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Abstract 
We present ARCHes, a fast and accurate haplotype-based approach for inferring an individual’s 
ancestry composition. Our approach works by modeling haplotype diversity from a large, 
admixed cohort of hundreds of thousands, then annotating those models with population 
information from reference panels of known ancestry. The running time of ARCHes does not 
depend on the size of a reference panel because training and testing are separate processes, 
and the inferred population-annotated haplotype models can be written to disk and used to label 
large test sets in parallel (in our experiments, it averages less than one minute to assign 
ancestry from 32 populations to 1,001 sections of a genotype using 10 CPU). We test ARCHes 
on public data from the 1,000 Genomes Project and HGDP as well as simulated examples of 
known admixture. Our results demonstrate that ARCHes outperforms RFMix at correctly 
assigning both global and local ancestry at regional levels regardless of the amount of 
population admixture.  
 
 

Introduction 
Admixture has played an important role in shaping patterns of genetic variation among humans 
and other species. It is of interest at both population and individual levels and has motivated a 
large body of research into population demography1, 2 and population stratification 3 in 
association studies. It has also fueled public interest in direct to consumer (DTC) services that 
provide estimates of ancestry proportions. In such applications, a consumer typically submits a 
DNA sample through a saliva collection kit and receives an individual-level report of their 
ancestral make-up based on genotype data. 
 
Over the past decade, many tools have been developed to infer individual-level ancestry. One 
set of methods only infers global ancestry proportions, some of which model the probability of 
the observed genotypes using ancestry proportions and population allele frequency,4 while 
others use cluster analysis and principal component analysis (PCA).5 Another set of methods 
infer ancestral origin for genomic segments, which are then averaged over the entire genome. 
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These methods use either SNPs (Single Nucleotide Polymorphisms) or a sequence of SNPs 
(i.e. haplotypes) as the observed variables, and estimate ancestry in each segment of the 
genome (called local ancestry). Compared to SNPs, haplotypes contain richer information, and 
can be especially powerful in differentiating geographically close populations.6 Among existing 
haplotype-based methods, both Chromopainter6 and HAPMIX7 use the Li and Stephen’s 
haplotype copying model,8 whereas RFMix9 uses a random forest approach, training classifiers 
on haplotype features in a reference panel and using a linear-chain conditional random field to 
model the conditional distribution of local ancestry given observed haplotypes.  
 
As the size of public and private genotype datasets grows (e.g., Ancestry has processed over 
15 million human genomes), there is an increased need for methods that can efficiently and 
accurately perform ancestry inference on a large number of samples. Here we describe 
ARCHes (Ancestry inference using Reference labeled Clusters of Haplotyp es), a method that 
leverages reference panel labeled haplotype models to estimate diploid ancestry locally 
throughout the genome. ARCHes first uses a large set of unlabeled haplotypes to learn 
BEAGLE haplotype-cluster models,10 which are efficient at phasing and measuring haplotype 
frequency. These BEAGLE models are then annotated with the probability that genotype 
sequences from a given reference population run through a particular state. For a given test 
individual, ARCHes calculates the probability that the observed genotype sequence comes from 
a given pair of populations, followed by a genome-wide hidden Markov model to assign diploid 
ancestry. These trained models need only be computed once, and can be stored thereafter, 
allowing ARCHes to efficiently estimate the ancestry of any number of subsequent test 
individuals from their genotype data. 
 
Previous studies have shown that RFMix9 outperforms ADMIXTURE4 in both global and local 
ancestry estimation.11 RFMix generally performs well at assigning ancestry at continental level 
but can struggle at regional level assignment, where populations may not be very differentiated. 
ARCHes is capable of differentiating nearby populations and performing ancestry inference at a 
much finer scale. We train both ARCHes and RFMix on research-consented individuals 
representing 32 different regions and test selected individuals from 1000 genomes12 and 
HGDP,13 representing 15 different regions. We compare the performance of ancestry 
assignments for individuals with single ancestry as well as simulated individuals with admixed 
ancestry in terms of both global ancestry proportions and diploid local ancestry assignments to 
those of RFMix.9 Our results demonstrate that ARCHes outperforms RFMix in both global 
ancestry and diploid local ancestry assignments at regional levels.  
 

Material and Methods 

Overall ARCHes method 
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Our approach begins with dividing the genome into a large number of small windows (e.g., 3-4 
centimorgans each), such that, in a recently admixed individual, each of the maternal and 
paternal haplotypes in a given window are likely to each come from a single population. For 
each window, we construct a BEAGLE haplotype-cluster model 10 from a large, unlabeled 
training set of haplotypes. A BEAGLE haplotype-cluster model is a directed acyclic graph with 
haplotype represented as a path traversing the graph. Each node of the graph represents a 
cluster of haplotypes. A BEAGLE model is often interpreted as Markov model where the states 
are the nodes (Supplemental Figure 1), and thus as an “arbitrary order Markov model” of SNPs 
along a haplotype. Using a reference panel of genotypes from individuals whose ancestry is 
known in each window, we then annotate each state in the haplotype models with the probability 
that genotype sequences from a given population belong to the haplotype cluster represented 
by the state (Figure 1). 
 
Given a new potentially admixed genotype sequence , we assume that the ancestors of  are 
all ultimately from the  origin groups, and that  is admixed recently enough that relatively 
long haplotypes (on the scale of the genomic windows mentioned above) from each group are 
intact. We run a genome-wide hidden Markov model (HMM) whose hidden states are the true 
assignment (population label pairs) in each window. The emission probabilities are the 
probability distributions of diploid population assignments for each window arising from the 
annotated BEAGLE models and the transition probabilities (the probability that the population 
assignment will change at any point along the genome) are learned through an 
Expectation-Maximization (E-M) algorithm. We assign diploid ancestry to each window and 
estimate the global assignment based on the Viterbi path through this HMM. We also sample 
paths through the HMM to estimate the uncertainty of assignment amounts. 
 
We describe our detailed method in the following sections, and provide pseudo-code in the 
Appendix.  

Annotating haplotype cluster models 
 
We follow Browning and Browning 10 in building haplotype cluster models. Briefly, we divide the 
genome into  partially overlapping windows with approximately the same number of SNPs. 
Within each window, we build a haplotype cluster model from a large, unlabeled set of training 
phased haplotypes. For simplicity, we restrict to biallelic variants, and code them as 0 and 1. 
Building this haplotype cluster model from a large, unlabeled set of individuals provides a 
“background” of haplotype diversity against which we can measure the informativeness of 
different haplotypes.  
 
With a haplotype cluster model built for each window, we can then annotate populations using 
the haplotype cluster model. Recall that each path through a BEAGLE model corresponds to a 
realization of a haplotype, and each node at a given SNP represents a cluster of haplotypes that 
are similar near that SNP. For the genotypes of a reference individual in window , , we 
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compute the probability that the individual’s two haplotypes pass through two specific nodes in 
the graph,  and , at SNP ,  
 

 
 
where we compute  and  using a modification of the forward-backward 
algorithm for hidden Markov models, treating the node as a hidden state (see Appendix for 
pseudo-code). In the following, we will refer to the HMM used to analyze the BEAGLE models 
as the haplotype HMM, and its properties as haplotype emission probabilities, and haplotype 
probabilities. This contrasts with the ancestry HMM we use to smooth ancestry estimates across 
the genome, which is described in the subsequent section.  
 
We then marginalize over one of the haplotypes of each diploid to create a haplotype posterior 
probability that the genotypes  in window  passes through node  at SNP , 
  

 
 
Finally, we annotate a node  by its average haplotype probability in a set of individuals 
belonging to a reference population ,  where  is the total 
number of reference samples in population . Then, we compute 
 

 
  
This equation gives us the probability that an individual drawn from population  will pass 
through node u at SNP  of the haplotype cluster model for window . 

Ancestry emission probabilities for test individuals in windows 
 
With Equation (1) in hand, we can compute the probability that a test individual’s genotypes in a 
given window  descend from a specific pair of populations. Letting  be the unphased 
genotype of our test individual, we first compute the probability of  given that the two 
haplotypes in window  belong to clusters u and v of the haplotype cluster model at SNP ,  
 

, 
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where  is computed using the haplotype forward-backward algorithm and  
is obtained by multiplying the transition matrices of the haplotype cluster model up to SNP  
(equivalent to running the haplotype forward algorithm up to SNP  with all haplo type emission 
probabilities set equal to 1). 
 
We then want to know the probability that the individual’s two haplotypes come from populations 

 and  using the information around SNP . We compute this quantity by first computing the 
probability that a haplotype passes through nodes  and  and SNP  of window  given 
underlying populations  and  by averaging over the equally likely combinations of whether 
node  corresponds to population  and node  corresponds to population  or vice versa, 
 

. 
 
Note that this result is equivalent to assuming that the two haplotype clusters that make up a 
diploid sample are independent, and that the two populations that make up those haplotypes 
are also independent. 
 
Now, we use the law of total probability to average over all haplotype clusters at SNP , and 
compute the probability that the individual’s haplotype clusters at that point arise from 
populations  and , 
 

. 
 
This probability weighs similarity to haplotypes in population  and  more strongly for SNPs 
closest to SNP  in window ; because we have no a priori knowledge of which part of a 
window is most informative about population membership, we finally compute our ancestry 
emission probability for a window by averaging over the population probability for every SNP in 
the window, 
 

 
 
where  is the total number of SNPs in window . This process can then be repeated for 
every window in the genome to obtain the probability of the test individual’s genotype in each 
window, given that the two haplotypes arose from any pair of populations  and . 
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Smoothing ancestry estimates using a genome-wide ancestry hidden 
Markov model 
In principle, the ancestry emission probabilities computed in the previous section could be used 
to compute maximum likelihood estimates of diploid local ancestry in each window, one at a 
time. However, doing so would result in highly noisy ancestry estimates. Instead, we share 
information across the genome using an additional layer of smoothing via a genome-wide 
hidden Markov model. Moreover, because ancestry segments from recent admixture are 
expected to be longer than a single window, this model helps reduce false ancestry transitions. 
 
If we wish to assign ancestry to  populations, the hidden states of our hidden Markov model 

are the  possible unphased ancestry pairs, , with ancestry emission probabilities 
window w given by equation (2). Because we model unphased diploid ancestry, we define a 
population pair as unordered, i.e.  is the same ancestry assignment as . Our ancestry 
hidden Markov model assumes that between windows ancestry can change for one of the two 
haplotypes with probability . The assumption that ancestry switches only for one of the two 
haplotypes within an individual is both biologically realistic (assuming individuals are admixed 
relatively recently) and greatly reduces the complexity of the hidden Markov model. Thus, a 
change occurs from  to  to any pair such that exactly one of  or  is different from 

 or . Each new ancestry pair is drawn with probability proportional to the stationary 
probability of that ancestry pair, . In full, the transition probabilities are 
 

 
 
where the normalizing constant  is given by summing over all accessible unphased 
haplotype pairs. 
 
Between chromosomes, both ancestry pairs are allowed to change, and the ancestry at the start 
of each chromosome is drawn independently from that individual’s global distribution of ancestry 
pairs, . For a more formal description of how changes between chromosomes are handled, 
see the Appendix. 
 
We initialize the  to a uniform distribution and  to some low value, and use a modified 
Baum-Welch algorithm to update  and  (see Appendix). Empirically, we observed a 
tendency to overfit by estimating a large  parameter, resulting in inference of a large number 
of different ancestries; thus we run a fixed number of update steps, rather than stopping at 
convergence.  
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Estimating ancestry proportions in individuals 

In principle, the value  could be used as an estimate of the admixture proportion 
from population  in an individual. However, we instead opt to use a path-based approach that 
also allows us to obtain credible intervals of the ancestry proportions conditioned on the inferred 
parameters. Specifically, we provide a point estimate of global ancestry proportions by 
computing the maximum probability path through the HMM using the Viterbi algorithm, and 
computing the proportion of windows (weighted by their length) that are assigned to population 

. We then provide a credible interval by then sampling paths from the posterior distribution on 
paths, and for each one can compute the ancestry proportion in the same way as from the 
Viterbi path. Because these credible intervals condition on the parameters, particular the , 
they tend to be conservative with respect to ancestry proportions, reflecting mostly genotype 
sampling randomness. Thus, we advocate caution in interpreting them too literally.  
 
Below we describe experiments we did for benchmarking ARCHes and RFMix9.  

Reference Panel and Testing Data 
We built our reference panel using genotypes from customer candidates who explicitly provided 
prior consent to participate in research and have all family lineages tracing back to the same 
geographic region. All the candidates were genotyped on Ancestry’s SNP array and were 
analyzed through a quality control pipeline to remove samples with low genotype call rates, 
samples genetically related to each other, and samples who appear as outliers from their 
purported population of origin based on Principal Component Analysis. The reference panel 
contains 11,051 samples, representing ancestry from 32 global regions (Supplemental Table 1). 
We then use 1,705 individuals from 1,000 Genomes12 and HGDP Project13 from 15 populations 
as testing data. We used SNP array data of individuals from 1,000 Genomes12 and HGDP 
Project13 and limited them to around 300,000 SNPs that overlapped with Ancestry’s SNP array. 
Lists of populations and associated sample counts included in reference panel and testing data 
are specified in Supplemental Table 1 and 2, respectively. We align populations that come from 
different data sources, in some cases combining populations together.  For example, we 
combined the ancestries that are assigned to ‘England, Wales, and Northwestern Europe’ and 
‘Ireland & Scotland’ to represent ancestry for ‘Britain’. We combined the ancestry that are 
assigned to ‘Benin & Togo’ and ‘Nigeria’ to represent ancestry for ‘Yoruba’.  

Simulation 
We simulated genomes of admixed individuals with ancestors from a pair of populations and we 
performed the simulation for 16 pairs of neighboring populations. We first constructed a 
pedigree with 32 founders, with a single founder from one population, and the rest from the 
other population. We then simulated the recombination process and obtained the haplotypes for 
each descendant for 4 generations. We then select descendants from the pedigrees that are 
roughly 50%-50% admixed, 25%-75% admixed, 12.5%-87.5% admixed, and 6.25%-93.75% 
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admixed. We simulated 20 individuals for each of the 16 different pairings and 4 different levels 
of admixture.  
 
We also simulated 100 individuals with an admixture history similar to modern Latinos that 
admixed 12 generations ago with 45% Native American, 50% European and 5% African 
ancestry. We constructed 100 12-generation pedigrees and randomly selected founders from 
the reference panel, with the ratio of 45% Native American (from the Maya and Peru regions), 
50% European (from the France, Britain, Italy, Spain and Finland regions), and 5% African 
ancestry (from the Yoruba region). We then simulated the recombination process as above and 
obtained the genotypes of the descendant in each pedigree, which are roughly 45% Native 
American, 50% European and 5% African.  
 
Since RFMix needs the phased haplotypes for both query and reference individuals, we used 
Eagle 15 v2 with the HRC17 reference panel to get the phased haplotypes of the simulated 
individuals as well as for the individuals in the reference panel. However, ARCHes requires only 
the unphased, diploid genomic sequences for both query and reference individuals.  

RFMix parameters 
We first used default parameters in RFMIX v2.03-r0 (https://github.com/slowkoni/rfmix). We then 
performed a parameter sweep using different number of generations since admixture(the -G 
parameter), with value of 2, 4, 6 and 8 coupled with different window sizes (set both CRF 
window size and random forest window size) with values of 0.2cM, 0.5cM, 100 SNPs (roughly 
1cM) and 300 SNPs (roughly 3cM) on chromosome 1 of simulated pair admixed individuals. We 
then selected the parameters with the best performance, namely 4 generations since admixture 
and a window size 0.2cM, and ran RFMix on the whole genome of simulated pair admixed 
individuals. For simulated latino individuals, we used 12 generations since admixture and a 
window size 0.2 cM. For single origin individuals, we used 2 generations since admixture and a 
window size 0.2 cM. None of the RFMix runs used the E-M procedure or phase error correction.  

ARCHes parameters 
We divide the genome into 3,882 windows of 80 SNPs each, overlapping by 5 SNPs (with some 
adjustments made near chromosome boundaries).  We build a haplotype model for each of 
these windows from the phased haplotypes of 50,000 individuals that are not in the reference 
panel, but we tie small groups of 3-4 windows together by disallowing population assignment 
transitions within those groups, which allows us to set the granularity with which we assign local 
population assignments (there are 1,001 such window groups) and has the benefit of increased 
computational efficiency.  ARCHes's haplotype model annotation process is robust to missing 
data, which is handled by marginalizing over all possible genotypes.  In fact, the annotations 
may benefit from intentionally downsampling reference panel genotypes so that haplotypes are 
considered that are similar to but not exactly the same as those in the reference panel, and the 
amount of downsampling and the number of downsampled genotypes used for annotation are 
tunable parameters of the annotation process.  In our experiments, we sample each reference 
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panel genotype sequence 100 times, each time setting 20% of genotypes to missing and 
annotating the 3,882 haplotype models with them.  
We set the initial  parameter to be 0.01 and learned this parameter using 10 iterations of the 
E-M approach described above. ARCHes assigns diploid local ancestry to 1,001 windows of the 
genome and the global ancestry estimates are summarized from these 1,001 windows.  

Results 

Separate Training and Test Phases to Facilitate High-Throughput Ancestry 
Estimation 

The ARCHes software represents a change in design that explicitly separates two phases, first 
model creation and annotation and second ancestry estimation, in order to make ancestry 
estimation both efficient and distributable.  The first phase, learning the haplotype models from 
a large unlabeled training set and then annotating them with the reference panel populations, 
need only be carried out once.  In order to estimate ancestry on subsequent instances, ARCHes 
software need only reload models and can be run on new examples at any time, distributed as 
necessary, and the running time depends only on the number of the number of individuals to be 
processed and labeled, not the size of the reference panels. In contrast, the training and testing 
processes of RFMix are not separate and require significantly more time per individual.  We 
compare ARCHes's runtime and memory usage with RFMix in Supplemental Table 3. 

Accuracy for single origin individuals  
We built our reference panel using genotypes from research consented individuals, representing 
32 regions. We then applied ARCHes on individuals from 1,000 genomes and HGDP 
representing 15 regions. Lists of populations and associated sample sizes for both training and 
testing data are in Supplemental Table 1 and 2. We first looked at the accuracy for single-origin 
individuals, namely the average estimated ancestry proportions for individuals from a given 
region. ARCHes predicted on average 66.1% of the ancestry to be from the correct region 
(Figure 2). The rest of the ancestry mainly came from nearby regions (Supplemental Figure 3). 
ARCHes performed well at separating different countries within Africa, and within Europe, and 
within Asia, with only a few exceptions. In comparison, RFMix predicted on average 43.5% of 
the ancestry to be from the correct region, and the rest of the ancestry mainly came from 
neighboring regions, showing that RFMix is accurate for continental level assignments but 
performs less well at finer scales.  

Accuracy for simulated admixed individuals  
Next, we simulated genotypes for individuals with ancestry from 16 different pairings of 11 
regions and ran ARCHes using the same reference panel from research consented individuals, 
representing 32 regions, as we used for analyzing single origin individuals. We measured the 
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precision and recall for each of the 11 regions (Supplemental Figure 4). Precision was 
calculated as the amount of correctly identified ancestry divided by the estimated value for that 
region and recall was calculated as the amount of correctly identified ancestry divided by the 
true value for that region. Precision can be thought of as how much of the reported ancestry is 
true, and recall can be thought of as how much of the true ancestry is called by the process. We 
find that ARCHes generally outperforms RFMix in terms of both precision and recall.  
 
We calculated the concordance in terms of global ancestry assignments, namely the sum of 
overlap between the true and estimated proportions for each region. We also calculated the 
accuracy of diploid local ancestry assignments, namely the proportion of genomic windows with 
correct diploid assignments regardless of the phase. Overall, ARCHes achieves more than 50% 
global ancestry concordance and diploid local ancestry concordance, especially for simulated 
individuals who are from two nearby European or Asian countries (Figure 3). We don’t find a 
large difference between global ancestry concordance and diploid local ancestry concordance, 
indicating that ARCHes achieves its global ancestry accuracy by estimating local ancestry 
accurately. It is also encouraging that ARCHes is capable of differentiating populations not only 
on a continental level but also on sub-continental and even country levels. RFMix in general 
performs worse than ARCHes, with a roughly 20% -30% deduction of concordance in terms of 
both global and local ancestry concordance.  

Accuracy for simulated Latino individuals  
We finally simulated 100 individuals using forward simulation with a pedigree mimicking Latino 
population history in which founders admixed 12 generations ago with 45% Native American, 
50% European and 5% African ancestry. Their American ancestry came from Maya and Peru, 
their European ancestry came from France, Britain, Italy, Spain and Finland, and their African 
ancestry came from Yoruba (refer to Supplemental Table 1 and 2 for population labels). This 
dataset provides information on ARCHes’s power to differentiate continental level admixture that 
happened as many as 12 generations ago. Moreover, we can see if it can even differentiate the 
subregions that individuals’ continental ancestry comes from. We found that ARCHes accurately 
recovered both global ancestry assignments and diploid local ancestry assignments, with 
average concordances of 72.3% and 47.8%, respectively (Supplemental Figure 5). RFMix 
achieved 65.7% global ancestry concordance but failed to infer the local assignments correctly, 
with average diploid local ancestry concordance of 18.5%. This is probably due to difficulties 
that RFMix has in differentiatiating subregions within Europe and between Maya and Peru.  
 

Discussion 
Ancestry inference in large, heterogeneous sample sets is becoming increasingly important for 
academics, clinicians, and consumers. We showed that ARCHes is able to be trained on a wide 
set of global populations and perform accurately at within and among continental scales, without 
any specific fine tuning. Moreover, because our approach separates the time-consuming 
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training step from the fast testing step, it can be applied to large scale databases, such as 
Ancestry’s 15 million customers.  
 
Our approach works because haplotypes contain rich information for distinguishing 
subpopulations. Instead of coding haplotype sequences as consecutive alleles, we take 
advantage of the haplotype-cluster models that have been shown to be effective at phasing 10. 
Compared to RFMix9’s approach of training random forests on haplotypes from reference 
panels, we annotated haplotype clusters with the probability of each population label in our 
reference panel. To improve robustness, ARCHes can account for incomplete haplotype 
representation in the reference panel via tuning of a parameter that controls the proportion of 
missing genotypes during model annotation. It is important to note that our reference panel does 
not need to consist exclusively of whole-genome single-origin training examples.  Because we 
annotate haplotype models in individual windows across the genome, we are able to utilize 
population-labeled partial-genome diploid or haploid genotype examples as well. That means 
that the accuracy of ARCHes can be improved even if a reference genotype is admixed, or if 
only part of it has known ancestry. 
 
Utilizing rich haplotype models in each window, we assign a likelihood over all population labels 
to the haplotypes in our test sample , which are used as emission probabilities in the 
genome-wide HMM. HMMs are used in a number of existing approaches for estimating 
ancestral proportions.6,7 We applied standard HMM techniques and learn parameters through 
iterations of a Baum-Welch 16 approach. In cases where sufficient prior knowledge is in hand, 
parameter learning can also be turned off and ARCHes can use predefined parameters. For 
instance, when analyzing descendents of a specific, known admixture event, it may be desirable 
to fix the prior distribution on global ancestry proportions. Nonetheless, in our benchmark 
experiments, we use one set of parameters for testing single origin individuals and simulated 
admixed individuals who were admixed from a range of generations ago. Without fine-tuning the 
parameters to each situation, we can achieve high accuracy. However, to achieve the highest 
accuracy, we suggest performing a parameter sweep to optimize ARCHes’s performance for a 
particular dataset. In particular, our results show that ARCHes often overfits the data, and 
estimates too many different ancestral backgrounds in an individual. This suggests that for 
applications where precision is important, a user may want to constrain the switch rate 
parameter   to be small.  
 
The size and composition of the reference panel may have an impact on the accuracy of the 
ancestry estimation. As one might expect, a larger reference panel will improve performance, as 
a greater proportion of haplotype diversity is represented. We found that even with small 
reference panel sizes (for example, Maya, France and Slavic have less than 50 samples each), 
ARCHes can achieve very high accuracy for single origin individuals (Supplemental Figure 6). 
On the other hand, an imbalance in reference panel size/diversity between populations can 
result in mis-assignment to the larger reference panel. We can compensate for this effect by 
tuning a parameter that controls the fraction of missing genotypes set to missing during the 
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annotation process. However, the impact of doing so may be limited due to the intrinsic 
properties of haplotype diversity and the sharing of haplotypes between labeled populations. 
 
For other local ancestry approaches, such as RFMix, phasing error will result in decreased 
accuracy of ancestry estimation. However, because ARCHes uses unphased genotype data, it 
is unaffected by phasing errors, thus removing an entire source of error from the analysis. 
Moreover, ARCHes can account for missing data by integrating for all possible paths on the 
haplotype-cluster model, though it may be preferable to use imputed genotypes.  
 
ARCHes provides a fast and accurate method for inferring unphased local ancestry and 
combining that into estimates of diploid global ancestry. There are nonetheless several 
opportunities for future research. First of all, the confidence intervals provided by ARCHes are 
underestimated; it is possible that they can be rescued by using a recalibration procedure on 
simulated data. Second, despite the fact that using unphased local ancestry in ARCHes helps it 
to overcome phasing errors, it may be desirable to provide phased local ancestry in some 
circumstances. Because of the modular nature of the ancestry hidden Markov model, it may be 
possible to extend this framework to provide phased local ancestry estimates.  
 
 

Description of Appendices 
Appendix includes 3 algorithm boxes and another 3 algorithm descriptions.  

Description of Supplemental Data 
Supplemental Data includes six figures and three tables. 
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Figures  
Figure 1. Illustration of annotating haplotype-cluster model. Each box illustrates the expected 
proportion of haplotypes in all the genotypes of different populations that include a certain model 
state at a certain level. 
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Figure 2. Boxplot of the estimated ancestry proportions for single-origin individuals from each 
testing population comparing ARCHes and RFMix. 
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Figure 3. Concordance of global ancestry assignments and diploid local ancestry assignments 
for simulated admixed individuals from 16 different pairings of 11 populations. Admixture level is 
defined as x-way admixed with x founders, 1 of which belong to one population, the rest belong 
to another population. 2-way admixed results in 50%-50%, 4 way admixed results in roughly 
25%-75%, 8 way admixed results in roughly 12.5%-87.5%, 16 way admixed results in roughly 
6.25%-93.75%.  
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Supplemental Data 
 
Supplemental Figure 1. Illustration of haplotype model for one window of the genome, 
consisting of D SNPs. 
 

 
 
Supplemental Figure 2. Illustration of genome wide HMM where each window has a series of 
emitting states, which corresponds to a population assignment  with  
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Supplemental Figure 3. Average estimated ancestry proportions for single-origin individuals 
from each testing population. In this matrix figure, each row represents single-origin individuals 
from the testing population. Each column represents each of the possible 30 populations that 
the single-origin individuals might be assigned to.  
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Supplemental Figure 4. Precision/Recall for each population calculated from estimated ancestry 
proportions of simulated admixed individuals with ancestry from a pair of neighboring 
population. 
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Supplemental Figure 5. Concordance of global ancestry assignments and diploid local ancestry 
assignments on 100 simulated latino individuals.  
 

 
 
Supplemental Figure 6. Relationship between the number of individuals in the reference panel 
and the accuracy for single origin individuals for each population. 
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Supplemental Table 1 . Sample size and geographic location for 32 populations in the reference 
panel. Some population is matched with testing population specified in Supplemental Table 2.  
 

Population Label Sample size Matched testing population 

Native American-North, 
Central, South 

96 Maya 

Native American-Andean 44 Peru 

England, Wales, and 
Northwestern Europe 

1226 Britain 

Central & Northern Asia 111 Central & Northern Asia 
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Southern Asia 444 Southern Asia 

Baltic States 127  

Benin & Togo 102 Yoruba 

Cameroon, Congo & 
Southern Bantu Peoples 

576  

Ireland & Scotland 319 Britain 

China 298 China 

European Jewish 129  

France 1071 France 

Germany 1314  

Greece & Balkans 149  

Italy 587 Italy 

Ivory Coast & Ghana 119  

Japan 363 Japan 

Korea 201  

Mali 169  

Middle East 147 Middle East 

Nigeria 109 Yoruba 

Norway 242  

Iran/Persia 413  

Philippines 385  

Polynesia 57  

Portugal 257  

Slavic (Eastern Europe & 
Russia) 

1301 Slavic 

Spain 143 Spain 

Sweden 240  
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Turkey & the Caucasus 59  

Finland 202 Finland 

Vietnam 51 Vietnam 

 
 
Supplemental Table 2. Sample size and geographic label for testing population from HGDP and 
1000 Genomes.  

Population label Detailed label Sample size Source 

Maya Maya 25 HGDP 

Peru PEL(Peruvians from 
Lima, Peru) 

105 1000 Genomes 

Central & Northern 
Asia 

Daur, Hazara, 
Hezhen, Mongola, 
Oroqen, Tu, Uygur, 
Xibo, Yakut 

116 HGDP 

Southern Asia Pathan, Sindhi 48 HGDP 

Yoruba YRI (Yoruba in 
Ibadan, Nigeria), 
Yoruba 

213 1000 Genomes, 
HGDP 

China CHS (Southern Han 
Chinese), Han, She, 
Tujia 

325 1000 Genomes, 
HGDP 

France French 29 HGDP 

Britain GBR (British in 
England and Scotland) 

104 1000 Genomes 

Italy TSI (Toscani in Italia) 112 1000 Genomes 

Japan JPT (Japanese in 
Tokyo, Japan ), 
Japanase 

134 1000 Genomes, 
HGDP 

Middle East Druze, Palestinian 98 HGDP 

Slavic Russian 25 HGDP 
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Spain IBS (Iberian 
Population in Spain) 

150 1000 Genomes 

Finland FIN (Finnish in 
Finland) 

100 1000 Genomes 

Vietnam KHV (Kinh in Ho Chi 
Minh City, Vietnam) 

121 1000 Genomes 

 
Table 3.  Run time and Memory Usage (Maximum resident set size, MaxRSS) comparison 
between ARCHes and RFMix. Since ARCHes trains models in a separate process, we only 
count the running time and MaxRSS for inferring ancestry for test individuals. However, 
because RFMix combines the training and testing process together, we count the running time 
and MaxRSS for both training and testing process for RFMix.  
 

Experiment # of test individuals Method User time (s) MaxRSS 

Single origin 
individual 

1705 ARCHes 98237 (10 CPU) 7.9G 

RFMix 390443 (10 CPU) 6.18G 

Simulated pair 
admixed 
individual 

3200 ARCHes 188709 (10 CPU) 14.8G 

RFMix 378838 (10 CPU) 7.27G 

Simulated Latino 
individual 

100 ARCHes 6814 (1 CPU) 0.53G 

RFMix 389388 (10 CPU) 8.07G 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.310698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310698


Appendix 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.310698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310698


 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.310698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310698

