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ABSTRACT: 18 
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and 19 
execution of unimanual movements. The organizational principles of bi-hemispheric signals and the 20 
functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task 21 
in monkeys, we identified two components in population responses spanning PMd and M1. A ‘localized’ 22 
component, which confined activity within arm-specific sub-populations, emerged in PMd during 23 
preparation. It was most prominent following movement when M1 became strongly engaged, and 24 
principally involved the contralateral hemisphere. In contrast to recent reports, these localized signals 25 
solely accounted for divergence of arm-specific neural subspaces. The other ‘distributed’ component 26 
mixed signals for each arm within units, and the subspace containing it did not discriminate between 27 
arms at any stage. The statistics of the population response suggest two functional layers of the cortical 28 
network: one spanning hemispheres supporting preparatory and ongoing processes, and another 29 
specifying unilateral output.  30 
 31 
  32 
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INTRODUCTION 33 
 34 

In the primate cortex, direct control of arm movement is primarily mediated by contralateral descending 35 
projections (Lawrence and Kuypers, 1968; Brinkman and Kuypers, 1973; Soteropoulos et al., 2011). 36 
However, numerous studies have observed activity changes in the motor cortex during movements of 37 
the ipsilateral arm (Matsunami and Hamada, 1981; Hoshi and Tanji, 2002; Carmena et al., 2003; Cisek 38 
and Kalaska, 2003; Ganguly et al., 2009; Ames and Churchland, 2019; Heming et al., 2019) and hand 39 
(Tanji et al., 1988; Verstynen et al., 2005; Diedrichsen et al., 2013). The functional role of this ipsilateral 40 
activity has been the subject of considerable debate, with hypotheses ranging from a role in postural 41 
support, bimanual coordination, or an extrapyramidal control signal for unimanual movements.  42 

Neurons in the primate dorsal premotor cortex (PMd) play a critical role in motor preparation (Weinrich 43 
et al., 1984; Shen and Alexander, 1997; Hoshi and Tanji, 2002; Cisek and Kalaska, 2003). Interestingly, 44 
their response properties and degree of laterality appear to change across the course of preparation. 45 
For example, within PMd, individual units exhibit a transition from effector-independent to effector-46 
dependent encoding between preparatory and execution phases of reaching. In contrast, primary motor 47 
(M1) units primarily become active during movement itself and show a pronounced contralateral bias 48 
(Cisek and Kalaska, 2003). This suggests a transition from abstract planning to explicit specification of 49 
motor output parameters in the signals of individual neurons. A similar transition has been shown in the 50 
activation of different cell-types from mouse premotor areas: In a directed licking task, neurons with 51 
intracortical projections displayed bilateral selectivity and dominated the population response early 52 
during planning, while neurons with descending output that drove movement were contralaterally 53 
biased and only became active closer to the time of movement onset (Li et al., 2015). These studies 54 
support the idea that pre- and primary motor areas may contain both a component for performing 55 
abstract computations, and an output component that is lateralized, reflecting precise details of the 56 
movement. 57 

The classic perspective outlined above has been revisited in studies that focus on population-level 58 
analysis, considering instead how control might be reflected in the way the network coordinates activity. 59 
Low-dimensional representations of large-scale neural recordings can be used to characterize these 60 
patterns, revealing changes in the covariance structure across behavioral settings that are not evident 61 
when looking at single neurons in isolation (Cunningham and Yu, 2014). Ostensibly, these changes 62 
reflect reorganization of the population as it engages in different computational processes. When used 63 
to describe the changes between preparation and execution, pre-movement activity has been shown to 64 
evolve within an “output-null” subspace towards an optimal initial population state (Churchland et al., 65 
2010; Kaufman et al., 2014; Elsayed et al., 2016). This initial state is advantageously positioned for 66 
engaging the internal dynamics of the network to produce patterned output for driving movement 67 
(Churchland et al., 2012; Shenoy et al., 2013; Sussillo et al., 2015). The bilateral, effector-independent 68 
activity observed in single neurons may support these preparatory and dynamic properties at the 69 
population level (Li et al., 2016). 70 

While a bilateral network may support effector-independent functions, one would expect some form of 71 
effector-specific signaling as unimanual movements are prepared. There are two fundamental ways that 72 
population activity could specify the selected arm across preparation and movement. (1) Signals may 73 
localize within unique sub-populations for each arm (i.e., within hemispheres, brain areas, or cell types). 74 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.310664doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310664
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2) Signals may be distributed across the same units yet maintain unique covariance structure that 75 
separates along arm-specific neural dimensions. Importantly, either of these architectures provides a 76 
way for downstream targets to discriminate signals and also yields the mathematical result of divergent 77 
subspaces. Arm-specific subspaces have been observed in the motor cortex during rhythmic movements 78 
(Ames and Churchland, 2019) and in response to joint perturbations (Heming et al., 2019). These studies 79 
suggest that the same neurons are involved during movement of either arm, and that separation of arm-80 
specific signals is an emergent property of the population. However, past work in single-unit and cell-81 
type specific physiology suggests that at least a portion of population activity is lateralized, particularly 82 
upon movement onset (Cisek and Kalaska, 2003; Li et al., 2015). This may suggest a simpler explanation 83 
for the presence of arm-specific subspaces, where separation of arm signals is a trivial result of strong 84 
localized encoding, and signals that are shared within units represent the parallel operation of distinct 85 
effector-independent processes. 86 

In the present study, we investigated the extent to which population signals are localized within arm-87 
specific sub-populations as movements are prepared and executed. Furthermore, we characterized the 88 
dependence of subspace separation on this signal localization at each stage, and tested whether signals 89 
that were mixed within units represented a shared subspace for the two arms or whether they 90 
contributed to subspace divergence.  91 

We recorded large populations of single-units in PMd and M1 bilaterally while monkeys performed an 92 
instructed-delay unimanual reaching task. During preparation, activity began to localize within arm-93 
specific sub-populations located primarily within contralateral PMd. This occurred despite many of the 94 
units being arm-neutral, as there was a strong tendency for arm-dedicated units to be more highly 95 
modulated. Following movement, M1 became more prominently involved and a larger proportion of the 96 
modulation in the population became localized. As a result, subspaces corresponding to the two arms 97 
diverged across the trial. We found no evidence that subspace separation was an emergent property of 98 
population-level analysis; rather, it reflected localized variance. However, we did observe behaviorally 99 
specific information that was shared at the level of single-units. The subspace in which this information 100 
was contained did not segregate signals for the two arms. Taken together, the results point to two 101 
primary components in the population response: (1) A localized component that develops across 102 
preparation, reaches a maximum during movement, and mirrors the lateralized anatomy of corticospinal 103 
output with its contralateral bias. (2) A distributed component representing a bilateral network that may 104 
support preparation and reflect internal dynamics of the evolving population state.  105 

 106 

RESULTS 107 
Behavior 108 
Two macaque monkeys were trained to perform an instructed-delay reaching task in 3-D space (Figure 109 
1A). Reaching movements were freely performed in an open area while kinematics were recorded using 110 
optical motion tracking. Visual feedback of endpoint position and task cues were provided through a 111 
virtual 3-D display. Each trial had three phases (Figure 1B). For the Rest phase, the monkey placed both 112 
hands in start targets positioned near the torso and remained still for 500 ms. For the Instruct phase, an 113 
instructional cue appeared at one of six target locations. The color of the cue specified the required 114 
hand for the forthcoming trial. The monkey was required to keep both hands in the rest positions while 115 
the cue remained visible for a variable interval (500 – 1500 ms). The Move phase was initiated when the  116 
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 117 

Figure 1. Behavior.  118 
(A) Monkeys reached to one of six virtual targets, indicated by grey spheres in the cartoon. During the 119 
task these would be invisible until one appeared to instruct the reach. (B) Trials consisted of 3 phases. 120 
Each trial was initiated by placing both hands in start targets and remaining still for 500ms (‘Rest’ 121 
phase). A small target then appeared at the location of the future reach in a color that indicated which 122 
hand to use. The monkey remained still during cue presentation for 0.5-1.5s (‘Instruct’ phase). The start 123 
target for the reaching hand then disappeared while the reach target enlarged to cue movement 124 
(‘Move’ phase). (C) Hand assignments followed a blocked schedule. (D) Distributions of reaction times 125 
(top row) and reach durations (bottom row) for each monkey, hand, and target. Left hand reaches in 126 
yellow, right in purple. Horizontal black bars show means, red bars show medians. (E) Speed profiles 127 
during left- or right-hand trials. Both reaching and stationary hands are plotted in each, although 128 
stationary speeds are near 0 and hardly visible. Vertical red lines indicate threshold crossing to mark 129 
movement onset. Monkey O main, monkey W inset. Mean +/- standard deviation.  130 
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start position marker for the reaching hand disappeared and the cue at the target location increased in 131 
size, which signaled the animal to reach. The monkey received a juice reward if it accurately reached the 132 
target and maintained the final position for 250 ms, while keeping the non-cued hand at its start 133 
position for the duration of the trial. 300ms representative windows from each phase were used in data 134 
analysis. Trials were blocked for each arm, alternating 2 trials per target for the left arm, then 2 trials per 135 
target for the right (Figure 1C). 136 

Average success rates were above 95% for both hands in both monkeys. Overall, reaction times 137 
averaged 308 ms for monkey O and 333 ms for monkey W. Distributions of reaction times for each 138 
hand/target combination are displayed in Figure 1D, which were fairly consistent across the workspace. 139 
Reach biomechanics varied across the workspace, resulting in slightly different reach durations across 140 
targets (Figure 1D). In terms of kinematics, the initial feed-forward portions of reaches were smooth and 141 
stereotyped (Figure 1E). There was a very slight but significant increase in the speed of the non-reaching 142 
hand between Rest (mean – monkey O: 1.1 mm/s; monkey W: 2.9 mm/s) and Move (mean – monkey O: 143 
3.6 mm/s; monkey W: 7.6 mm/s) phases of the task (permutation test – monkey O: p=1.0e-4; monkey 144 
W: p=1.0e-4). We note that the task was designed to mimic natural reaching without the use of physical 145 
restraints. As such, we assume the small movements in the non-reaching arm are part of the normal 146 
behavioral repertoire occurring during natural unimanual reaching. Nonetheless, we will address any 147 
reasonable impacts these small movements may have in our neural analyses. 148 

 149 

Arm-dedicated units emerge across task phases while the majority remain arm-neutral 150 
We recorded 433 and 113 single-units in the caudal aspect of dorsal premotor cortex (PMd) in monkeys 151 
O and W, respectively, and 331 and 289 single-units in primary motor cortex (M1) (Figure 2). Since both 152 
arms were used in the behavior, we can evaluate the ipsi- and contralateral response in each unit. Units 153 
were pooled across hemispheres in the analysis, with ‘Contralateral’ summaries reflecting the collection 154 
of responses during trials performed with the contralateral arm, and vice-versa for trials performed with 155 
the ipsilateral arm. PMd and M1 units were analyzed separately. Firing rates were soft-normalized using 156 
the Rest phase mean and standard deviation, and modulation strength is expressed as the mean 157 
squared value of these standard scores within the window of interest.  158 

We first analyzed single units to determine the degree of modulation during the Instruct and Move 159 
phases of the task (Figure 3). Following instruction, many units in both PMd and M1 became significantly 160 
modulated for movements of one or both arms (Table S1). Units in PMd were, on average, more 161 
strongly modulated during the Instruct period than those in M1 (Figure 4A; permutation test – monkey 162 
O: p=0.012; monkey W: p=3.2e-3). This relationship reversed following movement, with average 163 
modulation in M1 becoming stronger than PMd (Figure 4A; permutation test – monkey O: p=2.6e-3; 164 
monkey W: p=0.012). These results are in line with the view that PMd plays a privileged role in motor 165 
preparation. The distributions of modulation values were heavy-tailed and contained some notably 166 
extreme values; however, we chose not to apply any outlier criteria. Controls are performed later in our 167 
population-level analyses to ensure that results are representative of trends across the entire 168 
population rather than a few extreme units. 169 

We next considered the laterality of each unit by quantifying the relative modulation observed during 170 
ipsi- and contralateral trials. We expressed each unit’s arm preference on a scale from -1 to 1, with 1 171 
indicating exclusive contralateral modulation and -1 indicating exclusive ipsilateral modulation (Figure 172 
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4B). Although the cue for the forthcoming trial had yet to be presented during the Rest phase, arm 173 
selection could be implied from the blocked task structure (Figure 1C). However, except for a very small 174 
effect in PMd of monkey O (one-sample t-test – µRest=0.06, p=9.7e-5), there was no significant 175 
contralateral bias observed during the Rest phase in either brain area for both monkeys. Despite the lack 176 
of contralateral bias, both monkeys entered arm-specific population states during the Rest phase, which 177 
was more pronounced in PMd populations (mean difference between left and right arm firing rates – 178 
monkey O PMd: 1.85Hz, M1: 1.64Hz; monkey W PMd: 1.33Hz, M1: 0.98Hz; Figure 4C). For trials in which 179 
the same hand was repeated from the previous trial only, it was possible to classify the hand for the 180 
forthcoming movement from the population activity (Figure S1).  181 

 182 

Figure 2. Neural recordings.  183 
(A) MRI-based volume renderings of the skull and target brain regions. Top panel shows the 184 
arrangement of the two chambers. Two bottom rows show segmented brain regions within the cranial 185 
window of each chamber, for each monkey. Region boundaries were assigned based on Paxinos et al., 186 
2009. Red - somatosensory cortex; blue - primary motor cortex (M1); pink - dorsal premotor cortex 187 
(PMd); green - ventral premotor cortex; white - frontal eye field. CS - central sulcus; SPCD - superior pre-188 
central dimple; ArS - arcuate sulcus. Grey ellipses indicate regions sampled by recordings. (B) 189 
Interlaminar recordings were obtained using V- and S- probes (Plexon, Inc., Dallas, TX) with 24-32 190 
electrodes aligned perpendicular to the cortical surface. Example waveforms were all simultaneously 191 
recorded from a single probe. (C) MRI coronal slice, monkey O. 3mm black bar is approximately equal to 192 
the distance spanned by electrodes on 32-channel probes. Same landmark labels as in (A).  193 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.310664doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310664
http://creativecommons.org/licenses/by-nc-nd/4.0/


The emergence of laterality after the onset of the instruction cue mirrored the emergence of general 194 
unit modulation: A contralateral bias was present in PMd during the Instruct phase and then became 195 
present in both PMd and M1 during movement. Mean arm preference in PMd showed a modest but 196 
significant bias in the contralateral direction during the Instruct phase (one-sample t-test – monkey O: 197 
µInstruct=0.11, p=7.0e-8; monkey W: µInstruct=0.16, p=1.8e-4) and showed no significant change between 198 
Instruct and Move (paired-sample t-test – monkey O: µMove=0.15, p=0.11; monkey W: µMove=0.13, 199 
p=0.65). Mean arm preference in M1 did not show a significant contralateral bias until the Move phase 200 
(one-sample t-test – monkey O: µInstruct=0.03, p=0.13; µMove=0.07, p=0.013; monkey W: µInstruct=0.02, 201 
p=0.31; µMove=0.20, p=5.1e-11). 202 

While shifts in the means were modest, changes in arm preference across phases were most evident in 203 
the emergence of a subset of units that strongly preferred one arm or the other (Figure 4C). These arm-204 
dedicated units typically preferred the contralateral arm, demonstrated by increased occupancy in the 205 
contralateral tails of the arm preference distributions; however, a small proportion of the population 206 
was exclusively modulated during ipsilateral trials as well (Figure 4B). Despite much of the population 207 
remaining arm-neutral (arm preference near 0) or preferring the ipsilateral arm, the emergence of 208 
strongly contra-dedicated units was sufficient to drive contralateral shifts in the population mean. In 209 
summary, despite much of the population remaining arm-neutral, an increasing number of highly arm-210 
dedicated units emerged with each task phase, primarily favoring the contralateral arm. 211 

212 
Figure 3. Firing rate traces of example single-units. 213 
Trial-averaged firing rates for 3 example single-units, all from the left hemisphere. Each color represents 214 
a different target according to the color-coding in the top right. Mean +/- SEM. (A) An M1 unit 215 
exclusively modulated during ipsilateral movements. (B) A PMd unit with both Instruct and Move phase 216 
modulation for both arms. (C) A PMd unit with modest contralateral modulation during the Instruct 217 
phase and strong contralateral modulation during movement, but no modulation on ipsilateral trials.  218 
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 219 

  220 

Figure 4. An increasing number of arm-dedicated units emerge with each task phase. 221 
(A) Cumulative distribution of single-unit modulation during each phase, arm. Left panel PMd, right 222 
panel M1. Large values cut off by plot: monkey O Contra Move [134(PMd), 133(PMd), 104(PMd)], Ipsi 223 
Move [234(M1), 181(M1), 130(M1)]; monkey W Contra Move [125(M1)]. (B) Cumulative distribution of 224 
arm preferences during each phase. Top panel PMd, bottom panel M1. Negative values are ipsi-225 
preferring, positive values are contra-preferring. Circles and vertical dashed lines mark the upper 226 
quartile of each distribution (C) Same as (B), but using the absolute value of arm preference to indicate 227 
arm dedication, independent of hemisphere. For all plots: monkey O main, monkey W inset. 228 

  229 
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Modulation preferentially occurs within arm-dedicated units 230 
There are two primary means by which population signals can specify the selected arm at each phase. 231 
(1) Arm-neutral units may maintain unique covariance structure for each arm that separates signals 232 
along different neural dimensions at the population level. (2) Arm-dedicated units may dominate the 233 
population response, thereby representing the majority of population variance in dedicated sub-234 
populations. The latter possibility is investigated over the following two sections. First, we consider 235 
whether modulation preferentially occurs in units that are strongly dedicated to one arm or the other.  236 

We performed a regression analysis to quantify the relationship between strength of arm preference 237 
and modulation for the preferred arm. Importantly, arm preference and modulation were calculated 238 
from independent data sets so that there is no mathematical linkage between the two measures when 239 
assessing their relationship. A slope of 1 corresponds to an order of magnitude increase in modulation, 240 
on average, when comparing perfectly arm-neutral units with fully arm-dedicated units. As seen in 241 
Figure 5A, the slopes are initially near zero and then become positive over time. To quantify these 242 
changes, we used a multi-factorial permutation approach to test for effects of Area (PMd, M1), Phase 243 
(Rest, Instruct, Move), and Preferred Arm (Ipsi, Contra) on the population slopes. 244 

We found a main effect of Phase in both animals (monkey O: p=1.0e-4, monkey W: p=1.0e-4): a positive 245 
correlation between arm preference and modulation strength emerged and strengthened across task 246 
phases (Figure 5A-B). By the Move phase, there was approximately a ten-fold increase in the modulation 247 
strength of arm-dedicated units when compared to arm-neutral units. Since PMd displayed greater 248 
modulation than M1 during preparation but not movement, we tested whether the two areas had 249 
differing slopes in each phase independently. We found a significant simple effect of Area during the 250 
Instruct phase (monkey O: p=3.0e-4; monkey W: p=6.3e-3) but not the Move phase (monkey O: p=0.13; 251 
monkey W: p=0.91). Thus, the relationship was more prominent within PMd prior to movement, while 252 
the two areas became roughly equivalent following movement initiation. This was confirmed with a test 253 
for 2x2 interaction (monkey O: p=0.025; monkey W: p=9.9e-3). 254 

Given the overall contralateral bias, we further tested whether this relationship held for both contra- 255 
and ipsi-preferring units. For the contra-preferring units, there was a significant simple effect of Phase 256 
(monkey O: p=1.0e-4; monkey W: p=1.0e-4). For the ipsi-preferring units, the Phase effect was 257 
significant for monkey O (p=1.0e-4), but only trended in this direction for monkey W (p=0.087), perhaps 258 
due to the lower amount of ipsilateral modulation in monkey W. Slopes were generally steeper for 259 
contra-preferring units. The simple effect of Preferred Arm was significant during the Instruct phase for 260 
both monkeys (monkey O: p=0.033; monkey W: p=1.0e-4), and significant for Monkey W during the 261 
Move phase (monkey O: p=0.53, monkey W: p=1.0e-4). Given that there are also more contra-dedicated 262 
units than ipsi-dedicated units, these results suggest that a larger proportion of the contralateral signal 263 
was localized within dedicated sub-populations compared to the ipsilateral signal. We directly test this 264 
conjecture in the following section where we consider population-level implications of these results. 265 

  266 
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  267 

Figure 5. Neural activity is progressively consolidated within arm-specific subpopulations. 268 
(A) Modulation for the preferred arm plotted against arm preference, for all units in each brain area and 269 
task phase. Log-linear best fit lines are displayed in red. Inset figures belong to Monkey W. (B) Slopes of 270 
regression lines fit to data from (A), independently for ipsi- and contra-preferring sub-populations. Mean 271 
+/- bootstrapped 95% confidence interval. (C-E) For the move phase in monkey O, cumulative 272 
modulation plotted against arm preference, i.e. each point indicates the proportion of modulation 273 
accounted for by all units with arm preference values to the left of the indexed position. Positive values 274 
on the x-axis indicate contra-preferring, and negative values indicate ipsi-preferring. Shaded error bars 275 
indicate bootstrapped standard error. (C) The full spectrum of arm preferences is shown. Shaded 276 
backgrounds indicate three partitions: Contra-dedicated [0.4, 1] and Ipsi-dedicated [-1, -0.4] in white, 277 
and Neutral [-0.3, 0.3] in grey. (D) Cumulative modulation within contra-dedicated regime. (E) Same as 278 
(D), but ipsi-dedicated. Note inverted axis. (F) The proportion of modulation within each partition from 279 
(C) during ipsi- or contralateral movements. Note that the total modulation is significantly lower for 280 
ipsilateral movements, particularly for Monkey W, and these data are only displayed as proportions. 281 
Mean +/- bootstrapped 95% confidence interval.  282 
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The population signal is largely confined to arm-specific sub-populations 283 
The preceding analyses establish that there is an increase across task phases in the proportion of units 284 
that are strongly dedicated to a single arm, and that those units exhibit much more modulation in 285 
activity relative to arm-neutral units. This suggests that the population signal is progressively 286 
consolidating within arm-specific sub-populations even though many of the units remain arm-neutral. 287 
To visualize the segregation of overall modulation, we ordered all units based on arm preference and 288 
calculated their cumulative modulation (Figure 5C-E). Since PMd and M1 showed similar relationships in 289 
the previous analyses, we combined units from the two areas, analyzing them as a collective population. 290 
In the extreme case that population signals are entirely segregated, 100% of ipsilateral modulation 291 
would occur at an arm preference of -1, and 100% of contralateral modulation would occur at +1.  292 

We focused on two core questions. (1) Does the proportion of dedicated modulation increase across 293 
task phases, indicating a progression towards independent signals? (2) Does the amount of independent 294 
(or dedicated) modulation differ for ipsi- and contralateral activation?  As expected, dedicated sub-295 
populations emerged that contained a large proportion of the modulation associated with movements 296 
of one arm and only a small proportion of the modulation associated with the other arm (Figure 5C-F). 297 
For statistical testing, we split the arm preference domain into 3 equal width regimes, corresponding to 298 
contra-dedicated (arm preference > 0.4), ipsi-dedicated (arm preference < -0.4), and arm-neutral (-0.3 < 299 
arm preference < 0.3) units, and summarized the data by expressing the proportion of modulation 300 
contained within each regime (Figure 5F). We again used a multi-factorial permutation approach to test 301 
for effects of Phase (Rest, Instruct, Move), and Arm (Ipsi, Contra). We will refer to ipsilateral modulation 302 
in the ipsi-dedicated units simply as ‘ipsi-dedicated modulation’ and vice-versa for contra-.  303 

For both animals, the effect of Phase was significant in the contralateral responses (p=1.0e-4/1.0e-4), 304 
with the proportion of contra-dedicated modulation increasing across phases (Figure 4F, red lines). Ipsi-305 
dedicated modulation increased across task phases for both monkeys as well (Figure 4F, blue lines), 306 
although this effect was only significant for monkey O (p=9.0e-4; monkey W: p=0.31). There was a 307 
significant interaction between Arm and Phase for both monkeys (monkey O: p=1.0e-4; monkey W: 308 
p=1.0e-4), indicating the stronger emergence of contra-dedicated modulation as compared to ipsi-309 
dedicated modulation. Both animals showed a simple effect of Hand during the Instruct phase (monkey 310 
O: p=1.0e-4; monkey W: p=1.0e-4), with more contra-dedicated modulation being observed than ipsi-. 311 
This effect was also significant during the Move phase for monkey W (p=1.0e-4) and approached 312 
significance for monkey O (p=0.056).  313 

These results suggest that arm signals consolidate within exclusive sub-populations throughout 314 
preparation. Moreover, contralateral signals are more independent than ipsilateral signals, in the sense 315 
that a larger proportion of the contralateral modulation was represented in contra-dedicated units. 316 
Importantly, this characterization of the population response captures most of the modulation for each 317 
arm in mutually exclusive sub-populations, which we will refer to as the ‘localized’ component. It is 318 
important to emphasize that these sub-populations are not fully localized in terms of brain area or 319 
hemisphere. While units that were dedicated to a single arm were typically located in the contralateral 320 
hemisphere, some were located in the ipsilateral hemisphere and in both PMd and M1. Returning to the 321 
possibilities outlined at the beginning of the previous section, we therefore conclude that the dominant 322 
characterization of the population response is this localized component – dominant in the sense that it 323 
represents the majority of modulation across the population.  324 
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Neural subspaces for the two arms diverge across task phases 325 
We next sought to characterize the time course of changes in neural subspaces as movements were 326 
prepared and executed. We hypothesized that localized activation would drive population signals into 327 
diverging subspaces for the two arms. For these analyses, we pooled units from the left and right 328 
hemispheres. Using PCA, we first estimated the dimensionality of the neural subspace during each task 329 
phase using a cross-validated data reconstruction method (see Methods; Yu et al., 2009). This is an 330 
essential step to avoid drawing conclusions based on noise-dominated dimensions. Dimensionality was 331 
calculated separately for each session and arm. During Rest, the dimensionality was approximately 5-6, 332 
and decreased to approximately 4 during the Instruct and Move phases (Figure 6A). We therefore opted 333 
to focus on only four components to represent the neural subspaces of each dataset. 334 

We calculated the alignment between PCA subspaces associated with left or right arm movements using 335 
a metric that describes the proportion of low-dimensional variance for one dataset that is captured in 336 
the low-dimensional space of another (see Methods; Athalye et al., 2017). If the network is organizing 337 
activity in the same way across datasets, then the covariance alignment is 1, regardless of signal 338 
magnitude. If activity is reorganized into orthogonal subspaces across datasets, then the covariance 339 
alignment is 0. Two types of alignment measurements were made: (1) Subspaces were fit to random 340 
partitions of trials for the same arm – what we will refer to as ‘native’ alignment – giving us an estimate 341 
of natural variability in our subspace estimates when compared over the same time window, and 342 
describing the evolution of the motor plan when comparing across time windows. (2) Subspaces were fit 343 
separately using trials for either arm and compared with each other – what we will refer to as ‘cross’ 344 
alignment – describing the divergence of the subspaces for the two arms at each task phase. 345 

Using single-trial activity event-locked to the onset of instruction and movement, we were able to 346 
capture the fine-timescale evolution of any emerging or diverging subspaces (Figure 6B-C). When 347 
comparing the native alignment across task phases, we observed the emergence of distinct Instruct and 348 
Move period subspaces. Figure 6B shows these data displayed as a continuous heat map with block 349 
diagonal structure that coincides with the phase transitions. Within each phase native alignment was 350 
high, indicating consistent low-dimensional structure in the population activity that was specific to each 351 
stage (Figure 6B; Figure 6D filled circles).  352 

As expected, subspaces for the two arms gradually diverged across task phases (Figure 6C; Figure 6D 353 
open circles). On the whole, subspaces for the two arms were significantly less aligned than the (cross-354 
validated) comparisons within the same arm (Figure 6D open  vs filled circles; two-way ANOVA, ME 355 
comparison type – monkey O: p=7.8e-68; monkey W: p=4.2e-37). Interestingly, subspace divergence 356 
was already apparent during the Rest phase (paired sample t-test, native-Rest vs cross-Rest – monkey O: 357 
p=1.2e-15; monkey W: p=1.3e-10). As mentioned in our analysis of single-unit arm preferences, this is 358 
likely due to predictable arm assignments from the blocked task structure (Figure 1C, Figure S1). Cross 359 
alignment decreased significantly as the trial unfolded, reaching a minimum during movement (one-way 360 
repeated measures ANOVA – monkey O: p=1.4e-7; monkey W: p=5.9e-8). These results map closely onto 361 
the progressive localization described in the previous section. 362 

  363 
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  364 

Figure 6. Population activity reorganizes and diverges for the two limbs throughout planning. 365 
(A) Dimensionality of the PCA subspace estimated as the number of components that minimizes the 366 
cross-validated reconstruction error of the full-dimensional neural data. Mean +/- standard error across 367 
datasets. (B,C) Heat maps indicate alignment of 4-dimensional PCA subspaces between all pairs of 368 
timepoints across the Instruct and Move phases of the task, averaged across sessions. (B) Compares 369 
subspaces across time for movements of the same arm. Three blocks forming along the diagonal 370 
indicate three distinct subspaces: a pre-instruction ‘Rest’ space, a post-instruction ‘Instruct’ space, and a 371 
peri-movement ‘Move’ space. (C) Compares subspaces across time for movements of opposite arms. 372 
Prior to instruction there is a moderate alignment of the subspaces for each limb, however, the two 373 
subspaces diverge around 100ms post instruction. (D) Summary of the data in (B,C). Mean +/- standard 374 
deviation across datasets.  375 
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Subspace separation relies upon localized signals 376 
Activity within mutually exclusive sub-populations naturally separates into distinct linear subspaces; as 377 
such, we can expect some level of subspace separation as a simple result of variance in arm-dedicated 378 
units. However, it is possible that subspace separation could occur within a distributed representation as 379 
well (Ames and Churchland 2019; Heming et al, 2019). This question is especially important in 380 
considering arm-neutral units. Even though these units, by definition, show similar levels of activity 381 
during contra- and ipsilateral movement, it is possible that their population-level contributions are 382 
different for these two types of movements, and thus also contribute to subspace separation.   383 

To investigate the extent to which subspace separation relied upon localized activation, we analyzed the 384 
structure of PCA subspaces via their coefficient weights. Since components of PCA models form an 385 
orthogonal basis set, each can be independently analyzed to determine its contribution to subspace 386 
divergence. We fit separate PCA models for each arm and task phase and calculated two statistics for 387 
each component: (1) To capture the contribution of a given component to subspace separation, we 388 
calculated the ratio of variance it captured for the two arms (right/left). (2) To capture the dependence 389 
of a given component on arm-dedicated units, we calculated a coefficient-weighted average of the arm 390 
preferences for all units (e.g., if non-zero weights were only given to right arm dedicated units, this value 391 
would be 1; if weights were evenly distributed across the spectrum of arm-preferences, this value would 392 
be 0). A strong relationship between these two metrics would suggest that subspace separation relies 393 
upon localized activation. 394 

Indeed, this was the case during both the Instruct and Move phases. Figure 7A-C shows a single session 395 
example from the Move phase. The top principle components captured a large amount of the variance 396 
for the left arm while capturing little variance for the right arm. Components with a variance ratio 397 
strongly favoring the left arm almost exclusively weighted units that were themselves highly dedicated 398 
to the left arm. The lower components with more balanced variance ratios distributed weights more 399 
evenly across the arm preference spectrum. This pattern was evident in each phase throughout 400 
recordings from both monkeys. Figure 7D shows the relationship between right/left variance ratio and 401 
coefficient-weighted arm preference for the top five principal components of each dataset. Following 402 
the instruction cue, components that strongly discriminated between the two limbs (variance ratio far 403 
from 1) primarily weighted units that were themselves highly discriminating. This relationship remained 404 
strong as the range expanded during the Move phase. The same pattern was observed when firing rates 405 
were normalized using an alternative method to avoid overrepresentation of highly modulated units 406 
(Figure S2A). In summary, these results suggest that the subspace separation described in the previous 407 
section relies upon unit-level signal localization. 408 

Additional distributed signal contains behaviorally specific information about both arms 409 
The preceding sections make clear that the population signal is dominated by a localized organization. 410 
Nonetheless, it is likely that the arm neutral units also provide a meaningful distributed component, one 411 
that coexists with the localized one. These units may contain behaviorally specific information that is 412 
obscured by the high magnitude localized signal when analyzing the population response at large. To 413 
test this hypothesis, we divided the entire population of units from both hemispheres and brain areas 414 
into two subgroups based on the preferred arm of each unit from a held-out dataset (Figure 8A). If the 415 
signals are entirely localized, each sub-population would only contain information about its preferred  416 
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 417 

Figure 7. Separation of arm-specific subspaces relies upon unit-level segregation.  418 
(A-C) Single session example of a PCA model trained to capture bi-hemispheric activity during left arm 419 
movements. Held-out testing data for 86 simultaneously recorded units were used. (A) Cumulative 420 
proportion of variance accounted for across the top 10 principal components. (B) For each component, 421 
the ratio of the explained variance between the two limbs. (C) Absolute values of the coefficient weights 422 
for each component plotted against the corresponding unit’s arm preference. Top row represents 423 
components 1-3; bottom row represents components 4-6. Positive arm preference values indicate right 424 
arm preferring units. (D) The component variance ratio for the two arms plotted against a coefficient-425 
weighted average of the arm preferences for each unit in that component. Datapoints represent the top 426 
5 principal components of left or right arm trained models across all sessions. Separate models for each 427 
phase are plotted in each column. Pearson correlation coefficient for each dataset is displayed in the red 428 
box. Top row monkey O, bottom row monkey W. 429 

  430 
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arm (e.g., a left arm-preferring sub-population would be predictive of left but not right arm 431 
movements). However, if there is some amount of distributed coding, then each sub-population will 432 
contain both localized and distributed information about its preferred arm, but only distributed 433 
information about its non-preferred arm. 434 

We first analyzed the time course of modulation for each sub-population during movements of the 435 
preferred and non-preferred arms. While modulation during preferred-arm trials was much stronger in 436 
the Instruct and Move phases, there was a small amount of modulation during trials of the non-437 
preferred arm as well (Figure 8B). To determine whether this modulation carried precise information 438 
about the behavior, and not just non-specific changes related to task engagement or small movements 439 
of the non-selected arm, we trained linear discriminant analysis (LDA) classifiers to predict the target on 440 
each trial. Even though the units showed very little modulation when the non-preferred limb was used, 441 
prediction accuracy was above chance (Figure 8C-E, paired sample t-test with Rest – monkey O: Instruct 442 
p=1.5e-12, Move p=4.1e-21; monkey W: Instruct p=1.8e-3, Move p=1.1e-7). This suggests that the 443 
population code is not entirely localized but contains a meaningful distributed component as well. We 444 
refer to this as ‘distributed’ in the sense that the contributing units reflect information about both arms. 445 

Distributed code is contained in a shared subspace for the two arms 446 
We next asked whether subspace separation exists specifically within the distributed portion of 447 
population activity. This is a non-trivial question given that localized activity dominates the population 448 
response in terms of explained variance. We again partitioned the population based on preferred arm 449 
and fit 4-D PCA models to the neural activity obtained from trials in which the movement was produced 450 
by the non-preferred arm. This is a conservative approach for capturing only the distributed signals, 451 
since localized activity will be absent during reaches of the non-preferred arm. We will refer to the 452 
subspace spanned by these models as the ‘distributed’ subspace.  453 

Having isolated the distributed population structure, we can project neural data from both preferred 454 
and non-preferred arm trials onto this subspace and compute the amount of variance captured for each 455 
arm. If there is meaningful separation of arm-specific subspaces, then the activity of the preferred arm 456 
would be largely in the null space of this projection. We would therefore expect the distributed 457 
subspace to capture more variance (as a raw measure, not proportion of total) during trials of the arm it 458 
was fit to (the non-preferred arm). Alternatively, if the distributed signal exists within a shared subspace 459 
for the two arms, then the patterns of activity for either arm would be preserved through the 460 
projection, and we should expect as much or more variance captured for the preferred arm. 461 

Across all task phases and for both animals, more variance was accounted for during preferred arm trials 462 
than during non-preferred arm trials (Wilcoxon signed rank – p<0.05 for all six comparisons). Variance 463 
ratios (expressed as non-preferred over preferred) were below 1 for nearly every individual dataset and 464 
became even lower with each subsequent phase (Figure 8F). We note that a lower ratio does not 465 
precisely mean “more shared variance,” but rather, “more evidence against being unique.” We again 466 
used an alternative firing rate normalization method to confirm that this result was not dependent on 467 
overrepresentation of units with the strongest modulation (Figure S2B). In summary, the subspace 468 
capturing distributed activity is not unique to the arm it was fit to, but rather represents a shared 469 
subspace for population activity associated with either arm. 470 
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 471 

Figure 8. Behaviorally specific information exists within a subspace that captures bilateral activity.  472 
(A) Illustration of the population partitioning approach. Each unit is represented as a pie-chart displaying 473 
the relative modulation during left and right arm trials. Most units in the left hemisphere are more 474 
strongly modulated during right arm movements (mostly purple pie-charts), yet some prefer left arm 475 
movements (mostly yellow pie-charts). Regardless as to which hemisphere each unit is in, the 476 
population may be subdivided into left and right arm preferring sub-populations. On the extreme that all 477 
information about each arm is contained within dedicated sub-populations, this simple division will fully 478 
segregate the signals such that movements of the non-preferred arm cannot be classified. (B) 479 
Modulation as a function of time, taken as the mean over all units during trials of their preferred or non-480 
preferred arm, +/- standard error. (C) Target classification accuracy using LDA for movements of the 481 
preferred arm. Models are trained on each time point and tested on each time point to provide high 482 
temporal resolution and inform cross-phase generalization of the classifier. Plots are averaged over all 483 
sessions (13 Monkey O, large plots; 7 Monkey W, small plots) and both sub-populations (left-preferring, 484 
right-preferring). (D) Same as (C), but for non-preferred arm movements. (E) Summary data of (C,D) for 485 
monkey O, top panel, and monkey W, bottom panel. Mean +/- standard deviation across datasets. (F) 486 
Ratio of the variance captured in the distributed subspace for the two limbs. 487 

  488 
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DISCUSSION 489 
We have shown that the combined population response spanning PMd and M1 across hemispheres 490 
contains two primary components. The first is supported by unique sub-populations representing each 491 
arm primarily, but not entirely, within the contralateral hemisphere. This component first emerged 492 
within PMd after instruction and became most prominent during movement when M1 became strongly 493 
engaged. Despite much of the population being arm-neutral, there was a bias for stronger modulation 494 
within arm-dedicated units. The majority of modulation was therefore localized within units that were 495 
devoted to one arm or the other. This localized organization resulted in trivial separation of the neural 496 
subspaces associated with movements of each arm. We also found a second component that leveraged 497 
shared signaling within units. This component was much smaller in magnitude but contained 498 
behaviorally specific information that could be used to accurately classify reaching targets. In contrast to 499 
the natural separability of the localized component, this distributed component mixed signals for the 500 
two arms within the same subspace. 501 

Progressive localization of arm-dedicated signals 502 
To our knowledge, this study is the first to compare low-dimensional population structure during 503 
preparation of left vs right arm reaching. It has been proposed that neural subspaces reorganize 504 
between preparation and execution of reaching movements (Elsayed et al., 2016). Given that previous 505 
studies have reported increases in the number of lateralized units during the transition from preparation 506 
to movement (Cisek and Kalaska, 2003; Li et al., 2015), we thought that activity may consolidate into 507 
arm-specific sub-populations, primarily in the contralateral hemisphere, as the population reorganizes 508 
between task phases. This would result in localized representations of the two arms, in the sense that 509 
each sub-population is primarily active only during movements of its respective arm. However, it has 510 
been recently proposed that even during active behavior, signals for the two arms are mixed at the level 511 
of single-units (i.e. distributed representation) but separate into unique linear subspaces (Ames and 512 
Churchland, 2019; Heming et al., 2019). The only clear separation of arm-specific signals that we 513 
observed during any phase occurred at the single-unit level (Figure 5). We found no evidence that signal 514 
separation was an emergent property of population-level analysis. While we did observe a large 515 
proportion of arm-neutral units (Figure 4B), careful analysis of model structure revealed that arm-516 
dedicated units drove the separation of arm-specific neural subspaces (Figure 7). This segregation was 517 
particularly pronounced during movement, thus reducing any concern that small movements of the 518 
non-selected arm had an impact on our results or conclusions.  519 

Importantly, contralateral signals were more independent than ipsilateral ones – a larger proportion of 520 
contralateral modulation occurred in contra-dedicated units than the reverse case for ipsi- (Figure 5). 521 
This was not a surprising result, as contralateral bias in the functional organization of motor cortex has 522 
been clearly revealed by effects stroke (Hatem et al., 2016), lesion studies (Brinkman and Kuypers, 523 
1973), and cortical stimulation (Penfield and Boldrey, 1937; Alagona et al., 2001; Montgomery et al., 524 
2013). One candidate hypothesis for the presence of ipsilateral activity has been that it supplies its own 525 
independent control signal. There is some evidence that ipsilateral cortex plays an increased role in 526 
movement following hemispheric damage (Brinkman and Kuypers, 1973; Hummel and Cohen, 2006; 527 
Dancause, 2006; Wilkins et al., 2020), though not necessarily a beneficial or compensatory one. The 528 
magnitude of ipsilateral encoding also increases with the degree of movement complexity (Verstynen et 529 
al., 2005) and may involve spatially distinct neural populations (Ziemann et al., 1999; Chen et al., 2003). 530 
Anatomically, the corticospinal tract (CST) is almost entirely contralateral, and the effectiveness of the 531 
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ipsilateral component has been debated (Lacroix et al., 2004; Rosenzweig et al., 2009; Soteropoulos et 532 
al., 2011; Baker et al., 2015). Ipsilateral cortex may also exert its influence via connections made in the 533 
reticular formation (Alagona et al., 2001; Baker et al., 2015; Wilkins et al., 2020), which projects to 534 
ipsilateral spinal cord. These reticulospinal pathways may also be responsible for preparatory 535 
modulation of muscle spindles (Papaioannou and Dimitriou, 2020), which is relevant to the weak 536 
emergence of independent activity we observed during the Instruct phase. Our results showed a small 537 
amount of independent ipsilateral activity (monkey O more so than monkey W), with more of the 538 
ipsilateral signal coming from non-dedicated units (Figure 5). Thus, if the ipsilateral hemisphere provides 539 
any independent control signal, it is much weaker than the contralateral signal. Rather, our results 540 
suggest a role in bimanual coordination or higher-level processing, which we now discuss. 541 

 542 

Bilateral signals and their role in motor control 543 
Our study adds to a large body of existing work reporting activity related to both ipsi- and contralateral 544 
arms in the same single-units during preparation (Hoshi and Tanji, 2002; Cisek and Kalaska, 2003) and 545 
movement (Cisek and Kalaska, 2003; Ames and Churchland, 2019; Heming et al., 2019). The presence of 546 
these units implies some form of bilateral network or interhemispheric communication. Increases in 547 
excitability of homologous effectors during transcranial magnetic stimulation (TMS) (McMilan et al., 548 
2006) and symmetric activation patterns in functional magnetic resonance imaging (fMRI) (Verstynen 549 
and Ivry, 2011; Diedrichsen et al., 2013) suggest that bilateral motor cortical circuits are organized with 550 
mirrored properties. Mirror activation and other forms of interhemispheric communication have been 551 
proposed to support intermanual skill transfer (Diedrichsen et al., 2013) or shaping of contralateral 552 
activity patterns during complex behavior (Verstynen et al., 2005). In the present study we have not 553 
directly compared directional tuning between ipsi- and contralateral arm movements, and therefore 554 
cannot speak directly to mirrored response properties. However, we did observe that the distributed 555 
component of bilateral signals existed within a shared subspace for the two arms (Figure 8). Mirror 556 
activity would necessarily reside in the same neural subspace for each arm, provided that subspace is 557 
linear, as all linear subspaces are invariant with respect to reflection. Our results are therefore 558 
consistent with functional hypotheses of ipsilateral cortex involving mirror symmetric activation. 559 

Distinct bimanual encoding patterns in motor cortex have been observed in both human fMRI 560 
(Diedrichsen et al., 2013) and single-unit monkey studies (Donchin et al., 1998; Kazennikov et al., 1999). 561 
Surgical transection of the corpus callosum, the primary direct connection between hemispheres 562 
(Gazzaniga, 1989), disrupts typical spatial coupling and continuous synchronization of arm movements 563 
as well (Franz et al., 1996; Kennerly et al., 2002). These studies may suggest that bilaterally distributed 564 
networks facilitate bimanual coordination, a function historically attributed to the supplementary motor 565 
area (Brinkman, 1981). Our task involved unimanual movements, containing no component of 566 
coordination. However, the result that meaningful information coding existed within a shared subspace 567 
(Figure 8) is consistent with a role in coordination. Even during unimanual movements, one must 568 
coordinate bilateral drive to counter Coriolis forces acting on the opposite hemibody. We make limited 569 
claims on this hypothesis due to our simplified behavior, and stress that implicating a role in bimanual 570 
coordination does not simply mean revealing a shared substrate for signals of both limbs. Nonetheless, a 571 
bi-hemispheric network structure may underly computations for controlling the two arms as a unified 572 
plant (Welford, 1968). M1 has been implicated in multi-joint integration for voluntary movement and 573 
feedback control (Scott, 2003; Pruszynski et al., 2011). Bimanual behaviors have a similar task of 574 
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overcoming redundant degrees of freedom (Bernstein, 1967). Many patterns of behavior for each arm 575 
independently may help one achieve an action goal so long as cooperation of the two remains intact 576 
(‘motor equivalence’, Lashley, 1933). This lower-dimensional behavioral coordination space, sometimes 577 
called ‘the uncontrolled manifold’ (Scholz and Schoner, 1999), would likely have a similar neural 578 
manifold in which bilateral arm signals interact (for related discussion and review, see Swinnen and 579 
Wenderoth, 2004; Wiesendanger and Serrien, 2004; Diedrichsen et al., 2010). The distributed space that 580 
we report may reflect such a manifold. 581 

 582 

A dynamical systems interpretation 583 
One unified explanation for the two components identified in this study is that they reflect a 584 
computational (or “hidden”) layer and an output layer for cortical processing. In this framework, the 585 
distributed signal would reflect a bilateral network that plays a supportive role in motor processing 586 
rather than direct output. The output itself would be represented by the localized signal. The idea that 587 
bilaterally distributed networks contribute to computations that do not directly represent the output 588 
has been previously proposed by Ames and Churchland (2019). Preparatory activity in motor areas 589 
reflects abstract features of action and may lack a strong contralateral bias (Hoshi and Tanji, 2002; Cisek 590 
and Kalaska, 2003). The distinctive lack of laterality in the distributed signal we observed is consistent 591 
with other reports of abstract preparatory responses. It played a relatively stronger role during 592 
preparation as well, since the localized component did not fully develop until movement. This aligns 593 
with reports that behaviorally specific features become more apparent in motor cortical signals during 594 
active behavior, including laterality (Shen and Alexander, 1997; Cisek and Kalaska, 2003).  595 

From a dynamical systems perspective, bi-hemispheric circuitry underlying the distributed signal could 596 
serve to enforce internal dynamics of the overall population. Preparatory signals in pre- and primary 597 
motor cortex are thought to converge on an ideal population state, or initial condition, such that 598 
internal circuit dynamics will guide appropriate patterns of activity for the upcoming movement 599 
(Churchland et al., 2006; Shenoy et al., 2013; Li et al., 2016). In a rodent licking task, Li et al. (2015) 600 
showed that preparatory activity in premotor neurons projecting to other cortical areas lacked strong 601 
laterality, while those with descending output had a pronounced contralateral bias and became active 602 
closer to movement onset. They later showed that bilaterally distributed networks provide robustness 603 
to unilateral perturbation during preparation and hypothesized that the two hemispheres operate 604 
together to maintain the network state (Li et al., 2016). While we do not claim to present a clean 605 
dissociation like those done with cell-type specific methods, our results generally align with this form of 606 
network structure. In addition to setting the initial state, persistence of the distributed component 607 
during movement may reflect the ongoing dynamics of pattern generation (Shenoy et al., 2013; Sussillo 608 
et al., 2015). 609 

Within this interpretation, the increasing localization of population activity would reflect emergence of 610 
descending output from the network and mirror the well-established laterality of anatomical pathways 611 
(Brinkman and Kuypers, 1973; Soteropoulos et al., 2011). It could also, at least in part, reflect a timing 612 
signal for transitioning the network from preparation to movement (Sussillo et al., 2015; Kaufman et al., 613 
2016) while simultaneously specifying the selected effector. These roles are in apparent conflict with the 614 
observation that population signals begin to localize even prior to movement (Figure 5,6). If this 615 
localized component represents unilateral output, then at least some of that output must be involved in 616 
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movement-null processes. Indeed, preparatory modulation in spinal interneurons (Prut and Fetz, 1999; 617 
Fetz et al., 2002), H-reflex (Duque et al., 2010), and motor evoked potentials (Duque et al., 2010) has 618 
been observed. Cortical output may contribute to this modulation indirectly via pathways such as the 619 
reticulospinal tracts (Keizer and Kuypers, 1989; Buford and Davidson, 2004). Premotor areas make 620 
connections with both M1 and the spinal cord (Dum and Strick, 2002), and may therefore provide some 621 
corticospinal output during preparation or movement as well. 622 

In summary, we present a parsimonious statistical description of how population activity spanning M1 623 
and PMd specifies motor plans for a single arm and provides unilateral output. The two components 624 
that we have identified will be crucial for contextualizing current theory on bilateral motor cortical 625 
processing as well as designing future experiments that investigate the independence and interaction of 626 
signals across the hemispheres. 627 

 628 

METHODS 629 
 630 

Behavioral recordings and task 631 
Kinematic data were collected using LED-based motion tracking of several points along each arm 632 
(Phasespace Inc, San Leandro, CA). 3D positions of each LED were sampled at 240Hz. Prior to offline 633 
analysis, these positions were smoothed using a cubic spline and smoothing parameter 0.005 (cspaps 634 
function – MATLAB). The most distal LED, located on the back side of each hand just below the wrist, 635 
was used for online endpoint feedback and all offline analysis. 636 

Monkeys were trained to perform a variant of an instructed-delay reaching task (Figure 1B). Endpoint 637 
feedback of each arm and all visual stimuli were presented to the animal using a custom-built virtual 638 
reality 3D display. This display consisted of two mirrors that projected shifted images independently to 639 
each eye to produce stereopsis. Cursors, indicating effector endpoint position, were color coded for the 640 
left (yellow) and right (purple) hands, as were all associated stimuli.  641 

Each trial began with the appearance of the start positions for each hand (spherical targets, radius 4cm), 642 
located near the body on top of a physical bar that the monkey rested its hands on (Figure 1A). In a self-643 
initiated manner, the monkey would assume the start position by placing both cursors in their 644 
appropriate starting positions and maintaining that position for 500 ms (‘Rest’ phase). Our threshold for 645 
detecting movement online was 9cm/s; breaking this threshold would abort the trial.  646 

Marking the beginning of the ‘Instruct’ phase, a cue (spherical target, radius 3cm) would appear at one 647 
of six locations within a fronto-parallel plane 8cm in front of the start positions (Figure 1A). The color of 648 
the cue indicated the required arm, and position of the cue was the target location for the forthcoming 649 
reach. The instruction cue remained visible through the delay period, a duration that was sampled 650 
uniformly on the interval 500-1500ms. Movement beyond the speed threshold with either hand would 651 
abort the trial. 652 

At the end of this period, two simultaneous changes signaled the monkey to move and marked the start 653 
of the ‘Move’ phase. First, the sphere defining the start position for the cued arm disappeared. Second, 654 
the cue at the target location enlarged (3cm to 4cm radius). The monkey then reached toward the target 655 
and once at the terminal location, had to maintain that position for 250ms. To earn a juice reward, the 656 
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animal had to initiate the reach within 500ms of the onset of the imperative, terminate the movement 657 
within the target’s circumference, and keep the non-reaching hand stationary for the duration of the 658 
trial. To further emphasize that the trial was successful, the target turned green. 659 

300ms windows were used to represent each phase in data analysis. For the Rest phase, we used the 660 
final 300ms before the onset of the instruction cue. For the Instruct phase, we used data in the interval 661 
between 200ms to 500ms post-cue. For the Move phase, we used the first 300ms following the onset of 662 
movement, defined as when speed of the reaching hand exceeded 10cm/s. We used a late window for 663 
the Rest phase to avoid any residual activity associated with moving to the start positions. The steady 664 
state neural response was used to position the Instruct phase window; this was reached approximately 665 
200ms after the onset of the instruction cue (see Figure 7B). The Move window was selected to capture 666 
peak neural activity associated with movement while including only the feed-forward portion, which 667 
typically lasted 250-300ms (Figure 1C, bottom row). Reach durations were calculated as the time 668 
between movement onset and the first point where (1) movement speed dropped below 20cm/s, and 669 
(2) velocity in the depth direction reached 0. 670 

 671 

Surgical implantation 672 
All procedures were conducted in compliance with the National Institutes of Health Guide for the Care 673 
and Use of Laboratory Animals and were approved by the University of California at Berkeley 674 
Institutional Animal Care and Use Committee. Two adult male rhesus monkeys (Macaca mulatta) were 675 
implanted bilaterally with custom acute recording chambers (Grey Matter Research LLC, Bozeman, MT). 676 
Partial craniotomies within the chambers allowed access to the arm regions of dorsal premotor (PMd) 677 
and primary motor (M1) cortices in both hemispheres. Localization of target areas was performed using 678 
stereotactically aligned structural MRI collected just prior to implantation, alongside a neuroanatomical 679 
atlas of the rhesus brain (Paxinos et al, 2000).  680 

 681 

Electrophysiology 682 
Unit activity was collected using 24-32 channel multi-site probes (V-probe - Plexon Inc, Dallas, TX), with 683 
contacts separated by 100um and positioned axially along a single shank. Probes were lowered deep 684 
enough to cover roughly the full laminar structure of cortex (Figure 2B-C). The depth of insertion was 685 
determined by (1) measurements of the dural surface prior to recording, and (2) presence of spiking 686 
activity across all channels. 2 probes were typically inserted in each hemisphere daily and removed at 687 
the end of the session, one in PMd and one in M1. A total of 12 insertion points across PMd and M1 of 688 
each hemisphere were used across 13 recording sessions in Monkey O, and 6 insertion points across 7 689 
sessions for Monkey W (Figure 2A).  690 

Neural data were recorded using the OmniPlex Neural Recording Data Acquisition System (Plexon Inc, 691 
Dallas, TX). Spike sorting was performed offline (Offline Sorter – Plexon Inc, Dallas, TX). Single-unit 692 
waveforms were isolated in multi-dimensional feature space (including principal components, non-linear 693 
energy, waveform amplitudes) and rejected if either (1) the waveform clusters were not stable over the 694 
course of the session, or (2) >0.4% of inter-spike-intervals were below 1ms. For population level 695 
analyses (PCA, LDA), a small number of multi-units were included. A multi-unit was defined by waveform 696 
clusters that separated from the noise cluster and were stable over time, but did not quite meet the 697 
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inter-spike-interval criteria or contained what might be multiple unit clusters that could not be easily 698 
separated. For monkey O, the average proportion of multi-units in each single session population 699 
sample was 17%, ranging 12-25%. For monkey W, average 20%, ranging 12-32%. 700 

Spiking data were binned in 20ms non-overlapping bins, square-root transformed to stabilize variance, 701 
and smoothed with a 50ms gaussian kernel for all analyses (Yu et al., 2009). 702 

 703 

Modulation and Arm Preference metrics 704 
Modulation was calculated as: 705 

𝑀𝑀 =  �
𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 + 1

�
2

, 706 

where 707 
𝑥𝑥𝑡𝑡 ∶  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 708 
𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ∶ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 709 
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 ∶ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑓𝑓𝑑𝑑 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 710 

This unitless metric reflects the deviation from baseline activity, normalized by baseline fluctuations. It 711 
may be thought of as a signal-to-noise ratio and is similar in form to variance when the mean is taken 712 
over a time window. The constant 1 was added to the denominator for soft-normalization to ensure that 713 
units which were silent during rest did not have exploding values and were not overly emphasized in the 714 
dataset. Because some units had slightly different activity on left and right arm trials even before 715 
instruction, the standard deviation during Rest was calculated separately for each arm and 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 was 716 
calculated as the mean of the two. 717 

Arm Preference was calculated as: 718 
 719 

𝐴𝐴𝐴𝐴 =  
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐 −𝑀𝑀𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐 +𝑀𝑀𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖
 720 

An arm preference of 1 corresponds to a unit that is exclusively modulated during contralateral trials, 721 
while an arm preference of -1 is the same for ipsilateral trials. Arm preferences were independently 722 
assigned for each phase of the task. In analyses that used arm preference along with other features, 723 
independent datasets were used to calculate each to avoid any mathematical coupling, since 724 
modulation itself is used in the arm preference calculation. Note also that the scaling factor used in the 725 
modulation calculation cancels out of the arm preference calculation, making it invariant to the choice 726 
of normalization. 727 

 728 

Principal components analysis 729 
Principal components analysis (PCA) was used to identify low-dimensional representations of population 730 
activity with the pca function in MATLAB. PCA computes an orthogonal basis set that reflects the 731 
principal axes of variation in the data. Individual components do not strictly correspond to observed 732 
activity patterns, and one should be wary of interpreting them as such, yet the low-dimensional space 733 
spanned by the top few components has been repeatedly used in systems neuroscience as a helpful 734 
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descriptor of coordinated ensemble activity (Cunningham and Yu, 2014). PCA was selected over other 735 
dimensionality reduction techniques for its widespread use and relative lack of assumptions. 736 

Prior to fitting the models, firing rate data were soft-normalized using the same method as in the 737 
modulation strength calculation: 738 

𝑧𝑧𝑡𝑡 =  
𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡
𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 + 1

 739 

An alternative normalization factor was used to create Figure S2, replacing the denominator by the full 740 
firing rate range + 5Hz (Elsayed et al., 2016; Ames and Churchland, 2019; Heming et al., 2019). Since Rest 741 
phase mean activity was already subtracted from individual units, we did not de-mean again prior to 742 
computing PCA models. Measures of variance accounted for were not inflated by capturing means 743 
because they were computed using the variance of the component scores (Figure 7,8F): 744 

𝑉𝑉 = 𝑇𝑇𝑓𝑓�𝐶𝐶𝑖𝑖𝑑𝑑(𝑋𝑋𝐴𝐴)� 745 

Where 𝑋𝑋 is a 𝑖𝑖 𝑥𝑥 𝑖𝑖 data matrix and 𝐴𝐴 is an 𝑖𝑖 𝑥𝑥 𝑝𝑝 projection matrix, given 𝑖𝑖 time samples, 𝑖𝑖 units, and 𝑝𝑝 746 
principal component dimensions. 747 

Cross-validation approaches were used for all analyses and figures to address overfitting. This provided 748 
accurate and generalizable estimates of variance capturing metrics that could also be appropriately 749 
compared across datasets (i.e. across time or arms). 750 

 751 

Dimensionality estimation  752 
Dimensionality of the PCA subspace was estimated by optimizing the cross-validated reconstruction of 753 
full-dimensional neural data from component scores. Given m trials and n units, the following procedure 754 
was used: 755 
1. Leave out the ith trial from the data matrix, yielding training data, 𝑋𝑋(−𝑖𝑖), and testing data, 𝑋𝑋(𝑖𝑖) 756 

2. Train PCA model of dimension 𝑝𝑝 < 𝑖𝑖 on 𝑋𝑋(−𝑖𝑖), using singular value decomposition (SVD) to compute 757 
the projection matrix, 𝐴𝐴(−𝑖𝑖) 758 

3. Leave out the jth unit from the testing data and projection matrix by removing the jth column and row 759 
from each, respectively, yielding 𝑋𝑋−𝑗𝑗

(𝑖𝑖) and 𝐴𝐴−𝑗𝑗
(−𝑖𝑖) 760 

4. Using the Moore-Penrose pseudoinverse, find a new projection matrix with the jth unit removed, 761 

whose transpose is �𝐴𝐴−𝑗𝑗
(−𝑖𝑖)�

+
  762 

5. Calculate the component score for the ith trial using the remaining units and the new projection 763 
matrix, then estimate the jth unit from that component score by projecting back into the ambient space. 764 
As a single step, this calculation is: 765 

 𝑋𝑋�𝑗𝑗
(𝑖𝑖) = �𝐴𝐴(−𝑖𝑖) �𝐴𝐴−𝑗𝑗

(−𝑖𝑖)�
+
�𝑋𝑋−𝑗𝑗

(𝑖𝑖)�
𝑇𝑇
�
𝑗𝑗
 766 

7. Repeat for trials i=1,…,m and units j=1,…,n 767 
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8. Repeat for component numbers p=1,…,n. Take the number of components that minimizes the 768 
predicted residual error sum of squares (PRESS) statistic: 769 

 𝐴𝐴𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 =  ∑ ∑ �𝑋𝑋𝑗𝑗
(𝑖𝑖) − 𝑋𝑋�𝑗𝑗

(𝑖𝑖)�
2𝑐𝑐

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1  770 

This method provides estimates of the full-dimensional neural data, independent of the training set, by 771 
identifying consistent population structure. Similar methods have been used previously for assessing 772 
dimensionality reduction techniques for neural data (Yu et al., 2009). There are no mathematical 773 
constraints favoring increased dimensionality. As such, the dimensionality estimate is conservative and 774 
robust to overfitting. Using heuristics, such as the number of components to explain 90% variance, 775 
would be inappropriate for our analyses. They are prone to overfitting, which would include 776 
meaningless components and impair analysis of model structure via coefficient weights. 777 

 778 

Covariance alignment 779 
We computed a measure of similarity between pairs of subspaces that we call Covariance Alignment. 780 
Our method is essentially the same as that previously used for comparing low-dimensional spaces via 781 
factor analysis (Athalye et al., 2017). In short, this measure computes the proportion of low-dimensional 782 
variance from one dataset that is also captured in the low-dimensional space of another dataset.  783 

Given 𝑖𝑖 𝑥𝑥 𝑖𝑖 data matrices 𝑋𝑋𝐴𝐴, 𝑋𝑋𝐵𝐵 , where n is the number of units and t is the number of time samples, 784 
the following procedure was used: 785 

1. Train PCA models of dimension 𝑝𝑝 < 𝑖𝑖 on 𝑋𝑋𝐴𝐴 and 𝑋𝑋𝐵𝐵, using SVD to compute the 𝑖𝑖 𝑥𝑥 𝑝𝑝 projection 786 
matrices, 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐵𝐵 787 

2. Project 𝑋𝑋𝐴𝐴 into its own p-dimensional space and compute the variance as: 788 
 𝑉𝑉𝐴𝐴 = 𝑇𝑇𝑓𝑓�𝐶𝐶𝑖𝑖𝑑𝑑(𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴)� =  𝑇𝑇𝑓𝑓�𝐶𝐶𝑖𝑖𝑑𝑑(𝑇𝑇𝐴𝐴)� 789 

3. Project the p-dimensional representation of 𝑋𝑋𝐴𝐴, which is 𝑇𝑇𝐴𝐴, into the p-dimensional space identified 790 
using 𝑋𝑋𝐵𝐵 and compute the variance as: 791 

 𝑉𝑉𝐴𝐴_𝑖𝑖𝑐𝑐_𝐵𝐵 = 𝑇𝑇𝑓𝑓�𝐶𝐶𝑖𝑖𝑑𝑑(𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵)� = 𝑇𝑇𝑓𝑓 �𝐶𝐶𝑖𝑖𝑑𝑑(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝐵𝐵)� 792 

4. Return the proportion of p-dimensional variance from dataset A that is also captured in dataset B’s 793 
subspace using the ratio: 794 

 𝐶𝐶𝐴𝐴 =  𝑉𝑉𝐴𝐴_𝑖𝑖𝑖𝑖_𝐵𝐵
𝑉𝑉𝐴𝐴 

=  
𝑇𝑇𝑟𝑟�𝐶𝐶𝑐𝑐𝐶𝐶�𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴

𝑇𝑇𝑃𝑃𝐵𝐵��

𝑇𝑇𝑟𝑟�𝐶𝐶𝑐𝑐𝐶𝐶(𝑋𝑋𝐴𝐴𝑃𝑃𝐴𝐴)�
=

𝑇𝑇𝑟𝑟�𝐶𝐶𝑐𝑐𝐶𝐶�𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴
𝑇𝑇𝑃𝑃𝐵𝐵��

𝑇𝑇𝑟𝑟�𝐶𝐶𝑐𝑐𝐶𝐶(𝑇𝑇𝐴𝐴)�
 795 

This metric is subtly different from the alignment indices used in Elsayed et al., 2016 and Heming, Cross 796 
et al., 2019. The key difference here is the double projection in the numerator, which means that we are 797 
specifically capturing the proportion of low-dimensional variance from one dataset that is captured in 798 
the low-dimensional space of another, rather than the ratio of overall variance captured in two different 799 
subspaces.  800 

 801 
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PCA coefficient analysis 802 
 Since components of PCA models form an orthogonal basis set, each was independently analyzed to 803 
determine its contribution to subspace divergence. Two statistics were calculated for each component 804 
using held-out datasets.  805 

First, we projected activity during trials of each arm onto a single component, calculated the variance of 806 
the projections for each arm, and expressed them as a ratio. This captured each component’s 807 
contribution to discrimination between the arms. For component 𝐶𝐶, this calculation is: 808 

𝑉𝑉𝐶𝐶,𝑅𝑅/𝐿𝐿 =
𝑉𝑉𝑖𝑖𝑓𝑓(𝑋𝑋𝑅𝑅𝐴𝐴𝐶𝐶)
𝑉𝑉𝑖𝑖𝑓𝑓(𝑋𝑋𝐿𝐿𝐴𝐴𝐶𝐶)

 809 

Where 𝑋𝑋𝑅𝑅 ,𝑋𝑋𝐿𝐿  are 𝑖𝑖 𝑥𝑥 𝑖𝑖 data matrices for the right and left arms, respectively, and 𝐴𝐴𝐶𝐶  is the 𝑖𝑖 𝑥𝑥 1 810 
projection matrix for component 𝐶𝐶. The log of this ratio will be far from 0 if there is much more variance 811 
for one arm than the other along the axis defined by 𝐴𝐴𝐶𝐶. 812 

Second, we calculated a coefficient-weighted average of the arm preferences for all units. If non-zero 813 
weights were only given to right arm dedicated units, this value would be 1; if weights were evenly 814 
distributed across the spectrum of arm-preferences, this value would be 0. Therefore, this measure 815 
captured the dependence of a given component on arm-dedicated units. The coefficient-weighted arm 816 
preference, 𝐶𝐶𝐴𝐴𝐴𝐴, for component C was calculated as 817 

𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 =
𝐴𝐴|𝐴𝐴𝐶𝐶|

∑ |𝐴𝐴𝐶𝐶,𝑖𝑖|𝑐𝑐
𝑖𝑖=1

 818 

Where 𝐴𝐴 is the 1 𝑥𝑥 𝑖𝑖 vector of arm preferences for each unit. 819 

 820 

Linear discriminant analysis 821 
Population coding of movement was analyzed using Linear Discriminant Analysis (LDA) with the fitdiscr 822 
function in MATLAB. LDA assumes that each class (target x limb combination) is associated with a 823 
multivariate normal distribution over the predictor variables (spiking activity of multiple units) having 824 
identical covariance but different means. Uniform priors were enforced for all models. As it was 825 
expected that the covariance may change across use of the two arms during reaching, LDA models were 826 
trained separately for each limb to allow fitting of arm-specific covariance matrices. LDA was chosen for 827 
its robustness to violations of the given assumptions and its history of success with neural data 828 
(Diedrichsen et al., 2013; Rich and Wallis, 2016). 829 

 830 

Fine timescale analysis of population coding and subspace development (heatmaps) 831 
The same basic method was used for displaying fine timescale changes in population coding of 832 
movements (via LDA) and covariance structure (via PCA, Covariance Alignment). Neural data were 833 
organized as 3D tensors (units, time windows, trials). Comparisons were made between all possible pairs 834 
of time windows, using fully independent trial sets to prevent overfitting. For LDA models, this consisted 835 
of leave-one-out cross-validation; for Covariance Alignment, random partitioning into two datasets of 836 
equal trial numbers. Averages of the cross-validated results provided the 2D matrices visualized using 837 
heatmaps in Figure 6B-C and Figure 8C-D. A single row or column therefore reflects the similarity of 838 
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population coding or covariance between a single timepoint and all other timepoints across the trial. 839 
Block diagonal structure in the heatmaps reveals locally consistent structure within task phases. 840 

 841 

Permutation testing procedures 842 
Permutation tests were used for both single and multi-factorial hypothesis testing when parametric 843 
tests were inappropriate. Null distributions were constructed by constraining permutations to only data 844 
that were exchangeable under the null hypothesis (Anderson and Braak, 2002). For example, we 845 
maintained the crossed structure of Phase (Rest, Instruct, Move), by only permuting Phase labels within 846 
units. 10,000 permutations were used for all analyses, and p-values were estimated as the proportion of 847 
permutations resulting in test statistics that were at least as extreme as what was observed. In cases 848 
where the observed test statistic was more extreme than any permutations, we assigned a p-value of 849 
1/number of permutations = 1.0e-4.  850 

  851 
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SUPPLEMENTARY FIGURES 852 
 853 

 854 
Table S1.  Proportions of significantly modulated single-units across task phases.  855 
For well isolated single-units in each brain area, the proportions of the total population that were 856 
significantly modulated when compared with the Rest phase (two-sample t-test, p<0.05).  For each 857 
phase, single-units were classified as uniquely ipsi, contra, or bilaterally modulated. Top row in each pair 858 
of rows represents Monkey O, bottom row Monkey W.  859 

 860 

 861 

 862 

863 
Figure S1. Arm-specific neural patterns exist during Rest on predictable trials.  864 
Cross-validated classification accuracy for hand (left column) and target (right column) assignments. LDA 865 
models were trained on only trials that required use of the same arm as the previous trial, then tested 866 
on either held-out repeating arm trials (blue lines) or switching arm trials (red lines). Separate models 867 
were used for each timepoint. Horizontal grey lines indicate chance level. 13 Sessions for monkey O (top 868 
row); 7 sessions for monkey W (bottom row). Mean +/- standard error across sessions. 869 
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 870 

871 
Figure S2. Subspace results using alternative firing rate normalization. 872 
Prior to performing PCA, an alternative method of normalizing firing rates was used for these plots. 873 
Rather than dividing by the standard deviation at Rest, each unit’s firing rate trace was divided by the 874 
full firing rate range + 5Hz (Elsayed et al., 2016; Ames and Churchland, 2019; Heming et al., 2019). This 875 
will mitigate the effect of highly modulated units, which PCA will preferentially represent otherwise. (A) 876 
Repetition of Figure 7D. (B) Repetition of Figure 8F. 877 

  878 
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