatial or temporal information for genomes
350 or mutations, it can be validated by evaluating the concordance of the inferred order of mutations with
351  the timing of their first appearance (tf). Using the genomes for which virus sampling day, month, and
352  year were available, we determined tf for every variant in the 29KG dataset. For a mutation i, we
353  compared its tf(i) with tf(j) such that j is the nearest preceding mutation in the mutation graph. We
354 found that tf(j) > tf (i) for 47 of 49 mutations, except for B3y, and Bsc pairs. These two offshoot mutants
355 of B3 were sampled 35 days (Bsb) and 12 days (Bsc) earlier than their predecessors, which could be due
356  totheir low frequency or sequencing error. COl of one variant (Bsp) was low (54%), but the other variant
357  (Bsc) had a very high COI (97%).

358 Mutational fingerprints
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359 Each node in the mutational history graph predicts an intermediate (ancestral) or a tip sequence,
360 containing all the mutations from that node to the mutation graph's root. The mutational fingerprint is
361  then produced directly from the mutation history graph drawn as a directional graph anchored on the
362 root node. We compared our mutational fingerprints of the genomes in the 29KG dataset with a

363 phylogeny-based classification® obtained using the Pangolin service (v2.0.3; https://pangolin.cog-

364  uk.io/). We assigned each of the 29K genomes to a fingerprint based on the highest sequence similarity
365 at positions containing 49 common variants. Mismatches were allowed, as sequencing errors could
366  create them. A small fraction of genomes (1.8%) could not be assigned unambiguously to one
367  fingerprint, so they were excluded and investigated in the future. The number of genomes assigned to
368 each fingerprint is shown in Extended Data Table 1. We submitted genome sequences to the Pangolin
369  website for classification one-by-one, and a clade designation was received. The results are summarized
370 in Extended Data Figure 1. In this table, all phylogenetic-groups with fewer than 20 genomes were
371 excluded.

372 Of the 80 phylogenetic groups shown, 74 are defined primarily by a single mutation-based fingerprint,
373 as more than 90% of the genomes in those phylogenetic groups share the same fingerprint. This
374 includes all small and medium-sized phylogenetic groups (up to 488 genomes) and two large groups
375 (A.1 with 1,377 genomes and B.1.2 with 749 genomes). One large group, B.1.1, predominately connects
376  with €3 node (79%, 4,832 genomes), but some of its members belong to €5 offshoots because they
377 contain respective diagnostic mutations. For group B.1.1.1, two other &35 offshoots are mixed up almost
378 equally. Three other large differences between mutational fingerprint-based classification and
379  phylogeny-based grouping are seen for A, B, B1.1, and B.2 groups. These differences are likely because
380  the location of the root and the earliest branching order of coronavirus lineages are problematic in
381  phylogeny-based classifications”>1%4 Overall, our mutational fingerprints are immediately informative

382 about the mutational ancestry of genomes.

383 Analysis of 68KG dataset

384  We repeated the above MOA procedure on the 68KG dataset (68,057 genomes). This 68KG data
385 contained 72 common variants (>1% frequency). For direct comparison purposes, we added 12 variants
386  that were common variants on 29KG data, but their frequency had become less than 1% in the 68KG
387 data. Therefore, we used 84 variants in total and constructed a matrix of 84 x 68,057 (SNVs x genomes)
388  for the SCITE analysis to determine the mutational order. We also conducted the bootstrap analysis
389 and assigned mutational fingerprints using the procedure mentioned above. The number of genomes

390 mapped to each fingerprint is listed in Extended Data Table 2.

391 Spatiotemporal analysis of 172KG dataset

392 We developed a sequence classification protocol that first calls variants in a viral genome using proCoV2
393 as the reference sequence using minimap2*. Then, it assigns the sequence to a path in the mutation
394  graph with the highest concordance (Jaccard index). It is implemented in a simple browser-based tool,

395 which shows the example output for ENA accession number MT675945 (Extended Data Figure 2;
12
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396 http://sars2evo.datamonkey.org). The classification is conducted on the client-side such that the

397 researcher’s data never leaves their personal computer.

398 Testing episodic spread of variants

399  We performed non-parametric Wald-Wolfowitz runs-tests*4’ of the null hypothesis that the first
400  sampling of variants is randomly distributed over time (i.e., evenly spaced). The null hypothesis was
401  rejected for both 29KG and 64KG analysis at P << 0.01, suggesting significant temporally clustering in
402 both 29KG dataset and 64KG datasets. Because many mutations were first sampled on December 24,

403 2019, we only included one mutation for that day to avoid biasing the test.

404 Data Availability and Code Availability: Live evolutionary history and spatiotemporal distributions of

405 common variants can be accessed via http://igem.temple.edu/COVID-19 (beta version). All genome

406 sequences and metadata are available publicly at GISAID (https://www.gisaid.org/), and the predicted

407 proCoV2 sequence is available at http://igem.temple.edu/COVID-19. The other relevant information is

408 provided in the supplementary materials.
409
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532 Fig. 1. Mutational history graph of SARS-CoV-2 from the 29KG dataset. Thick arrows mark the pathway of
533 widespread variants (frequency, vf = 3%), and thin arrows show paths leading to other common mutations (3% >
534 vf > 1%). The pie-charts' size is proportional to variant frequency in the 29KG dataset, with pie-charts shown for
535 variants with vf > 3% and pie color based on the world's region where that mutation was first observed. A circle is
536 used for all other variants, with the filled color corresponding to the earliest sampling region. The co-occurrence
537 index (COlI, black font) and the bootstrap confidence level (BCL, blue font) of each mutation and its predecessor
538 mutation are shown next to the arrow connecting them. Underlined BCL values mark variant pairs for which BCLs
539 were estimated for groups of variants (see Methods) because of the episodic nature of variant accumulation within
540 groups resulting in lower BCLs (<80%; dashed arrows). Base changes (n.) are shown for synonymous mutations,
541 and amino acid changes (p.) are shown for nonsynonymous mutations along with the gene/protein names ("ORF"
542 is omitted from gene name abbreviations given in Extended Data Table 1). More details on each mutation are
543 presented in Extended Data Table 1.
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545 Fig. 2. Counts of single nucleotide variants (SNVS) and genomes in the 29KG dataset. (a) Cumulative count
546 of SNVs presented in the 29KG genome dataset at different frequencies. (b) The number of genomes in the 29KG
547 collection that were isolated weekly during the pandemic. (¢) The number of base differences from proCoV2 for
548 genomes that were sampled in December 2019 and January 2020. The 18 genomes sampled in December 2019
549 in China (red) have three common SNVs different from proCoV2. In contrast, six genomes sampled in January
550 2020 in China (Asia, red) and the US (North America, blue) show no base differences. Multiple genomes (2 and
551 15) were sampled on two different days. (d) Temporal and spatial distribution of strains identical to proCoV2 at the
552 protein sequence level, i.e., they have only y mutations. The color scheme used to mark sampling locations is
553 shown in panel b.
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557 Fig. 3. The backbone of SARS-CoV-2 mutational history. The mutational history inferred was from (a) 29KG
558 and (b) 68KG datasets. Major variants and their mutational pathways are shown in black, and minor variants and
559 their mutational pathways are gray. Circle color marks the region where variants were sampled first. The 68KG
560 dataset contains 12 additional variants and more than two times the genomes than the 29KG dataset.
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563

564 Fig. 4. Spatiotemporal dynamics of 172,480 SARS-CoV-2 genomes (December 2019-2020). Spatiotemporal
565 patterns of genomes mapped to lineages containing different combinations of major variants in (a) Asia, (b) Europe,
566 and (c) North America. The number of genomes mapped to major variant lineages contains all of its offshoots, e.g.,
567 a lineage contains all the genomes with a1 — a3, a1a — 14, and asa — a3 variants only. The stacked graph area is
568 the proportion of genomes mapped to the corresponding lineage. The solid black line shows the count of total
569 genome samples. Spatiotemporal patterns in cities, countries, and other regions are available online at
570 http://sars2evo.datamonkey.org/.
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573 Extended Data Table 1. SARS-CoV-2 variants in 29KG dataset.

Mutant Mutant Genomic Nucleotide Amino acid Time Variant Genomes
(major) (minor) Gene Position change change (days) Frequency mapped First location
1 ORF1ab 2416 U>C 0 98.1% 0 China, Asia
2 ORF1ab 19524 U>C 0 98.6% 0 China, Asia
s S 23929 U>C 0 98.4% 18 China, Asia
a ORF1ab 18060 U>C 0 95.1% 849 China, Asia
Oa N 28657 Cc>U 63 1.3% 2 France, Europe
i ORF1ab 9477 U>A F>Y 63 1.2% 3 France, Europe
e N 28863 c>U S>L 63 1.2% 5 France, Europe
g ORF3a 25979 G>U GV 63 1.2% 344 France, Europe
® ORF1ab 8782 U>C 0 91.0% 47 China, Asia
W ORF8 28144 Cc>U S>L 0 90.8% 1115 China, Asia
3a ORF1ab 1606 U>C 43 1.7% 501 United Kingdom, Europe
a3 ORF1ab 11083 G>U L>F 24 9.2% 376 China, Asia
a3 N 28311 Cc>U P>L 64 1.9% 3 South Korea, Asia
g ORF1ab 13730 C>U AV 4l 1.8% 3 Taiwan/Malaysia, Asia
Oze ORF1ab 6312 C>A K 71 1.7% 483 Taiwan/Malaysia, Asia
as ORF3a 26144 G>U GV 28 5.1% 121 China, Asia
Qg ORF1ab 14805 C>U 54 6.0% 334 United Kingdom, Europe
a3 ORF1ab 17247 U>C 64 2.0% 580 Switzerland, Europe
i ORF1ab 2558 Cc>U P>§ 54 1.7% 26 United Kingdom, Europe
a ORF1ab 2480 A>G >V 54 1.6% 462 United Kingdom, Europe
B1 ORF1ab 3037 Cc>U 31 77.0% 1 China, Asia
B2 S 23403 A>G D>G 31 77.1% 36 China, Asia
Bs ORF1ab 14408 Cc>U P>L 41 76.9% 3032 Saudi Arabia, Middle East
Baa ORF1ab 20268 A>G 64 5.7% 1213 Iltaly, Europe
Bab N 28854 Cc>U S>L 29 3.1% 527 China, Asia
B ORF1ab 15324 Cc>U 29 2.3% 678 China, Asia
Bad ORF3a 25429 G>U VL 77 1.7% 485 United Kingdom, Europe
Bae N 28836 c>U S>L 74 1.6% 3 Switzerland, Europe
Bar ORF1ab 13862 Cc>U Tl 74 1.6% 50 Switzerland, Europe
Bag ORF1ab 10798 C>A D>E 86 1.4% 414 United Kingdom, Europe
Vi ORF3a 25563 G>U Q>H 41 29.8% 884 Saudi Arabia, Middle East
Via ORF1ab 18877 Cc>U 41 4.0% 757 Saudi Arabia, Middle East
Vib M 26735 Cc>U 41 1.5% 439 Saudi Arabia, Middle East
81 ORF1ab 1059 C>U 7>l 54 23.0% 5157 Singapore, Asia
Sta S 24368 G>U D>Y 75 1.3% 389 Sweden, Europe
Bip ORF8 27964 c>U S>L 76 2.7% 790 USA, North America
B1e ORF1ab 11916 Cc>U S>L 72 1.6% 166 USA, North America
S1d ORF1ab 18998 c>U AV 72 1.0% 305 USA, North America
2 N 28881 G>A R>K 54 25.7% 2 United Kingdom, Europe
€ N 28882 G>A R>K 54 25.7% 2 United Kingdom, Europe
€3 N 28883 G>C G>R 54 25.7% 5365 United Kingdom, Europe
€3 ORF1ab 313 Cc>U 66 2.1% 608 USA, North America
€3 ORF1ab 19839 U>C 64 1.5% 452 Switzerland, Europe
€3 M 27046 Cc>U ™M 69 1.6% 453 Worldwide
€3 ORF1ab 10097 G>A G>S 69 2.5% 5 Denmark, Europe
€30 S 23731 c>U 69 2.5% 403 Denmark, Europe
€3 N 28580 G>U D>Y 69 1.2% 353 Chile, South America
Vi1 ORF1ab 17858 A>G Y>C 59 4.7% 32 USA, North America
574 Vo ORF1ab 17747 Cc>U P>L 59 4.7% 1374 USA, North America

575 Note.- Genomic locations correspond to those of the NCBI genome (GenBank ID: NC_04551.2). Amino
576 acid changes are shown for nonsynonymous variants.

577

20


https://doi.org/10.1101/2020.09.24.311845
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.311845; this version posted January 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

578 Extended Data Table 2. SARS-CoV-2 variants in the 68KG dataset.

Mutant Mutant Genomic Nucleotide Amino acid Time Variant Genomes
(major) (minor) Gene Position change change (days) Frequency mapped First location
g ORF1ab 2416 U>C 0 98.4% 0 China, Asia
W2 ORF1ab 19524 U>C 0 99.0% 18 China, Asia
W3 S 23929 U>C 0 98.9% 0 China, Asia
Mg ORF1ab 15933 U>C 0 98.8% 0 China, Asia
Us ORF8 27944 U>C 0 97.0% 0 China, Asia
s ORF1ab 6286 U>C 0 95.6% 0 China, Asia
7 S 22444 U>C 0 98.7% 0 China, Asia
ay ORF1ab 18060 U>C 0 97.3% 1114 China, Asia
Qia N 28657 Cc>U 63 1.0% 3 France, Europe
Oy ORF1ab 9477 U>A F>Y 63 0.7% 3 France, Europe
Oie N 28863 c>U S>L 63 0.7% 7 France, Europe
Qg ORF3a 25979 G>U G>V 63 0.7% 451 France, Europe
[ ORF1ab 8782 U>C 0 94.9% 51 China, Asia
[ ORF8 28144 C>U S>L 0 94.9% 1281 China, Asia
O3a ORF1ab 1606 U>C 43 0.9% 578 United Kingdom, Europe
[ ORF1ab 11083 G>U L>F 24 7.5% 417 China, Asia
Ose N 28311 Cc>U P>L 64 14% 4 South Korea, Asia
o ORF1ab 13730 C>U AV 33 1.4% 5 China, Asia
3 ORF1ab 6312 C>A K 4l 1.2% 767 Taiwan, Asia
Oy ORF3a 26144 G>U G>V 28 3.0% 160 China, Asia
Qg ORF1ab 14805 Cc>U 54 3.7% 511 United Kingdom, Europe
Cgn ORF1ab 17247 U>C 64 1.0% 682 Switzerland, Europe
Oy ORF1ab 2558 Cc>U P>S 54 1.0% 44 United Kingdom, Europe
o ORF1ab 2480 A>G >V 54 1.0% 648 United Kingdom, Europe
By ORF1ab 3037 Cc>U 31 87.2% 45 China, Asia
B, S 23403 A>G D>G 31 87.2% 15 China, Asia
B3 ORF1ab 14408 Cc>U P>L 41 87.1% 4450 Saudi Arabia, Middle East
Bsa ORF1ab 20268 A>G 64 6.0% 2388 taly, Europe
Ba N 28854 c>U S>L 29 4.5% 1782 China, Asia
[ ORF1ab 15324 c>U 29 2.2% 1463 China, Asia
Baa ORF3a 25429 G>U V>L 7 1.1% 719 United Kingdom, Europe
Bse N 28836 Cc>U S>L 74 0.8% 3 Switzerland, Europe
Bar ORF1ab 13862 Cc>U > 74 0.8% 85 Switzerland, Europe
Bsg ORF1ab 10798 C>A 86 0.6% 435 United Kingdom, Europe
Vi ORF3a 25563 G>U Q>H 41 24.4% 1671 Saudi Arabia, Middle East
Via ORF1ab 18877 c>U 41 42% 1201 Saudi Arabia, Middle East
Yib M 26735 Cc>U 41 2.7% 1784 Saudi Arabia, Middle East
& ORF1ab 1059 Cc>U > 54 17.6% 8284 Singapore, Asia
O1a S 24368 G>U D>Y 75 0.7% 466 Sweden, Europe
dip ORF8 27964 Cc>U S>L 76 2.9% 1152 USA, North America
o ORF1ab 11916 c>U S>L 72 1.9% 807 USA, North America
Big ORF1ab 18998 Cc>U AV 72 0.7% 458 USA, North America
Ote ORF1ab 10319 c>U L>F 76 1.2% 799 USA, North America
4 ORF1ab 445 U>C 179 4.4% 18 Netherlands, Europe
4 M 26801 C>G 82 4.3% 7 Canada, North America
G S 22227 c>U AV 84 4.5% 1 Spain, Europe
4 N 28932 Cc>U AV 96 4.4% 5 Portugal, Europe
14 ORF10 29645 G>U V>L 78 4.4% 2 Denmark, Europe
4 ORF1ab 21255 G>C 80 4.4% 1557 USA, North America
579 G S 21614 c>u L>F 79 2.5% 1442 United Kingdom, Europe

580

21


https://doi.org/10.1101/2020.09.24.311845
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.24.311845; this version posted January 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

581 Extended Data Table 2. SARS-CoV-2 variants in the 68KG dataset (continued).

Mutant Mutant Genomic Nucleotide Amino acid Time Variant Genomes
(major) (minor) Gene Position change change (days) Frequency mapped
€1 N 28881 G>A R>K 54 41.7% 5
€ N 28882 G>A R>K 54 41.6% 0
€ N 28883 G>C G>R 54 41.6% 13394
€33 ORF1ab 313 c>u 64 2.4% 1630
€3 ORF1ab 19839 u>C 64 2.9% 1227
€3¢ M 27046 c>u ™M 69 0.8% 548
€34 ORF1ab 10097 G>A G>S 69 3.2% 11
€30 S 23731 c>u 69 3.2% 425
€31 N 28580 G>U D>Y 69 1.0% 678
€3 ORF1ab 13536 c>u 69 1.6% 23
€3n ORF1ab 4002 c>U > 69 1.6% 1066
€3 ORF1ab 10265 G>A G>S 63 1.4% 879
€ S 21575 c>u L>F 54 1.0% 248
€3k S 21637 c>u 111 1.3% 873
£ ORF8 28169 A>G 103 1.3% 0
€3m ORF1ab 16968 G>U 114 1.0% 702
N1 ORF1ab 1163 A>U I>F 86 9.6% 339
Nia ORF1ab 14202 G>U 159 1.1% 7
Nib ORF1ab 19542 G>U M>| 81 1.2% 23
Nie S 22388 c>u 90 1.2% 21
Nia N 29466 c>u ASV 91 1.2% 4
Nie ORF1ab 19718 c>u > 73 1.5% 23
N ORF3a 26060 c>u > 92 1.2% 7
N1g N 29227 G>U 55 1.2% 24
Nh ORF1ab 3256 uU>C 167 1.1% 0
N ORF1ab 5622 c>u P>L 67 1.2% 775
N ORF1ab 18555 c>u 51 8.0% 25
ns ORF1ab 16647 G>U 84 8.0% 8
ne ORF1ab 7540 u>C 86 7.9% 0
ns S 23401 G>A 86 7.9% 1
ne S 22992 G>A S>N 86 8.5% 4583
Nea S 22480 c>u 66 1.3% 878
vy ORF1ab 17858 A>G Y>C 59 2.6% 61
582 Vo ORF1ab 17747 c>u P>L 59 2.5% 1677

583 Note.- Genomic locations correspond to those of the NCBI genome (GenBank ID: NC_04551.2). Amino
584  acid changes are shown for nonsynonymous variants.
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Mutation-based fingerprints

Phylo-class al ald a2 a3 a3a a3b a3e o3f a3h o3i a3j Bl B3 P3a P3b P3c P3d B3f B3g yl yla 61 &la 61b 8lc 51d €3 e3a €3b €3c e3e e3f ylb vl v2
B.1 2256 515 8 576 204 50 522 588 4410 369 41 165 268
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B.15.2 64
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A6 41
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B.1.78 44

B.155 43
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B.A.79 39

B.1.1.28 38

B3 37

B.1.37 37

B.1.5.10 37
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B.1.1.32 31
B.1.96 33

B.1.1.26 32
B.1.41 32

B.1.40 30

A4 29

B.1.1.30 29
B.1.19 29

B.1.1.25 28
B.1.12 27
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B.1.117 25
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B.26 22

B.1.120 21

B.1.29 21

BAT1 21

585 B144 20

586 Extended Data Figure 1. A comparison of mutation-based and phylogeny-based classifications of 29KG
587  genomes. Phylogeny-based classification is obtained by using the Pangolin service (v2.0.3;
588 https://pangolin.cog-uk.io/). Only the terminal variants are shown in mutation-based fingerprints for
589 convenience. Each cell's value is the number of genomes that belong to the corresponding mutation-
590 based and phylogeny-based groups. All phylogenetic-based groups with fewer than 20 genomes are
591 excluded. Cells with fewer than five genomes matching have been left empty to make the comparison
592 more straightforward and allow for sequencing and estimation errors.
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c proCoV2

a

Classify the following SARS-CoV-2 sequence (FASTA or ENA accession number like MT675945)

MT675945

 Classify

Found the following tracking mutations

» a1(18eeeC),

» Y1(25563T),

Assigned to lineage u+a+B+y, closest signature match at yla.

Matched 14/15 tracking mutations found in the sequence and 14/15 mutations

defining the signature.

Signature mutations in the sequence:

1.
3

o0~ "

10.
11.
12.B831
13.y

4.y

Additional tracking mutations in the sequence (not in the signature):
1. B3b 28854T

Signature tracking mutations not in the sequence:

594

595

596 Extended Data Figure 2. An example of sequence classification (ENA Accession MT675945) based on the
597 84 signature mutations (http://sars2evo.datamonkey.org/; “Classify your Sequence” option). (a) Input
598  window to provide identifiers of sequences to be classified (e.g., MT675945). (b) The input sequence is
599 classified into a mutational fingerprint. A list of mutations that are appeared in the input sequence is
600  shown in the output window. (¢) A waterfall phylogeny shows the input sequence's location in the
601 phylogeny, which appears after clicking the closet signature matched mutation in panel b.
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