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Abstract 24 

 25 

Despite the structural and functional information contained in the statistical coupling 26 

between pairs of residues in a protein, coevolution associated with function is often 27 

obscured by artifactual signals such as genetic drift, which shapes a protein’s 28 

phylogenetic history and gives rise to concurrent variation between protein sequences 29 

that is not driven by selection for function. Here, we introduce a method for explicitly 30 

defining a phylogenetic dimension of coevolution signal, and demonstrate that 31 

coevolution can occur on multiple phylogenetic timescales within a single protein. Our 32 

method, Nested Coevolution (NC), can be applied as an extension to any coevolution 33 

metric. We use NC to demonstrate that poorly conserved residues can nonetheless have 34 

important roles in protein function. Moreover, NC improved structural-contact 35 

prediction over gold-standard coevolution-based methods, particularly in subsampled 36 

alignments with fewer sequences. NC also lowered the noise in detecting functional 37 

sectors of collectively coevolving residues. Sectors of coevolving residues identified after 38 

NC correction were more spatially compact and phylogenetically distinct from the rest 39 

of the protein, and strongly enriched for mutations that disrupt protein activity. Our 40 

conceptualization of the phylogenetic separation of coevolution represents an advance 41 

from previous pragmatic attempts to reduce phylogenetic artifacts in measurements of 42 

coevolution. Application of NC broadens the application of protein coevolution 43 
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measurements, particularly to eukaryotic proteins with fewer naturally available 44 

sequences, and further elucidates relationships among protein evolution and genetic 45 

diseases.  46 
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Introduction 47 

It has long been appreciated that comparisons among homologous sequences of a protein 48 

of interest can provide key information about its function and structure. Just as 49 

evolutionarily conserved individual residues are generally crucial to a protein’s proper 50 

function, the statistical covariation (arising from correlated evolution, i.e. coevolution) 51 

between pairs of residues (1, 2) carries information that is useful for predicting structural 52 

contacts (3-7) and protein-protein interactions (8-11) and their interfaces (12), intuiting 53 

novel protein conformations (5), understanding protein allostery (13), interpreting 54 

variants (14), identifying functional domains (15-18), and reprograming protein 55 

specificity (19). However, despite the increasing prevalence of sequencing data, sampling 56 

of the phylogenetic tree is necessarily limited and biased. Evolutionary events such as 57 

speciation can drive simultaneous changes that are statistically linked but may not reflect 58 

relevant functional coupling, for example when they arise from genetic drift. Hence, 59 

spurious covariation is more likely to arise in comparisons between distantly related 60 

sequences, hindering the ability of such studies to deliver functional insights. 61 

 62 

Of the numerous existing methods for measuring protein coevolution, many implement 63 

methods for reducing the effects of phylogenetic noise. Although mutual information is 64 

extremely sensitive to the phylogenetic distribution of sequences and the conservation 65 

(measured via entropy) of individual positions, normalization by the joint entropy 66 
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reduces the influence of phylogeny and entropy and improves structural-contact 67 

prediction (20). Statistical coupling analysis , which normalizes the covariance matrix by 68 

a function of the entropy, provides sufficient information to specify a protein fold (21) 69 

and to detect functional domains (6, 18). Direct coupling analysis (DCA) usually involves 70 

down-weighting the coevolutionary signal contributions from over-represented 71 

sequences, and attempts to deconvolve higher-order correlations to identify directly 72 

interacting residue pairs (4, 22). Motivated by the observed strong relationship between 73 

a position’s average mutual information and the mutual information it exhibits with 74 

specific positions, modifications such as the average product correction (APC) subtract 75 

this average signal; this correction can be applied to any existing coevolution metric other 76 

than mutual information. However, none of these strategies attempt to resolve the 77 

evolutionary timescale of coevolution. 78 

 79 

Even with affordable sequencing and widespread environmental sampling, coevolution 80 

methods are often limited by the number of naturally occurring protein sequences 81 

available. Successful predictions of structural contacts often require several thousand 82 

sequences to align (3, 23), which is generally prohibitive for many mammalian proteins. 83 

For other proteins, the phylogenetic distribution of available sequences is skewed by 84 

sampling and is well recognized as a source of spurious signal in coevolution (20, 24). 85 

Thus, methods that enable the separation of functional coupling from phylogenetic and 86 
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sampling noise would greatly expand the utility of coevolution, particularly for 87 

applications to diseases involving human proteins with limited numbers of available 88 

sequences. 89 

 90 

Here, we introduce the concept of Nested Coevolution (NC), a correction that leverages 91 

a well-defined null hypothesis to accurately measure the coevolutionary signal above 92 

what is expected from phylogenetic distribution alone. We determined that NC results in 93 

higher fidelity of the coevolutionary signal across gold-standard coevolution-based 94 

metrics for structural prediction for many proteins, especially with fewer sequences. In 95 

addition, we found that NC improves the detection of spatially contiguous groups of 96 

collectively coevolving residues (“sectors”) that are phylogenetically distinct from each 97 

other and the protein itself, beyond differences in entropy alone. Finally, sectors 98 

identified using NC were enriched for positions at which mutations are maximally 99 

deleterious, highlighting the functional significance of signal from our method. Since our 100 

method is agnostic to the underlying method of measuring coevolution, we anticipate 101 

wide utility for the ability to resolve the temporal dimension of protein coevolution.  102 
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Results 103 

 104 

Background model of coevolution reveals temporal dimension of coevolution 105 

To interrogate the contribution of phylogenetic sampling to protein coevolution 106 

measurements, we sought to separate the coevolution signal due to inter-clade and intra-107 

clade sequence comparisons (Fig. 1A,B). Given a multiple sequence alignment (MSA) for 108 

a protein of interest (Fig. 1Ai), we first measure the total covariation (!!) between every 109 

pair of positions (Fig. 1Aii) using an established metric of residue-residue coupling such 110 

as the normalized mutual information (NMI; Fig. 1A) (20): 111 

!!"# = #$" +$# −$"#' $"#( ,   (1) 112 

where $" is the Shannon entropy (a measure of conservation) of position *, and$"# is the 113 

joint Shannon entropy of positions i and j. The quantity $" +$# −$"#  is the mutual 114 

information between positions i and j, which measures the coupling between residues 115 

(Fig. S1). The NMI residue pair covariation in Eq. 1 is a natural metric choice because 116 

normalizing by Hij makes the mutual information independent of conservation (20). Note 117 

that our algorithm can be applied to any covariation metric, and as we will show, our 118 

main results are robust to metric choice. 119 

 120 

The most straightforward null hypothesis for protein coevolution is that coevolutionary 121 

coupling between pairs of proteins is completely absent—that is, that the probability of a 122 
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position having any particular amino acid identity is independent of any other position’s 123 

identity. Although this null hypothesis can be evaluated analytically for some methods 124 

(SI), other methods have no known closed-form solution for the expected value of the 125 

coevolution matrix under these conditions. Hence, we computationally compute the 126 

average coevolution signal from many globally resampled MSAs in which each position 127 

in each protein in the original MSA is replaced by the equivalent position from another 128 

randomly chosen protein (resampled with replacement; Fig. 1Av,vi). We expect any 129 

measured coevolution from these resampled matrices to represent signal due simply to 130 

the distribution of amino acid identities at each position; any significant difference 131 

between the coevolution signal measured in the original MSA and this null hypothesis 132 

can potentially be attributed to coevolution. 133 

 134 

However, this initial null hypothesis does not test for the phylogenetic structure of 135 

sequences; in the globally resampled MSAs, every sequence is effectively evolutionarily 136 

equidistant from one another. Previous attempts to remove the influence of phylogeny 137 

such as APC (Fig. 1Aiii), which corrects the covariation matrix by subtracting the product 138 

of its mean value across columns and rows for each pair of positions (Fig. 1Aiv), have 139 

substantially improved contact prediction (20). However, the APC is a postulated 140 

correction that does not directly take into account the phylogenetic structure of an MSA. 141 

We sought to construct a null hypothesis-driven background model of the expected 142 
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coevolution in an MSA in which intra-clade coevolution is explicitly removed. We 143 

achieve this goal by generating MSAs by resampling each position from sequences that 144 

are closely related (Fig. 1Av,vi), thus removing correlations arising from recent 145 

evolutionary history within each clade. We define a clade as the subset of sequences + 146 

with a Jukes-Cantor distance below ,, which we refer to as the phylogenetic cutoff. For 147 

each value of d, we calculate the inter-clade covariation #!$%&",# ' from a resampled MSA 148 

either analytically or via bootstrapping (Fig. 1Avii, S2A, Methods), where C denotes the 149 

chosen covariation measure (e.g. NMI). This inter-clade covariation thus measures the 150 

expected value of covariation due solely to the comparison of sequences between clades 151 

(Fig. 1B). We then average over many such null hypotheses (over many within-clade 152 

resampled MSAs at fixed d), yielding the mean inter-clade covariation matrix (!$%&) (Fig. 153 

1Aviii), which represents the expected coevolution due to both the distribution of amino 154 

acid identities at each position and the phylogenetic structure of the protein MSA (Fig. 155 

1B). Significant differences between this background model and the baseline signal 156 

measured from the original MSA represent signal that was contained in the intra-clade 157 

comparison of closely related sequences. Since the difference between the background 158 

model and the baseline signal qualitatively captures the significance of the baseline 159 

measurement (Fig S2B, Methods), we subtract !$%& from the total covariation !! to obtain 160 

the phylogenetic cutoff-dependent covariation signal !$(&  (Fig. 1Aix); positive values 161 

indicate that the total covariation is larger than expected by comparison of sequences 162 
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between clades, thus revealing covariation arising from recent evolutionary history in all 163 

clades: 164 

!$(&",# ≡ !!",# − !$%&",# .  (2) 165 

We refer to the signal !$(&",#  above the null hypothesis !$%&",#  in Eq. 2 as a protein’s “nested 166 

coevolution” (NC), in that it separates coevolution signal into signal attributed to 167 

comparison of sequences either within (!$(&",# ) or between (!!"#$,& ) nested clades of a 168 

phylogenetic tree. The only free parameter in the NC is the phylogenetic cutoff ("). As 169 

we vary the cutoff value, many patterns of NC typically emerge, revealing distinct 170 

windows of coevolution for a single protein MSA (Fig. 1C). The changes in NC observed 171 

between two cutoffs represent the signal due to pairs of sequences whose distance is 172 

between the cutoffs used to calculate each window. Hence, distinct evolutionary 173 

timescales of protein coevolution are revealed as the phylogenetic cutoff is varied. 174 

 175 

To test the relevance of NC windows to protein structure prediction, we measured the 176 

enrichment of structural contacts from the pairs of residues with the highest 50 values in 177 

the NC matrix !!'#$,&  for each value of d. Here, we applied NC as a correction to DCA, the 178 

current gold standard for coevolution-based prediction of structural contacts (4, 22). We 179 

employed the direct information (DI) metric to quantify coevolution (4, 22). In this and 180 

subsequent analyses, we considered structural contacts to be within 5 Å at closest 181 

approach, excluding pairs of residues within 5 amino acids on the sequence (Methods). 182 
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The NC phylogenetic cutoffs revealed a variety of improvements for the KH domain (Fig. 183 

1D), which is present in a wide variety of nucleic acid-binding proteins (25). Some 184 

windows generally outperformed DCA, without (Fig. 1E) or with (Fig. 1F) the APC. 185 

 186 

To determine the added value of NC for other proteins and for another frequently utilized 187 

coevolution metric, the Frobenius norm (26), which is frequently utilized in DCA as an 188 

alternative to DI (27, 28), we carried out a DCA structural-contact analysis for 10 protein 189 

family domains with DI or Frobenius norm (Methods). Across both metrics and all 190 

proteins, NC improved the predictions of structural contacts (Fig. 2A), even relative to 191 

the inclusion of APC (20). Hence, NC is a correction that enhances the predictive power 192 

of state-of-the-art coevolution measurements. 193 

 194 

NC improves predictions of structural contacts using fewer sequences 195 

One common limitation for computing coevolution is the number of homologous 196 

sequences available for constructing an MSA. To interrogate whether NC could still 197 

accurately predict structural contacts with fewer sequences, we subsampled the MSAs of 198 

10 proteins with different breadth (randomly selecting 10% or 1% of the sequences) or 199 

depth (selecting the 10% or 1% of sequences most related to the protein used to construct 200 

the MSA, Table S1) (Fig. 2B). NC improved structural contact prediction for a majority of 201 

the subsampled MSAs when correcting DI without (Fig. 2C, S4A) or with (Fig. S3B) 202 
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application of APC. For the KH domain, more than twice as many true positives were 203 

predicted after applying NC compared with DI+APC alone (Fig. S3A). Perhaps 204 

unsurprisingly, breadth sampling generally performed better than depth sampling (Fig. 205 

2C), indicating that accurate prediction is reliant on the sequences being sufficiently 206 

distantly related. Nonetheless, for many proteins, the value of the NC correction was 207 

enhanced when the number of homologous sequences was low, both for depth and 208 

breadth samplings. 209 

 210 

NC generates eigenvectors with increased fidelity, improving detection of spatially 211 

contiguous sets of coevolving residues 212 

Previous studies have utilized coevolution measurements to identify groups of residues 213 

within a protein that are spatially contiguous on the tertiary structure and thus are 214 

postulated to have a joint function (6, 18, 29-32). These “sectors” can by defined by a 215 

variety of methods, such as the extreme-value residues of the eigenvectors of the 216 

coevolution matrix with the largest eigenvalues (18), and have been proposed to reflect 217 

independent biological properties such as catalytic efficiency and thermal stability (18). 218 

Motivated by these successes, we sought to measure the effect of incorporating the 219 

phylogenetic dimension revealed by NC when defining sectors of residues. Specifically, 220 

we measured the NC- and APC-corrected coevolution using NMI across a range of 221 

phylogenetic cutoffs, concatenating the results and performing eigendecomposition to 222 
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identify the most significant eigenvectors (Methods). The residues most strongly 223 

associated with the positive or negative components of each resulting eigenvector are 224 

considered a sector. 225 

 226 

We first focused on MreB, an essential protein involved in cell-shape determination in 227 

many rod-shaped bacteria (33). MreB belongs to a protein family that includes ParM, 228 

FtsA, and MamK in bacteria, crenactin in archea, and actin in eukaryotes (34, 35). These 229 

proteins are structural homologs characterized by a four-subdomain fold around an ATP-230 

binding pocket (35, 36), with very low sequence identity and disparate cellular functions. 231 

Thus, we anticipated that the set of MreB homologs would have sufficient diversity to 232 

support robust coevolution measurements, particularly functional sectors. 233 

 234 

We compared NC-derived sectors with baseline sectors derived from eigenvectors of the 235 

baseline coevolution matrix for MreB homologs. We identified the most closely related 236 

baseline sectors for three NC eigenvectors with some of the highest eigenvalues, which 237 

we refer to as eigenvectors A, B, and C (Methods). Each pair of NC and baseline 238 

eigenvectors appeared similar, especially for the residues with the largest absolute 239 

coefficients (Fig. 3A-C). However, the baseline eigenvectors exhibited much higher 240 

variation of coefficients for residues across the protein (Fig. 3A-C). For eigenvectors A 241 

and B, the NC-derived eigenvectors exhibited 32.8-fold and 38.3-fold lower standard 242 
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deviation (after removing the 50 highest and lowest coefficients) than the baseline-243 

derived eigenvectors, respectively (Fig. 3A,B). For eigenvector C, the baseline eigenvector 244 

contained residues with both highly positive and highly negative coefficients, while the 245 

high-magnitude coefficients of the NC eigenvector were solely positive (Fig. 3C); the 246 

positive portion of the NC eigenvector again had substantially lower noise than the 247 

baseline eigenvector (2.1-fold lower standard deviation, Fig. 3C). 248 

 249 

Motivated by the distinct behaviors of the positive and negative components of 250 

eigenvector C, we defined distinct positive and negative sectors (Methods) for each NC 251 

and baseline eigenvector using a variable cutoff on the site contributions to adjust sector 252 

size (as sectors are defined as the sets of amino acids with highest site contributions in a 253 

given eigenvector). For different sector sizes, we quantified the spatial contiguity as the 254 

mean pairwise distance between each residue within a sector. For sectors A-C (derived 255 

from eigenvectors A-C), the first 5-9 residues exhibited approximately the same spatial 256 

contiguity in the NC as in the baseline eigenvectors (Fig. 3D-F). However, as the cutoff 257 

was increased, the NC sector remained more spatially compact than the baseline sector 258 

(Fig. 3D-F). All three NC sectors were also more spatially contiguous than expected based 259 

on random sampling for cutoffs yielding at least 50 residues (Fig. 3D-F), while the 260 

baseline sector A was distributed across the protein structure (Fig. 3D,J). NC sectors A 261 

and C were largely situated in subdomains IIA (Fig. 3G) and IA (Fig. 3I), respectively, 262 
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while sector B was localized to the ATP-binding pocket (Fig. 3H). Notably, sector C was 263 

spatially contiguous (Fig. 3I) despite being spread across the protein sequence (Fig. 3C). 264 

Baseline sectors B and C with 15 residues were qualitatively similar to the corresponding 265 

NC sectors (Fig. 3K,L); the large background fluctuations of the baseline eigenvector 266 

likely led to the inclusion of additional, erroneous residues into the sector prediction. 267 

Thus, the phylogenetic correction of NC improves the fidelity of sector detection as 268 

measured by the spatial contiguity of its constituent residues. 269 

 270 

Sectors display distinct phylogenetic signatures from the rest of the protein 271 

Since sectors have been postulated to reflect distinct evolutionary histories driven by 272 

selection for particular biological functions (18), we sought to compare the phylogeny of 273 

the residues within a sector with other sectors and the rest of the protein. The MirrorTree 274 

algorithm (Methods) was originally developed to compare phylogenies of two proteins, 275 

motivated by the assumption that similar histories signifies a common function, e.g. 276 

through protein-protein interactions and/or acting in the same pathway (37, 38). After 277 

computing a pairwise distance matrix of all sequences within an MSA for each of the two 278 

proteins based on homologs in the same set of organisms, the MirrorTree score is defined 279 

as the Pearson correlation coefficient between the entries in the two pairwise distance 280 

matrices (37). We straightforwardly modified the MirrorTree method to compare the 281 
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complete protein MSA to the MSA filtered to include only the residues within the sector 282 

of interest (Fig. 4A). 283 

 284 

To broadly investigate sector identification, we identified 40 15-residue sectors for MreB 285 

based on the positive and negative coefficients of the 20 eigenvectors with the highest 286 

eigenvalues. As negative controls, we randomly sampled sets of residues of the same size 287 

as each sector from across the protein. Sector-protein MirrorTree scores for sectors A-C 288 

(Fig. 3) were substantially lower for sectors than for the random groups (Fig. 4B), which 289 

all had MirrorTree scores close to 1, as expected (Fig. 4B). Baseline sectors A-C had 290 

MirrorTree scores intermediate between those of the corresponding NC sector and 291 

random groups (Fig. 4B), likely reflecting the noisy selection from baseline eigenvectors 292 

of residues that functionally follow the phylogenetic history of the protein overall. To 293 

evaluate the significance of the MirrorTree score and of the spatial contiguity of each 294 

sector, we computed z-scores based on the mean and standard deviation of the two 295 

metrics applied to the random groups of the same size as each sector. Sectors A-C had 296 

MirrorTree scores <0.5 (Fig. 4B), indicating distinct phylogenetic histories from the 297 

protein, and MirrorTree and spatial contiguity z-scores<-2 (Fig. 4C). There were four 298 

other sectors (D-G) that had spatial contiguity z-scores<-2. These sectors largely 299 

overlapped with A-C; we will return to this overlap in a later section. All other sectors 300 

had spatial contiguity z-score>2, and all but five (H-L) had MirrorTree z-score>-2. Thus, 301 
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MirrorTree reveals that certain NC sectors have distinct evolutionary trajectories from 302 

the protein itself, motivating us to focus on certain sectors (such as A, B, and C for MreB). 303 

 304 

Phylogenetic similarity and the role of entropy 305 

Conservation itself is a major determinant of protein function (39-41), and spatially 306 

contiguous sets of residues can be identified solely on the basis of conservation (42). To 307 

account for variation in entropy across a protein, previous studies have excluded 308 

positions with high conservation (Shannon entropy<0.1) or composed of >25% gaps in 309 

the MSA (43). For MreB, NC sectors A-C had lower entropy than baseline sectors or 310 

random groups of the same size (Fig. 5A-C), albeit higher entropy than residues typically 311 

considered highly conserved (entropy<0.1). 312 

 313 

MirrorTree scores of NC sectors were also generally lower than those of baseline sectors 314 

(Fig. 5D-F). To investigate the dependence of sector-protein MirrorTree scores on 315 

entropy, we computed MirrorTree scores for thousands of random groups of the same 316 

size as the sector (15 residues), biasing sampling using a Monte Carlo algorithm to obtain 317 

a wide range of mean entropies; each random group was selected from residues that did 318 

not overlap with the sector. For mean entropy ≾1, MirrorTree scores were strongly 319 

dependent on entropy (Fig. 5G-I). Thus, the low MirrorTree scores of the NC sectors were 320 

due in part to their low entropy. Nonetheless, the MirrorTree score of NC sector A was 321 
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significantly lower than those of random groups with the same mean entropy (z-score -322 

3.5); the entropy of sector B was so low, presumably due to the high conservation of the 323 

ATP-binding pocket (Fig. 3H, S4), that it was challenging to obtain random groups that 324 

were not largely overlapping. 325 

 326 

Since NC sector A displayed the greatest reduction in MirrorTree score relative to 327 

random groups of the same mean entropy, we focused on this sector to investigate the 328 

dependence of the sector-protein MirrorTree score on sector size. As the cutoff was 329 

increased to include more residues, the MirrorTree score increased (Fig. 5D). To 330 

disentangle whether this increase was due directly to the increase in size or to the 331 

inclusion of residues that are more phylogenetically similar to the protein, we compared 332 

the 10-residue version of sector A (Fig. 5G) with randomly selected groups of 10 residues 333 

from 15- and 20-residue versions of sector A, as well as the entire protein. The mean 334 

MirrorTree score increased as the size of the sampling group increased (Fig. 5J), even for 335 

groups with similar entropy as the 10-residue sector (Fig. 5K). Moreover, 15-residue 336 

versions of sectors B and C had similar entropy (Fig. 5B,C); hence, an approach driven by 337 

entropy alone would not have divided these spatially separated clusters. Thus, the 338 

strength of a residue’s association in a sector of highly coevolving residues is associated 339 

with more phylogenetic distinction from the rest of the protein than can be explained by 340 

entropy alone. 341 
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 342 

Phylogenetic similarity highlights overlapping sectors 343 

The core residues of some MreB NC eigenvectors sometimes had high coefficients in 344 

multiple eigenvectors (Fig. S5), suggesting that we should consider the union of the 345 

sectors as a functional unit. To rationally identify sectors that should be merged, we again 346 

exploited phylogenetic similarity by calculating MirrorTree correlation coefficients from 347 

comparisons between pairs of sectors (Fig. 6A). MreB NC sectors A-C (Fig. 3) exhibited 348 

low sector-sector MirrorTree scores with each other and with random groups (Fig. 6B), 349 

as expected since they have low sector-protein MirrorTree scores (Fig. 6B). By contrast, 350 

the random groups had MirrorTree scores close to 1 (Fig. 6B). NC sectors were also more 351 

phylogenetically distinct from each other than baseline sectors (Fig. 6C). These data 352 

suggest that the NC sectors were selected by evolutionary pressures that led to distinct 353 

functions. 354 

 355 

Of all sectors that had a MirrorTree z-score or a pairwise distance z-score<-2 (sectors A-356 

L, Fig. 4C), several pairs had a high sector-sector MirrorTree score. Hierarchical clustering 357 

of the sectors based on their sector-sector MirrorTree profiles led to the identification of 358 

five obvious “mega-sectors” from the sum of the clustered eigenvectors (Methods), which 359 

we denote a, b, g, d, and e (a, b, and g contain sectors A, B, and C, respectively) (Fig. 6D). 360 

The mega-sectors exhibited low sector-sector MirrorTree scores (Fig. 6E), and a, b, and g 361 
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had both low sector-protein MirrorTree scores (Fig. 6F, G) and low spatial contiguity z-362 

scores (Fig. 6G). The 15-residue version of mega-sector a more compact than the 15-363 

residue version of A (Fig. 6H), and it  contained residues that interact with RodZ (Fig. 6I), 364 

an MreB binding partner that modulates MreB filament nucleation (44) and curvature 365 

(45). Notably, the regions of the 25-residue version of mega-sector a at the barbed and 366 

pointed ends of the MreB subunit interact with each other in a polymerized MreB 367 

filament (Fig. 6J), reinforcing the spatial contiguity of the mega-sector. Mega-sector $ was 368 

identical to sector B, surrounding the ATP-binding pocket (Fig. 6K). As with a and A, the 369 

15-residue version of mega-sector g was more compact than the 15-residue version of 370 

sector C (Fig. 6L), indicating that clustering based on MirrorTree scores increases the 371 

spatial contiguity of sectors. 372 

 373 

NC identifies sectors that are not apparent from the full coevolution matrix 374 

To determine whether our findings about the properties of NC sectors applied to other 375 

proteins, we performed similar sector calculations for enolase (the metalloenzyme 376 

responsible for conversion of 2-phosphoglycerate to phosphoenolpyruvate during 377 

glycolysis (46); Fig. 7A-C), the carbohydrate-processing enzyme glucose-6-phosphate 378 

dehydrogenase (G6PD (47); Fig. 7D-F), and mitogen-activated protein kinase 1 (MAPK1) 379 

(48, 49) (Fig. 7G-K). In each case, NC produced sectors with lower background noise and 380 

higher spatial contiguity than baseline sectors. 381 
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 382 

Most of the MreB NC eigenvectors had strong signal for either positive or negative 383 

coefficients, but not both (Fig. 3A-C). By contrast, one of the large-eigenvalue NC 384 

eigenvectors for MAPK1 had groups of residues with both very positive and very 385 

negative coefficients (Fig. 7G); these residues were located in distinct regions of the 386 

protein (Fig. 7J,K). As validation for splitting the NC eigenvector into two sectors, the 387 

sector-sector MirrorTree score (0.44) indicated that they are phylogenetically distinct; 388 

moreover, the sector-sector MirrorTree score of the corresponding baseline sectors was 389 

higher (0.71). Thus, NC eigenvectors can be interpreted as two phylogenetically distinct 390 

sectors based on coefficient signs. 391 

 392 

In addition to improving sector predictions by reducing background variation, we were 393 

interested in determining whether NC is able to identify sectors that the full coevolution 394 

matrix misses altogether. For the arginine tRNA ligase ArgS (50) and G6PD, the sector 395 

with the most negative MirrorTree z-score had nearly the lowest spatial contiguity z-396 

scores (Fig. 7L,M) and no clear counterpart in any of the baseline eigenvectors (Methods). 397 

For ArgS, the NC sector was spatially localized around the arginine binding site (Fig. 7N). 398 

For G6PD, the NC sector was adjacent to one of the two NADPs that bind to the protein 399 

(Fig. 7O). Thus, the NC correction reveals some sectors that are missed by the baseline 400 

method. 401 
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 402 

NC sectors are enriched in damaging mutations 403 

To test the functional significance of NC sectors, we sought experimental datasets with 404 

quantitative measurements of the consequences of mutations across a protein of interest. 405 

Recent studies have pioneered the use of deep mutational scanning to systematically 406 

generate and quantify the phenotypic or fitness effects of a large number of individual 407 

mutations spanning entire domains or protein (29, 51-53), providing new insights into 408 

structure-function relationships. Thus, we asked whether NC sectors were enriched in 409 

residues for which mutation altered protein function and/or fitness. 410 

 411 

The Ras superfamily of membrane-associated small G-proteins is highly conserved and 412 

controls a broad range of cellular processes (54), has inactive and active states that are 413 

regulated by a GTPase-activated protein (55), and has been implicated in cancer (56). A 414 

recent deep mutational scanning study engineered plasmids to express mutant versions 415 

of human H-Ras as well as the Ras-binding domain of human C-Raf (Raf-RBD) in 416 

Escherichia coli (57), such that the binding of Ras·GTP to Raf-RBD led to transcription of a 417 

chloramphenicol-resistance cassette. Thus, the binding efficacy of the Ras variant was 418 

directly correlated with cellular growth rate. The effect of Ras mutations on fitness was 419 

quantified by the logarithm of the enrichment of variants in the chloramphenicol-selected 420 

versus the starting population, relative to wild-type. The distribution of fitness effects 421 
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was centered around zero, although there were some positions with mutations that 422 

displayed significant functional effects (57). 423 

 424 

To determine whether fitness-altering mutants in H-Ras are enriched at positions 425 

identified by coevolution, we identified two high-eigenvalue sectors with obvious 426 

corresponding baseline sectors. As in our previous analyses (Fig. 3A-C, 7A,D,G), aside 427 

from the highly coevolving residues, the NC sectors had much lower noise than the 428 

baseline sectors (Fig. 8A,B). The residues in the two NC sectors were non-overlapping, 429 

and in both cases appeared to be concentrated in regions with low minimum relative 430 

enrichment (Fig. 8C,D). Across cutoffs that defined sectors of various sizes, we computed 431 

the minimum and maximum relative enrichment (representing deactivation and 432 

activation, respectively) over all amino acid mutations for each position in the 433 

NC/baseline sectors as well as for the residues with the lowest entropy, and compared to 434 

the distribution over all residues. As expected, the residues with lowest entropy 435 

consistently predicted significantly more negative minimum relative enrichment than 436 

random sets of residues (Fig. 8E,F). The mean minimum relative enrichment in NC and 437 

baseline versions of sector A was also significantly more negative than random residues, 438 

with the NC sector outperforming the baseline sector and achieving similar enrichment 439 

values to the lowest-entropy residues (Fig. 8E). NC sector B also exhibited mean 440 

minimum relative enrichment significantly lower than random, by contrast to the 441 
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baseline sector (Fig. 8F). Thus, sectors A and B are more enriched for residues whose 442 

mutation has the most potential for reducing fitness using NC versus baseline. The 443 

maximum relative enrichment was highly similar for sectors and the protein overall (Fig. 444 

S6A,B), suggesting that NC and baseline sectors are enriched for residues with the 445 

potential for deactivating rather than activating mutations in the case of H-Ras. Thus, NC 446 

sectors separate residues based on the maximum impact of mutations at these positions.  447 
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Discussion 448 

 449 

Many existing coevolution methods build on correlation or mutual information, 450 

sometimes employing ad-hoc corrections to partially remove the effects of entropy and 451 

phylogeny. Our NC method harnesses phylogenetic distance between sequences as a 452 

novel dimension in the measurement of protein coevolution, in order to increase 453 

understanding of the functional relationships between amino acids in a protein. In 454 

particular, here we demonstrated that coevolution can occur on multiple phylogenetic 455 

timescales within a single protein. While the factors that determine whether pairs of 456 

positions coevolve on short or long timescales are unknown, future studies using NC to 457 

interrogate the specific biochemical functions of protein sectors may reveal general 458 

patterns across diverse proteins. One interpretation of the variable contribution of 459 

coevolution across phylogenetic distance within a single protein (Fig. 1C) is that the 460 

frequency of mutation for coevolving residues within an NC sector is linked to the 461 

timescale of change for the corresponding selective pressure on that sector. For example, 462 

a sector that determines protein thermostability would be predicted to coevolve on a 463 

timescale commensurate with the frequency of changes in environmental temperature, 464 

whether these changes occur over long (e.g. glaciation and interglacial cycles of 100,000 465 

years) or shorter (e.g. Atlantic multidecadal oscillations) timescales. 466 

 467 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.23.310300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310300
http://creativecommons.org/licenses/by-nc-nd/4.0/


Importantly, NC and our repurposed MirrorTree methods are complementary to most 468 

covariation metrics, and hence can enhance existing bioinformatics tools by defining a 469 

phylogenetic dimension of coevolution and allowing focus on functional signal. We 470 

anticipate that our approach will enable application of coevolution-based methods across 471 

a much broader class of proteins, including those for which the set of sequences is limited 472 

in number (Fig. 2) and/or for which the available homologous sequences are biased to a 473 

particular segment of the phylogenetic tree (Fig. 1B). In particular, application to the 474 

growing database of human exome sequences (58) may improve identification of rare 475 

disease-causing mutations. NC may also enhance protein engineering tools by 476 

highlighting targets for directed evolution. As we have demonstrated, NC expands our 477 

ability to detect functional relationships between residues within proteins and to 478 

determine the links between protein evolution and adaptation. In concert with deep 479 

mutational scanning and other comprehensive functional screens (59), NC and 480 

MirrorTree should provide deeper insight into the specific selective pressures under 481 

which proteins have evolved. 482 

 483 

The predominant application of coevolution so far has been structure prediction, from 484 

using top DCA-predicted contacts as constraints (4) to employing DCA model 485 

parameters as input training features for deep neural networks that seek to predict spatial 486 

distances between amino acids (60). Here, we have shown that NC can improve contact 487 
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prediction by DCA. Moreover, the detection and interpretation of sectors as functional 488 

units within proteins has been a growing research focus, particularly with respect to the 489 

evolutionary origins of sectors. A recent theoretical study demonstrated that selection 490 

acting on a functional property can give rise to a sector (28). Here, we showed that NC 491 

better resolves sectors than baseline by reducing background noise (Fig. 3A-C), leading 492 

to sectors with higher spatial contiguity (Fig. 3D-L) and lower MirrorTree scores (Fig. 4B). 493 

Low MirrorTree scores reveal that residues within sectors have a different evolutionary 494 

history from the rest of the protein, due to both entropy-dependent and entropy-495 

independent differences (Fig. 5). MirrorTree scores can further be used to evaluate NC 496 

predictions in the absence of a known structure. Motivated by the original design 497 

purpose of MirrorTree, we note that scores between sectors of two proteins could be used 498 

to identify protein-protein interactions—potentially between hosts and microbes—due to 499 

the improved performance of NC when the sampling of sequences is shallow (Fig. 2C). 500 

 501 

Our observation that NC sectors, and moreover their cores, have high spatial contiguity 502 

and low MirrorTree scores (Fig. 5J) supports the inferred link between coevolution and 503 

spatial contiguity, and suggests that NC can help to guide experiments toward the 504 

residues of highest importance for a sector’s function (Fig. 8). Beyond the improvements 505 

from lowering background signal, NC also predicts sectors that are otherwise difficult to 506 

detect (Fig. 7L-O), thus highlighting its value. In addition, some studies have 507 
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demonstrated other applications such as protein engineering (19) and variant 508 

interpretation (14). Improved detection of functional coevolution could even help to 509 

refine MSA algorithms, which are ultimately a limiting factor in the detection of 510 

coevolution. Our results suggest that the utility of coevolution as a signal for protein 511 

science can be substantially improved by NC, opening new windows for broadly 512 

understanding (and perhaps ultimately engineering) protein structure-function 513 

relationships.  514 
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Methods and Materials 515 

 516 

MSA construction  517 

MSAs were constructed with BLAST (61) to identify up to 10,000 closest sequences to a 518 

reference sequence, using the RefSeq database (62). Sequences were aligned with Clustal 519 

Omega (63). Sequences with a Jukes-Cantor distance >1 from the reference sequence were 520 

pruned. Redundant sequences and positions with >25% gaps were removed. Any 521 

remaining gaps were filled with the closest amino acid from the closest sequence in terms 522 

of Jukes-Cantor distance. 523 

 524 

Calculation of the expected value of inter-clade covariation 525 

For our analyses, we define a pair of sequences to be within the same clade if the 526 

phylogenetic distance is below a Jukes-Cantor distance ,. The phylogenetic distance is 527 

measured with respect to the aligned protein sequence (Table S1). We sought to measure 528 

the expected value of residue-residue covariation due solely to the comparison of 529 

sequences between clades, which we refer to as the inter-clade covariation !$%&. Below, 530 

we describe and compare measurement of the expected value of inter-clade covariation 531 

in Eq. 1 of the main text both by approximation via bootstrapping and analytically. 532 

 533 

Bootstrapping  534 
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In this approximate method, we bootstrap the original MSA: for every position, we 535 

replace the amino acid with the identity of the same position from a random sequence in 536 

the same clade. For example, in Fig. 1Avi we show two positions in an MSA, colored by 537 

their clade membership for a given phylogenetic distance ,. Note that the first position is 538 

never a glutamine in the orange clade and is never a threonine in the white clade. 539 

Similarly, the second position is never a serine in the orange clade and is never an 540 

arginine in the white clade. The bootstrapped MSAs resample within clades, so as to not 541 

change the phylogenetic structure of the MSA at distances >d; thus, the first position in 542 

the bootstrapped MSAs still does not contain a glutamine, etc. The covariation measured 543 

from each of the bootstrapped MSAs is averaged to obtain the matrix expected under the 544 

hypothesis that there is no coupling between positions within the same clade. The 545 

bootstrapping method can be applied for any coevolution heuristic. 546 

 547 

Analytical method 548 

To derive an analytical solution in place of bootstrapping the NMI metric, we rephrased 549 

our aim as calculating the expected value of covariation between two positions under the 550 

assumption that the two positions are independent within a clade. 551 

 552 

Consider the Shannon entropy for position *:  553 
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$" = −01")*
+,

*)-
ln	1")* , 554 

where 1")*  is the probability of finding amino acid 5  at position * . The marginal 555 

probabilities of positions i and j taking on a particular value in a bootstrapped MSA do 556 

not change on average. However, the joint entropy, which relies on the joint probability, 557 

will change: 558 

$"# = − 0 1")*,#).
+,

*,.)-
ln	1")*,#). . 559 

We seek an expression for the joint entropy that captures the assumption that positions * 560 

and 7 are independent within clades. Since the joint probability of independent variables 561 

is the product of the individual probabilities, we are left with calculating the sum of 562 

probabilities from each clade 8, weighted by the number of sequences 9/ in each clade: 563 

1")*,#).null = :09/
/

1")*/ 1#)./ ; /:09/
/

; 564 

where 1")*/  is the marginal probability of finding amino acid 5 within clade 8 at position 565 

*. 566 

 567 

A comparison of the bootstrapped and analytical methods for calculating NC for the 568 

yeast actin protein is shown in Fig. S2. 569 

 570 

Estimating the statistical significance of nested coevolution 571 
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The expectation value of our nested coevolution background model is described above 572 

analytically only for normalized mutual information; other coevolution metrics do not 573 

have a known closed form analytical solution, so we rely on bootstrapping to estimate 574 

the expected value. Bootstrapping offers the additional advantage of providing an 575 

estimate of the statistical significance of the observed raw coevolution signal by 576 

measuring what fraction of bootstrapped MSAs achieve equal or greater coevolution 577 

values. The accuracy of the significance estimate is limited by the number of bootstrap 578 

measurements, since the maximum resolution is the reciprocal of the number of 579 

bootstraps performed. Using hundreds of bootstraps, we compared significance 580 

estimates with the absolute difference between the total and inter-clade covariation. 581 

These values were highly correlated (Spearman’s ρ = 0.95, Fig. S2B), indicating that either 582 

the bootstrapping or analytical method of computing NC provides a surrogate for the 583 

significance of the observation. 584 

 585 

Structural contact prediction 586 

Real structural contacts were determined by calculating the distance between the alpha 587 

carbons of every pair of residues in the protein based on a crystal structure (Table S1). 588 

All other atoms, including hydrogen atoms, were disregarded. To predict structural 589 

contacts, we used mean-field DCA, and the value of the pseudocount is 0.5, and 590 

sequences closer than 0.3 Hamming distance are reweighted (4, 22). 591 
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 592 

Generation of NC sectors 593 

The output of NC is nd p-by-p matrices (Fig. 1C), where nd is the number of phylogenetic 594 

windows and p is the number of amino acids in the protein. These nd matrices are 595 

concatenated to obtain a supermatrix of dimension pnd-by-p (Fig. S7). Principal 596 

component analysis using eigenvalue decomposition or singular value decomposition is 597 

performed on the super matrix (thus avoiding the need to choose one value of the cutoff 598 

distance d), with pnd observations and p features. The eigenvectors are ordered highest to 599 

lowest according to their associated eigenvalues. Each eigenvector is of length p, where 600 

the ith coefficient corresponds to the importance of the ith amino acid in explaining the 601 

variation in the direction of the respective eigenvector. 602 

 603 

To extract the specific amino acids that are most responsible for explaining the variation 604 

in a particular eigenvector, we identify the positions with the most positive or most 605 

negative coefficients and define these groups of residues as two sectors. Sectors that have 606 

<4 amino acids are ignored for downstream analysis. 607 

 608 

NC and baseline sectors were paired if the dot product of the corresponding eigenvector 609 

was >0.6. 610 

 611 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.23.310300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310300
http://creativecommons.org/licenses/by-nc-nd/4.0/


Calculating the spatial contiguity of a sector 612 

To quantify spatial contiguity, we calculate the mean distance between the alpha carbon 613 

atoms of each pair of residues in the sector in the crystal structure. 614 

 615 

Adaptation of the MirrorTree algorithm 616 

Mirrortree was originally developed to predict protein-protein interactions based on the 617 

similarity of phylogenetic trees (37). In brief, MSAs are calculated using protein 618 

sequences from the same list of organisms for two proteins. For each MSA, the matrix of 619 

pairwise Jukes-Cantor distances is calculated. The MirrorTree score is the Pearson 620 

correlation coefficient of these two distance matrices. A high correlation indicates that the 621 

two proteins have similar phylogenies and thus are likely to have experienced similar 622 

functional selection. We adapted this method to compare the phylogenetic similarity of 623 

protein sectors with the entire protein (Fig. 4A) or other sectors (Fig. 6A). To compute 624 

sector-protein and sector-sector MirrorTree scores, filtered MSAs were created focusing 625 

on the positions of a given sector. 626 

 627 

Biased sampling of random sectors was accomplished via weighting of residues 628 

according to their entropy. 629 

 630 

Calculation of megasectors 631 
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Sets of sectors to be merged into megasectors were determined from hierarchical 632 

clustering based on sector-sector MirrorTree scores. Merging was accomplished by 633 

adding the corresponding eigenvectors after multiplying each sector by +1 or -1 634 

corresponding to whether a positive or negative sector, respectively, was being merged. 635 

The summed vector was then analyzed as if it were an eigenvector in order to define 636 

megasectors at various size cutoffs.  637 
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Figure Legends 645 

 646 

 647 

Figure 1: NC introduces a phylogenetic dimension to traditional coevolution metrics 648 

that removes noise and improves structural prediction. 649 
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A) Schematic illustrating the NC correction to traditional coevolution algorithms. The 650 

MSA (i) is used to generate a covariation matrix (ii) with a particular metric such 651 

as normalized joint entropy or direct information. Previous studies have 652 

attempted to remove phylogenetic noise using the APC (iii), which results in a 653 

corrected coevolution matrix (iv) that has lower levels of off-diagonal signal. For 654 

the NC correction, the MSA is resampled multiple times (v) within clades defined 655 

by a phylogenetic cutoff d (vi), providing null hypotheses (vii) that are averaged 656 

(viii) to correct the covariation matrix (i). The resulting difference (ix) is the NC 657 

matrix for a particular cutoff d.  658 

B) The Jukes-Cantor phylogenetic distance between homologs defines clades 659 

(visualized as a tree) within the NC cutoff d. 660 

C) NC signal at different cutoffs d as illustrated in (B) for the MSA of the KH domain 661 

from (B). For small values of d, the NC matrix exhibits very little off-diagonal 662 

signal, signifying a reduction in noise. 663 

D) The structural contact map for KH, highlighting contacts that are in close 3D 664 

proximity (<5 Å, red), respectively.  665 

E,F) NC with particular cutoffs d improves the prediction of structural contacts 666 

relative to DCA, applied to DI without (E) or after correction with APC (F) (black 667 

lines). All residues within five positions on the polypeptide sequence were 668 
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excluded from the analysis. Gray represents the predictions of the baseline NMI 669 

metric.  670 
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 671 

Figure 2: NC improves predictions of structural contacts across proteins and 672 

coevolution methods, and resolves information loss due to subsampling of the set of 673 

sequences. 674 
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A) NC increased the number of true-positive structural contacts among the first 50 675 

predictions for 10 highly conserved proteins predicted by DCA using DI or 676 

Frobenius norm, without or with APC. 677 

B) MSAs were subsampled across breadth (random sampling) and depth (sorted 678 

sampling) of the MSA. Typically, the distribution of Jukes-Cantor distances in the 679 

MSA (red) remained essentially unchanged for breadth sampling (green and blue), 680 

while it shifted to lower values (as expected) for depth sampling (gold and purple); 681 

shown is the KH domain. 682 

C) NC generally increased the number of true-positive structural contacts among the 683 

first 50 predictions relative to DCA employing DI (without APC) across proteins 684 

and both breadth and depth sampling (for DI with APC, see Fig. S3). Small 685 

decreases occurred for depth sampling of RNase H, thioredoxin, and Kunitz.  686 
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 687 

Figure 3: NC eigenvectors for the actin homolog MreB have lower noise and are more 688 

spatially contiguous than baseline eigenvectors. 689 

A-C) Three eigenvectors with large eigenvalues were identified and paired between 690 

baseline coevolution (NMI with APC) and the NC correction for an MSA 691 
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containing 9,998 sequences of MreB. Aside from the residues with large 692 

coefficients, the NC eigenvectors exhibited lower background noise than the 693 

baseline eigenvectors. Insets: standard deviations of the eigenvector coefficients 694 

after excluding the highest and lowest 50 values. 695 

D-F) NC sectors are more spatially contiguous than the corresponding baseline 696 

sectors. Sectors were defined based on a sliding cutoff of the most positive or most 697 

negative coefficients of each eigenvector in (A-C). Spatial contiguity was defined 698 

as the mean pairwise distance between each residue within a sector.  699 

G-L) For the 15-residue versions of the NC and baseline sectors (vertical lines in (D-700 

F)), the NC sectors (G-I) are more compact on the three-dimensional structure than 701 

the corresponding baseline sectors (J-L). The shaded purple regions in (J-L) 702 

represent the NC sector.  703 
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 704 

Figure 4: Sectors are phylogenetically distinct from the entire protein. 705 

A) Repurposing the MirrorTree algorithm (37) to measure the phylogenetic similarity 706 

between sectors and the entire protein. The MirrorTree score is defined as the 707 

Pearson correlation coefficient between the entries in the two pairwise distance 708 

matrices of all sequences within an MSA for the protein versus only the residues 709 

in the sector. 710 

B) MreB NC sectors A-C (Fig. 3) had lower sector-protein MirrorTree scores than the 711 

corresponding baseline sectors, while random groups of 15 residues had 712 

MirrorTree scores close to 1 (as expected).  713 

C) MreB NC sectors were computed from the 15 most positive or negative coefficients 714 

of the 20 eigenvectors with the highest eigenvalues. Among these 40 sectors, the z-715 
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scores of the MirrorTree score and the spatial contiguity were <-2 for sectors A-C. 716 

Sectors D-L substantially overlapped sectors A-C, and are considered in Fig. 6.  717 
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 718 

Figure 5: Sector-protein MirrorTree scores of residue groups are correlated with 719 

entropy, but NC sectors have lower MirrorTree scores than expected from entropy 720 

alone. 721 
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A-C) The Shannon entropy of MreB NC sectors A-C (Fig. 3) across size cutoffs is lower 722 

than that of the corresponding baseline sectors, indicating that NC selects more 723 

conserved residues (albeit entropy is still higher than the cutoff of <0.1 for typically 724 

being considered highly conserved). Gray regions represent the entropy of a 725 

randomly selected group of residues of the same size. 726 

D-F) MirrorTree scores are lower for the NC sectors than for the corresponding 727 

baseline sectors. Gray regions represent the MirrorTree scores of a randomly 728 

selected group of residues of the same size. 729 

G-I) The MirrorTree scores of sectors A-C (filled gold and purple circles) and of 730 

random groups of 15 residues (gray). Although MirrorTree score is linked to  731 

entropy, NC sectors A and C have MirrorTree scores significantly lower than 732 

expected based on entropy alone. In (G), the open purple circles denote the 733 

versions of sector A with 10 and 20 residues. Black curves indicate ±1 standard 734 

deviation from the mean MirrorTree score for a given entropy. 735 

J) The 10-residue version of NC sector A has lower MirrorTree score than sets of 10 736 

residues selected from the 15- and 20-residue versions of the same sector, which 737 

are lower than those of random groups of 10 residues. The central mark indicates 738 

the median, and the bottom and top edges of the box indicate the 25th and 75th 739 

percentiles, respectively. The whiskers extend to the most extreme data points not 740 

considered outliers. 741 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.23.310300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310300
http://creativecommons.org/licenses/by-nc-nd/4.0/


K) The 10-residue version of NC sector A has a lower MirrorTree score than 10-residue 742 

subsets of the 15- and 20-residue versions of the same sector with similar entropy. 743 

Same data as in (J). Thus, the 10-residue sector represents a “core” of the most 744 

highly coevolving residues.  745 
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 746 

Figure 6: MreB NC sectors are generally phylogenetically distinct, and those with 747 

phylogenetic overlap collectively overlap with functionally important regions. 748 
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A) Repurposing the MirrorTree algorithm to measure the phylogenetic similarity 749 

between sectors. 750 

B) MreB NC sectors A, B, and C exhibited low sector-sector MirrorTree scores with 751 

each other, but high values with random groups of 15 residues (which also 752 

exhibited high MirrorTree scores with each other). 753 

C) NC sectors A-C have lower sector-sector MirrorTree scores with each other than 754 

baseline sectors A-C with each other, indicating that they are more 755 

phylogenetically distinct. 756 

D) Hierarchical clustering of MreB NC sectors A-L (Fig. 4C) based on sector-sector 757 

MirrorTree profiles suggests five distinct mega-sectors. 758 

E-G) The MreB mega-sectors defined by the sum of the clustered eigenvectors 759 

exhibited low sector-sector MirrorTree scores with each other (E) as well as low 760 

sector-protein MirrorTree scores (F). Mega-sectors a, $, and g (similar to sectors A-761 

C) exhibited high spatial contiguity (z-score<-2). 762 

H,I) Mega-sector a was more spatially contiguous than sector A (shaded purple 763 

region) (H), and contained residues around the interface with MreB’s binding 764 

partner RodZ (I). 765 

J) The 25-residue version of mega-sector a connects the pointed and barbed ends of 766 

each subunit in a protofilament. 767 

K) Mega-sector $ (identical to sector B) surrounds the ATP binding pocket. 768 
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L) Mega-sector g is more spatially contiguous than sector C (shaded purple region).  769 
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 770 

Figure 7: NC eigenvectors generally improve sector prediction across proteins, and 771 

enable identification of sectors that are not detectable using the baseline method. 772 
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A,D,G) NC eigenvectors for enolase (A), G6PD (D), and MAPK1 (G) exhibit lower 773 

background noise than the corresponding baseline (NMI with APC) 774 

eigenvectors. 775 

B,E,H,I) The appropriate NC sectors (positive or negative values of the eigenvector) 776 

associated with the eigenvectors in (A,D,G) are more spatially contiguous across 777 

size cutoffs than the baseline sectors. Note that the MAPK1 eigenvector was split 778 

into a positive sector (H) and a negative sector (I). 779 

C,F) The 15-residue versions of the sectors in (B,E) on the crystal structures of enolase 780 

(C) and G6PD (F) illustrate the more compact nature of the NC sectors as 781 

compared with the baseline sectors. 782 

J,K) The 50- and 20-residue versions of the NC sectors in (H,I) are more spatially 783 

compact on the structure than the corresponding baseline sectors, and occupy 784 

distinct parts of the protein. 785 

L-O) For ArgS (L) and G6PD (M), certain high-eigenvalue NC sectors had no 786 

obvious baseline counterpart. These NC sectors had low MirrorTree and spatial 787 

contiguity z-scores (L,M), and 15-residue versions occupied spatially compact 788 

regions around ligands (arginine in (N), NADP in (O)) on the structure (N,O). 789 

Thus, NC enables the detection of sectors that are otherwise hidden.  790 
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 791 

Figure 8: NC sectors predict deactivating mutations in H-Ras. 792 

A,B) NC predicts two eigenvectors with much lower background noise than the 793 

baseline counterparts. The purple and gold diamonds represent the locations of 794 

residues in sectors of size 20. 795 

C,D) Fitness data from a screen of binding efficacy of H-Ras to Raf-RBD (57). Shown 796 

is the minimum enrichment over all mutations at each position (thus 797 

representing maximum deactivation). The purple and gold diamonds represent 798 

the locations of residues in sectors of size 20. 799 
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E,F)Across most sector size cutoffs, the mean minimum relative enrichment was 800 

significantly lower than random (gray) for NC sectors A and B and comparable 801 

that of the residues with the lowest entropy (teal). NC sectors also outperformed 802 

their baseline counterparts.  803 
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