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ABSTRACT

Disruption of large-scale brain networks is associated with autism spectrum disorders (ASD). Recently, we found that directed
functional connectivity alterations of social brain networks are a core component of atypical brain development at early
developmental stages in ASD (Sperdin et al., 2018). Here, we investigated the spatio-temporal dynamics of whole-brain
neuronal networks at a subsecond scale in 90 toddlers and preschoolers (47 with ASD) using an EEG microstate approach.
Results revealed the presence of five microstate classes that best described the entire dataset (labeled as microstate classes
A-E). Microstate class C related to the Default Mode Network (DMN) occurred less in children with ASD. Analysis of brain-
behavioural relationships within the ASD group suggested that a compensatory mechanism from microstate C was associated
with less severe symptoms and better adaptive skills. These results demonstrate that the temporal properties of some specific
EEG microstates are altered in ASD at early developmental stages.
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INTRODUCTION
High-density electroencephalography (EEG) represents a pow-
erful mean to explore the brain’s physiological activity at a
large-scale level in pediatric population (Michel & Murray,
2012). Recording the brain activity during a task or at rest in
very young children with autism spectrum disorders (ASD) is
challenging. However, early identification of brain alterations
is important as it provides insights onto the brain mechanisms
that lead to their clinical behavioral phenotype. Ultimately,
increasing our understanding on how differently the brain
develops during childhood years can help clinicians to adapt
and use more tailored therapies early in life when the brain is
most plastic and thus responsive to behavioral treatment.

Recently, by combining high density EEG and eye-tracking,
we found that alterations in the directed functional connectiv-
ity between brain areas in the theta and alpha frequency bands
are a core component of brain development at early stages
of ASD (Sperdin et al., 2018). Higher activity within key

nodes of the social brain (Adolphs, 2009; Brothers, 1990) for
some toddlers and preschoolers with ASD was related to bet-
ter visual exploration, and thus may represent a compensatory
mechanism for ASD at such a young age (Sperdin et al., 2018;
Welsh & Estes, 2018). Here, we used a data-driven, reference
free EEG microstate approach (Michel & Koenig, 2018) to
examine differences in the spatial organization and temporal
dynamics of whole-brain neuronal networks in a large sam-
ple of toddlers and preschoolers with ASD and age-matched
typically developing (TD) peers (N = 90, 3 years of age on
average). EEG microstates represent the subsecond coherent
activation within global functional brain networks and are usu-
ally defined in the literature as short-lasting periods (approx.
100 ms) of quasi-stable topographies of the electric potentials
in the ongoing EEG (Wackermann et al., 1993; Lehmann et al.,
2009). Interestingly, these rapidly changing EEG microstates
are closely related and described as the electrophysiological
correlates of fMRI resting-state networks (Britz et al., 2010;
Musso et al., 2010; Bréchet et al., 2019). It is a commonly
used method in the EEG field to study variations in the spa-
tial organization and temporal dynamics of large-scale brain
networks at rest or during a task and has provided important
insights on how differently the brain processes information
in populations with brain disorders (Michel & Koenig, 2018;
Khanna et al., 2015). For example, numerous studies indicate
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that changes in the spatial and/or temporal characteristics of
specific microstates represent critical markers for several brain
disorders indicating that these spatial and temporal modula-
tions may mirror how divergently a given individual with a
neurodevelopmental condition is processing information com-
pared to a TD individual (Khanna et al., 2015; Tomescu et al.,
2015; Lehmann et al., 2005; Strelets et al., 2003; Stevens et al.,
1997; Tomescu et al., 2014).

Building up on our previous study where we found alter-
ations in the directed functional connectivity between brain
areas in the theta and alpha frequency bands (Sperdin et al.,
2018), we hypothesized that the toddlers and preschoolers
with ASD would also show differences in the spatio-temporal
properties of some microstates compared to their typically
developing peers. We also looked at relationships between the
temporal characteristics of the microstates and clinical pheno-
type. Finally, we used a bootstrapping approach (Schaer et al.,
2015) to examine the stability of our findings. Post-hoc power
analyses depending on the observed effect sizes were made
to estimate the relationship between the sample size of our
group and the observed statistical power. The bootstrapping
procedure served to estimate the likelihood of finding the true
result we observed in our full cohort from smaller sample
sizes of participants.

RESULTS
Microstates analysis
The k-means cluster analysis across all participants identified
five dominant maps, which explained 78.5 percent of the total
variance (Figure 1). These five cluster maps correspond to
the canonical microstate classes previously reported in the
literature and were labeled accordingly (map A, B, C, D and
E) (Michel & Koenig, 2018). These five cluster maps were
used for further analysis.

When looking for group differences regarding the sum of
temporal parameters, we found no difference between tod-
dlers and preschoolers with ASD and their TD peers for the
summed global explained variance (GEV) (df = 88, t = 1.633,
p = 0.106) and the summed mean duration of all microstates
(df = 88, t = 0.084, p = 0.933). However, we found a dif-
ference for the summed time coverage (df = 88, t = 3.305,
p = 0.001) and the summed occurrence (df = 88, t = 2.904,
p = 0.005) between both groups (Figure 2). The summed
time coverage and the summed occurrence were lower in the
toddlers and preschoolers with ASD compared to their TD
peers. There was no significant difference for the time cover-
age when looking at the five maps separately between both
groups (A : df = 88, t = 1.478, p = 0.143 ; B : df = 88, t =
1.936, p = 0.056 ; C : df = 88, t = 2.102, p = 0.038 ; D : df =
88, t = 0.803, p = 0.424 ; E : df = 88, t = 0.035, p = 0.973).
The difference for the summed occurrences was driven by a
significant difference in the occurrence of map C (df = 88, t
= 2.821, p = 0.006) (Figure 3). Map C occurred significantly
less in the toddlers and preschoolers with ASD compared to
their TD peers. When considered separately, there was no

significant differences in the frequency of occurrence for map
A, B, D and E between both groups (A : df = 88, t = 1.829, p
= 0.071 ; B : df = 88, t = 2.359, p = 0.021 ; D : df = 88, t =
1.207, p = 0.231 ; E : df = 88, t = 0.176, p = 0.861).

Correlation with clinical measures
The results of Spearman’s rank correlation revealed a positive
association of the autism symptoms severity with map C.
The occurrence of microstate class C significantly correlated
with the ADOS total severity score (r = -0.359, N = 47, p
= 0.013) (Figure 4). We also found a significant positive
association between adaptive functioning level of toddlers and
preschoolers with ASD and the occurrence of map C. The
occurrence of microstate class C significantly correlated with
the daily living skills subdomain of the Vineland Adaptive
Behavior Scale-II (VABS-II) (r = 0.396, N = 47, p = 0.006)
(Figure 5).

No association was found between the occurrence of map C
and the developmental level of toddlers and preschoolers with
ASD, using developmental quotient of the Mullen Scales of
Early Learning composite score (MSEL) (r = 0.264, N = 39,
p = 0.105). No other significant brain-behavioral relationship
was found regarding the other maps (A, B, D and E).

Bootstrapping analysis
The bootstrapping sub-sampling analysis tested the likelihood
for observing a significant difference in the temporal parame-
ters between both group for each simulated sample size (Fig-
ure 6). The results of stability analyses demonstrated a de-
crease in the likelihood of observing significant difference of
temporal parameters between toddlers and preschoolers with
ASD and TD peers as the sample size decreased. For instance,
with a sample of 24 children with ASD and 24 TD children, a
significant difference of Map C occurrence was only detected
in 50 percent of the simulated sub-samples.

DISCUSSION
We applied a microstates analysis on EEG resting-state record-
ings acquired in toddlers and preschoolers with ASD and their
TD peers (N = 90) and investigated modulations in four tem-
poral parameters (the Global Explained Variance (GEV), the
mean duration, the frequency of occurrence and the time cov-
erage). The meta-criterion determined an optimal number
of five template maps that best described the entire dataset
explaining 78.5 percent of the global variance. The first four
maps were identical in their spatial orientation to the canoni-
cal microstates classes A, B, C and D previously reported in
the literature (Michel & Koenig, 2018; Khanna et al., 2015).
The fifth map corresponds with microstate class E previously
reported elsewhere (Bréchet et al., 2019; Custo et al., 2017).
We found significant differences in the temporal parameters
concerning the sum of occurrences of all maps and the sum of
time coverage of all maps between toddlers and preschoolers
with ASD and their TD peers. We didn’t find any difference
regarding the sum of the GEV and the mean duration between
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any microstate class. In order to investigate the switch be-
tween maps and the dynamic of the brain in more detail, we
focused on the frequency of occurrence of all the maps sep-
arately. We found that the difference between the groups in
the summed occurrences was mostly driven by a difference
in the occurrence of microstate class C. We didn’t find any
significant difference regarding the frequency of occurrence
for map A, B, D and E between toddlers and preschoolers
with ASD and their TD peers.

Moreover, in the toddlers and preschoolers with ASD, we
observed a negative relationship between the occurrence of
microstate class C and the severity of ASD symptoms. We
also found a positive relationship with the daily living skills
suggesting that this microstate C occurred less in the toddlers
and preschoolers with the most severe symptoms and adaptive
behavior impairments. No other association was found be-
tween the occurrence of microstate C and the developmental
level of toddlers and preschoolers with ASD. No other signif-
icant brain-behavioral relationship was found regarding the
temporal parameters of the other microstate classes (A, B, D
and E) and clinical, behavioural or developmental measures.

Recently, we published an exploratory study that combined
eye-tracking and microstate analysis in a small sample of
children (N = 28) (Jan et al., 2019). We found four group
cluster maps, very similar to microstates classes A, B, C and
D previously described in the literature (Jan et al., 2019). To
the best of our knowledge, only three other studies using a
microstate approach in individuals with ASD have been pub-
lished (D’Croz-Baron et al., 2019; Jia & Yu, 2019; Malaia
et al., 2016). D’Croz-Baron and colleagues 2019 found six
microstate classes that best described their dataset in young
adults with ASD and their TD peers. They found an increased
occurrence for microstate classes B and E in individuals with
ASD compared to their TD peers. There was a trend for mi-
crostate C being more present in their control group. However,
this study only included 23 participants and only included
adults. Our bootstrapping analysis demonstrated that a high
level of likelihood to hit a significant result was reached with
samples above approximately 30 participants per group. This
would suggest that our sample size was sufficient in order
to highlight significant differences between our groups of
toddlers and preschoolers (N = 90).

In our study, microstate class C occurred less in the toddlers
and preschoolers with ASD compared to their TD peers. In a
seminal EEG-MRI study, Britz and colleagues 2010 linked mi-
crostate class C with positive BOLD activation in the anterior
cingulate cortex, bilateral inferior frontal gyri and the insula
(Britz et al., 2010). In the literature, the fronto-insular cortex
has been related to the salience network (SN) (Seeley et al.,
2007). More recently, microstate class C has been related
to the Default Mode Network (DMN) (Bréchet et al., 2019;
Custo et al., 2017; Seitzman et al., 2017), with bilateral activ-
ity in the lateral part of the parietal lobe and middle temporal
gyrus found in EEG-fMRI study of Bréchet and colleagues
2019. The DMN is thought to play a role in ”self-referential

processing” (Padmanabhan et al., 2017) and is closely related
to the SN and the central executive functions network (CEN)
(Menon, 2011). The SN is suggested to be involved in switch-
ing between the CEN and the DMN in response to cognitive
demands and therefore helps to direct attention towards salient
(i.e.- behaviourally-relevant) stimuli (Sridharan et al., 2008;
Menon & Uddin, 2010; Menon, 2011). Alterations in the SN
and DMN have been described by functional and structural
MRI studies in children, adolescents and adults with ASD
(Uddin et al., 2017; Hull et al., 2017; Chen et al., 2017; Pad-
manabhan et al., 2017). Uddin and colleagues (2013) have
suggested that functional hyperconnectivity within the SN and
DMN networks as a distinguishing feature in children with
ASD in comparison with their TD peers (Uddin et al., 2013).
Taken together, there is an increasing number of evidence
showing a different development of the SN and the DMN in
individuals with ASD that may play a role in social deficits in
ASD (Uddin et al., 2017; Padmanabhan et al., 2017).

Resting-state brain networks (RSNs) are usually studied
using the functional MRI (fMRI) because of its high spatial
resolution (Lee et al., 2013). However, these RSNs are sen-
sitive to dynamic fluctuation (Preti et al., 2017) which are
difficult to capture with fMRI because of moderate temporal
resolution (in the order of seconds) and the delayed hemo-
dynamic response. As such, EEG appears to be a valuable
alternative technique to study RSNs because of its sub-second
scale resolution (Abreu et al., 2020; Michel & Koenig, 2018).
Here, we demonstrated a decreased occurrence of microstate
class C among toddlers and preschoolers with ASD compared
to their TD peers. This result suggests that the temporal prop-
erties of some specific microstate classes are altered in ASD
at early developmental stages. Moreover, brain-behavioural
analysis indicated that microstate class C, thought to reflect
the DMN (Bréchet et al., 2019), occurred more in the toddlers
and preschoolers with ASD who showed less symptoms and
who had better daily living skill. Interestingly, in our directed
functional connectivity study (Sperdin et al., 2018), we also
found that young children with ASD who had less severe
symptoms and a better visual exploration of social stimuli
had more driving (i.e. hyper-connectivity) compared to the
more affected ones between brain areas of the so-called social
brain (Brothers, 1990; Adolphs, 2009). We suggested that the
overall hyper-driving from certain brain regions might be a
mechanism to compensate for the atypical development of the
brain’s circuitry over time. The results presented here com-
plement our initial findings and suggest that the less severely
affected toddlers and preschoolers with ASD may also be able
to compensate that way as more occurrence of microstate C
was associated with less symptoms and better adaptive skills.

Highlighting brain differences early in life is important as
it may ultimately help us to understand more what causes
ASD and how the symptoms evolve over time given the vast
heterogeneity of the ASD phenotype. We have started to char-
acterize behavioural phenotypes in young children with ASD
by taking developmental changes into account (Kojovic et al.,
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2020). Currently, we are exploring how these brain-network
differences evolve over the course of development as we want
to find out how the brains of very young children with ASD
can compensate and how these mechanisms emerge. This will
ultimately lead to the development of more individualized and
thus adapted therapies early in life when the brain is most
plastic.

METHOD
Participants
This study was approved by the Local Research Committee,
the Commission Centrale d’Ethique de Recherche (CCER)
in Geneva, Switzerland, and written informed consent was
obtained from all children’s parents prior to inclusion in the
study. 249 participants were recruited for the experiment. We
didn’t manage to put the cap on 99 participants. We managed
to put the cap on 150 participants (91 ASD and 59 TD). Out
of those, we excluded 60 participants (44 ASD and 16 TD)
because of either too many movement-related artefacts, noisy
signal, lack of interest or insufficient amounts of epochs avail-
able for subsequent analysis. This was to be expected given
the sensory processing issues frequently reported in this popu-
lation (Kojovic et al., 2019). As a result, 90 participants were
included in the final sample : 47 toddlers and preschoolers
with ASD (11 females ; mean age 2.92 years ± 0.84, range
1.67-4.83) and 43 TD peers (15 females ; mean age 3.00 years
± 1.31, range 1.08-5.58). Groups did not differ by age (p =
0.723) and gender (p = 0.250). Five minutes of spontaneous
EEG recordings were acquired for all the participants included
in the study. All participants were recruited as a part of the
Geneva Autism Cohort, a longitudinal cohort of young chil-
dren (Robain et al., 2020; Franchini et al., 2016). Toddlers and
preschoolers were included in the ASD group if the previously
established clinical diagnosis was confirmed by exceeding the
threshold limit for ASD on ADOS-G (Autism Diagnostic Ob-
servation Schedule-Generic) (Lord et al., 2000) or ADOS-2
(Second version) (Lord et al., 2012). The ADOS assessments
were performed and scored by experienced clinicians working
in the research team and specialized in ASD identification.
For toddlers and preschoolers who were administered the
ADOS-G assessment, the scores were recoded according to
the revised ADOS algorithm (Gotham et al., 2007, 2009) to
ensure comparability with ADOS-2. The mean Severity Score
at ADOS for the toddlers and preschoolers with ASD group
was 7.94 ± 1.86. For the control group, TD toddlers and
preschoolers were recruited through announcements in the
Geneva community. They were also assessed by ADOS-G
or ADOS-2, to ensure the absence of ASD symptoms, which
would be an exclusion criterion. All TD participants had a
minimal severity score of 1, except one child who had a score
of 2. Children were excluded from the control group if they
presented any neurological/psychiatric conditions and learn-
ing disabilities according to parents’ interview and question-
naire, or if they had a sibling or first-degree parent diagnosed
with ASD. The assessment of all participants also included

adaptive behavior using the Vineland Adaptive Behaviour
Scale-II (VABS-II) (Sparrow, 2011). The VABS-II is a stan-
dardized parent report interview which measures adaptive
behavior level in socialization, communication, daily living
skills and motor sub-domains. Finally, to estimate develop-
mental level, all participants were assessed with the Mullen
Scales of Early Learning (MSEL) (Lee, 2013). The MSEL
is a measure of cognitive functioning for children from birth
through age 68 months, including gross-motor, visual recep-
tion, fine motor, receptive language, and expressive language
scales sub-domains. See Table 1 for characteristics of study
participants.

Procedure and task
The experiment was conducted in a quiet room. To help the
children and their relatives to get familiar with the protocol,
they received two weeks prior to their visit a kit containing a
custom handmade EEG cap, pictures and a video illustrating
the experiment. Participants were seated alone on a comfort-
able seat or on their parents lap in order to reassure them
and keep them as calm as possible to avoid hand and body
movements. Once seated, the experimenter measured the cir-
cumference of the head. The cap of the corresponding size
was then prepared and gently placed on the participant’s head.
A couple of minutes were taken in order to allow the partici-
pants to settle into the experiment’s environment and get used
to the cap before starting the experiment. To best capture the
child’s attention during the experiment, we showed them an
age-appropriate animated cartoon of their choice. Impedance
were measured and electrodes adjusted to keep values below
50 kOhm.

EEG acquisition and preprocessing
The EEG was acquired with a Hydrocel Geodesic
Sensor Net (HCGSN, Electrical Geodesics, USA)
with 129 scalp electrodes at a sampling frequency of
1000Hz. On-line recording was band-pass filtered
at 0–100Hz using the vertex as reference. Data pre-
processing and microstate analysis were done using Cartool
(http://sites.google.com/site/cartoolcommunity/) and Matlab
(Natick, MA). First, we down-sampled the montage to a
110-channel electrode array to exclude electrodes on the
cheek and the neck since those are often contaminated
with muscular artefacts. Data were filtered between 1 and
40Hz (using Butterworth filters) and a 50Hz notch filter
was applied. Each file was then visually inspected to detect
periods of movement artefacts.These periods were excluded.
We performed Independent component analysis (ICA) on the
data to identify and remove the components related to eye
movement artefacts (eye blinks, saccades) (Jung et al., 2000,
1996). Channels with substantial noise were interpolated
using spherical spline interpolation for each recording. The
cleaned data were down-sampled to 125Hz, recalculated
against the average reference and a spatial filter was applied.
Finally, EEG experts (HFS, AB) reinspected all data to ensure
that no artefacts had been missed.
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Microstates analysis
The pipeline for the analysis is illustrated in (Figure 7). We
applied a k-means cluster analysis to the data of each subject
to estimate the optimal set of topographies explaining the
EEG signal. The clustering was applied only at local maxima
of the Global Field Power (GFP) which is calculated as the
standard deviation of all electrodes at a given time point and
represents time points of highest signal-to-noise ratio (see
(Murray et al., 2008) for formulas). The polarity of the maps
was ignored during the procedure. The k-means cluster analy-
sis was first computed at the individual level and then across
all participants (children with ASD and TD children together)
to obtain the group cluster maps. In order to determine the
optimal number of maps at both levels (both within and across
subjects), we applied a meta-criterion that includes seven in-
dependent criteria. For a detailed description of these criteria,
see (Custo et al., 2017) and (Bréchet et al., 2019). Then, the
cluster maps for all participants were fitted back to the original
EEG of each subject. This way that spatial correlation was
calculated between the cluster maps and each individual data
point and that data point was labeled with the cluster map that
showed the highest correlation. All data points were included
at the exception of periods marked as artefacts during the
preprocessing. Polarity of the maps was again ignored for the
back-fitting procedure. Data points that didn’t correlate more
than 50 percent with a given group cluster map were marked
as unlabeled.

Four temporal parameters of the microstates were computed
for each individual recording : GEV, the mean duration, the
time coverage and the frequency of occurrence. The GEV is
an estimate of the explained variance of a given map, weighted
by the GFP. The mean duration is the average duration in
milliseconds that a given cluster map is continuously present.
The time coverage is the percentage of total time for a given
cluster map in the individual EEG recording. The frequency
of occurrence represents the number of times per second that
a given cluster map appears in the individual EEG recording
(Michel & Koenig, 2018).

Statistical analysis
We first checked if the temporal parameters of the microstate
classes had a normal distribution using with Kolmogorov-
Smirnov tests. We summed each of the four temporal pa-
rameters separately to obtain the sum of the GEV, the mean
duration, the time coverage and occurrence of all maps. We in-
vestigated group differences using unpaired t-tests for the sum
of each temporal parameters applying Bonferoni’s multiple
correction to take into account the four parameters (p-value
significant if < 0.0125). We then observed the group differ-
ence for the occurrence parameter for each map separately
using unpaired t-tests and applying Bonferoni’s multiple cor-
rection to take in account the five maps (p-value significant if
< 0.01).

We investigated possible brain-behavioral relationships
between the temporal parameters of the microstate classes

with autism symptom severity scores. Among toddlers and
preschoolers with ASD, we correlated autism symptom sever-
ity, adaptive functioning level and developmental level with
the temporal parameters which were statistically different
between ASD and TD groups. As the distribution of clini-
cal data were not normal, we applied two-tailed Spearman’s
rank correlation between the occurrence of microstates and
Autism Diagnostic Observation Schedule total severity score
(ADOS-G and ADOS-2) (Lord et al., 2000, 2012)), daily
living skills sub-domain of the Vineland Adaptive Behavior
Scales (VABS-II) (Sparrow, 2011) and developmental quo-
tient of the Mullen Scales of Early Learning composite score
(MSEL) (Lee, 2013).

Finally, given the large heterogeneity in the ASD phenotype,
we wanted to estimate the likelihood of finding the significant
results we observed in our full cohort from smaller sample
sizes of participants. To do so, we simulated sample sizes
ranging from 3 to 43 individuals in each group (with steps
of 1 participant), using 500 bootstrapped sub-samples for
each sample size. With each sample, unpaired t-test were
performed to assess the significance of difference between
both group, using a statistical threshold of p < 0.05.
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Figure 1. The five microstate topographies identified in the global clustering across all subjects.
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Figure 2. Results for the summed parameters a) Occurrence, b) Time coverage, c) Mean duration, d) Global explained
variance.
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Figure 3. Difference of the occurrence of microstate class C between ASD toddlers and preschoolers and their TD peers.
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Figure 4. Negative correlation between the occurrence of microstate class C and the ADOS total severity score among toddlers
and preschoolers with ASD.
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Figure 5. Positive correlation between the occurrence of microstate class C and the daily living skills VABS sub-domain
among toddlers and preschoolers with ASD.
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Figure 6. Bootstrapping analyses. The likelihood to observe a significant difference between toddlers and preschoolers with
ASD and their TD peers, simulating sample sizes ranging from 3 to 43 individuals in each group, for parameters : a) Sum of
occurrences, b) Occurrence of microstate class A, c) Occurrence of microstate class B, d) Occurrence of microstate class C, e)
Occurrence of microstate class D, f) Occurrence of microstate class E.
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Figure 7. Microstate analysis: (A) Standard preprocessing of all the acquired high-density EEGs (110 channels). (B) A
2-sec cleaned EEG and its corresponding global field power (GFP). Periods of quasi stable map topographies (on top) are
superimposed on the cleaned EEG and marked in different colors. (C) For each individual recording, peaks of GFP were
determined (red vertical lines) and their specific potential maps were selected and submitted to a k-means clustering procedure
(D). The best k-means clustering solutions at the individual level were selected based on the meta-criterion. (E) The best
solutions obtained for each subject in step (D) are submitted altogether to a second k-means group cluster analysis. The
meta-criterion identified a best solution with 5 template topographies (microstate classes). (F) The template topographies
obtained in (E) are fitted back to the individual EEG recording and each time point is labeled with the cluster map having
the highest spatial correlation (winner-takes-all). The microstate sequence is used, for every subject, to extract the temporal
parameters and statistical analysis.
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Table 1. Characteristics of study participants.
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