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Abstract		

When	 listening	 to	music,	 humans	 spontaneously	 perceive	 and	 synchronize	movement	 to	

periodic	pulses	of	meter.	A	growing	body	of	evidence	suggests	that	this	widespread	ability	is	

related	to	neural	processes	that	selectively	enhance	meter	periodicities.	However,	to	what	

extent	these	neural	processes	are	affected	by	the	attentional	state	of	the	listener	remains	

largely	 unknown.	 Here,	 we	 recorded	 EEG	while	 participants	 listened	 to	 auditory	 rhythms	

and	detected	small	changes	 in	tempo	or	pitch	of	the	stimulus,	or	performed	a	visual	 task.	

The	overall	neural	response	to	the	auditory	input	decreased	when	participants	attended	the	

visual	modality,	indicating	generally	lower	sensitivity	to	acoustic	information.	However,	the	

selective	contrast	at	meter	periodicities	did	not	differ	across	the	three	tasks.	Moreover,	this	

selective	 contrast	 could	 be	 trivially	 accounted	 for	 by	 biologically-plausible	 models	 of	

subcortical	auditory	processing,	but	only	when	meter	periodicities	were	already	prominent	

in	 the	 acoustic	 input.	 However,	 when	 meter	 periodicities	 were	 not	 prominent	 in	 the	

auditory	input,	the	EEG	responses	could	not	be	explained	by	low-level	processing.	This	was	

also	 confirmed	by	early	auditory	 responses	 that	originate	predominantly	 in	early	auditory	

areas	and	were	recorded	in	the	same	EEG.	The	contrast	at	meter	periodicities	in	these	early	

responses	 was	 consistently	 smaller	 than	 in	 the	 EEG	 responses	 originating	 mainly	 from	

higher-level	processing	stages.	Together,	 these	results	demonstrate	that	selective	contrast	

at	 meter	 periodicities	 involves	 higher-level	 neural	 processes	 that	 may	 be	 engaged	

automatically,	 irrespective	 of	 behavioral	 context.	 This	 robust	 shaping	 of	 the	 neural	

representation	 of	 rhythm	 might	 thus	 contribute	 to	 spontaneous	 and	 effortless	

synchronization	to	musical	meter	in	humans	across	cultures.		
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Introduction	

Perception	 of	 rhythmic	 sound	 sequences	 involves	 much	 more	 than	 just	 a	 precise	

representation	 of	 constituent	 time	 intervals.	 Already	 perception	 of	 single	 intervals	 is	 not	

one-to-one	with	respect	to	the	sensory	input,	but	reflects	a	representation	constructed	with	

respect	to	prior	individual	experience	(Desain	and	Honing,	2003;	Jazayeri	and	Shadlen,	2010;	

Jacoby	and	McDermott,	2017).	An	even	higher	level	of	perceptual	organization	is	arguably	at	

stake	when	 the	 rhythmic	 input	 induces	 perception	 of	musical	meter,	 i.e.,	 a	 nested	 set	 of	

periodic	pulses	to	which	people	tend	to	move	or	dance	(Cohn,	2020).	That	 is,	 the	 internal	

representation	of	meter	guides	perceptual	organization	of	the	incoming	rhythmic	sequence	

in	time	(Povel	and	Essens,	1985;	McAuley	and	Jones,	2003)	and	drives	body	movement	such	

as	head	bobbing	or	foot	tapping	(Toiviainen	et	al.,	2010;	Janata	et	al.,	2012).	Perception	and	

sensory-motor	 synchronization	 to	 meter	 is	 a	 spontaneous	 human	 ability	 that	 has	 been	

widely	observed	across	cultures	and	musical	traditions	(Nettl,	2000;	Savage	et	al.,	2015).		

In	 some	 cases,	 meter	 perception	 can	 be	 largely	 driven	 by	 the	 acoustic	 features	 of	 the	

sensory	input,	particularly	when	clear	periodicities	are	present	in	the	temporal	structure	of	

the	 stimulus	 (although	even	 in	 such	cases	 the	alignment	of	 the	perceived	pulses	with	 the	

input	is	not	trivial,	see	e.g.	off-beat	rhythm	in	reggae).	However,	meter	perception	is	often	

induced	by	stimuli	that	lack	unambiguous	acoustic	cues	to	meter	periodicities	(Chapin	et	al.,	

2010;	Nozaradan	 et	 al.,	 2012;	Witek	 et	 al.,	 2014;	 Large	 et	 al.,	 2015;	 London	 et	 al.,	 2017;	

Vuust	 et	 al.,	 2018;	 Matthews	 et	 al.,	 2020),	 and	 the	 same	 rhythmic	 sequence	 can	 be	

perceptually	 organized	 in	 different	 ways	 depending	 on	 prior	 experience	 at	 multiple	

timescales	(Phillips-Silver	and	Trainor,	2005;	Hannon	et	al.,	2012a;	Chemin	et	al.,	2014;	van	

der	Weij	et	al.,	2017).	This	shows	that	meter	perception	goes	beyond	the	mere	tracking	of	

periodicities	 in	 the	 sensory	 input,	 and	 additionally	 involves	 higher-level	 processes	 that	

transform	the	input	towards	a	particular	metric	category	with	a	great	degree	of	robustness	

and	flexibility	with	respect	to	the	input	(Nozaradan	et	al.,	2017a).		

This	is	in	line	with	a	number	of	recent	neurophysiological	studies	based	on	the	assumption	

that	meter	perception	is	related	to	neural	processes	that	emphasize	the	contrast	between	

time	points	marked	by	 the	perceived	metric	 pulses	 and	other	 time	points	 not	marked	by	

pulses.	This	contrast	in	the	neural	response	can	be	driven	already	by	the	physical	features	of	

the	sensory	input	along	with	a	set	of	low-level	nonlinear	transformations	throughout	early	
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auditory	 processing	 stages	 (Rajendran	 et	 al.,	 2017,	 2020).	 Importantly	 there	 is	 also	

increasing	evidence	for	higher-level	neural	processes	that	transform	the	input	by	selectively	

enhancing	 this	 contrast	 beyond	physical	 features	 and	 low-level	 nonlinearities	 (Lenc	et	 al.,	

2018,	 2020).	 These	 higher-level	 neural	 processes	 may	 thus	 play	 a	 key	 role	 in	 building	

internal	representation	of	meter	dissociated	from	the	physical	features	of	the	sensory	input	

(Nozaradan	et	al.,	2011,	2012,	2017a,	2017b;	Tal	et	al.,	2017)	.			

However,	 to	 what	 extent	 these	 processes	 are	 engaged	 automatically,	 and	 whether	 they	

depend	 on	 the	 behavioral	 goals	 of	 the	 listener	 remains	 largely	 unknown.	 Previous	

neurophysiological	 and	 neuroimaging	 studies	 of	 meter	 processing	 in	 humans	 have	

employed	a	wide	range	of	behavioral	tasks,	some	instructing	participants	to	attend	directly	

to	the	pulse-like	metric	structure	of	 the	stimuli	 (Grahn	and	Rowe,	2009,	2013;	Lenc	et	al.,	

2020;	Matthews	et	al.,	2020)	or	the	temporal	properties	of	the	stimulus	(Nozaradan	et	al.,	

2017b;	Lenc	et	al.,	2018),	while	other	studies	used	an	orthogonal	task	such	as	attending	to	a	

non-temporal	 sound	 feature	 (e.g.	pitch;	Haumann	et	al.,	2018)	or	attending	 to	a	different	

modality	(e.g.	visual;	Chapin	et	al.,	2010)	or	no	task	at	all	(Bengtsson	et	al.,	2009).	However,	

how	neural	processing	of	a	rhythmic	input	changes	across	these	different	tasks	has	not	been	

systematically	explored	using	a	consistent	set	of	stimuli	and	analysis	methods.		

Additionally,	 in	 a	 series	 of	 studies	 investigating	 putative	 “pre-attentive	 beat	 perception”	

using	event-related	brain	response	to	regularity	violations,	participants	were	typically	asked	

to	perform	a	passive	task,	such	as	watching	a	silent	movie,	while	 listening	to	the	rhythmic	

stimuli	 (Vuust	 et	 al.,	 2005;	 Ladinig	 et	 al.,	 2009;	 Geiser	 et	 al.,	 2010;	 Bouwer	 et	 al.,	 2014,	

2016).	 The	 lack	 of	 strict	 control	 of	 participant’s	 attentional	 focus	 combined	with	 the	 low	

load	of	 the	 task	make	 the	 results	of	 these	 studies	difficult	 to	 interpret	 (Lavie	 and	Dalton,	

2014;	 Sussman	 et	 al.,	 2014;	Murphy	 et	 al.,	 2017).	 In	 addition,	 these	 studies	mostly	 used	

stimuli	 with	 clear	 acoustic	 cues	 to	 meter	 periodicities.	 Therefore,	 it	 remains	 unknown	

whether	these	results	would	generalize	to	rhythmic	inputs	that	lack	such	prominent	sensory	

cues	and	may	thus	require	higher-level	processes	to	induce	meter	perception	(Chapin	et	al.,	

2010;	Nozaradan	et	al.,	2011).		

In	 the	 current	 study,	 we	 aimed	 to	 address	 these	 issues	 by	 recording	 human	 brain	

electroencephalographic	(EEG)	activity	in	response	to	(i)	a	consistent	set	of	rhythmic	stimuli	

with	varying	amounts	of	 sensory	cues	 to	meter	periodicities,	along	with	 (ii)	a	 set	of	 three	

demanding	behavioral	tasks	in	the	same	sample	of	participants.	We	presented	participants	
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with	two	rhythmic	sequences.	One	sequence	contained	prominent	acoustic	cues	to	meter	

periodicities,	 while	 the	 other	 sequence	 lacked	 such	 prominent	 periodic	 cues.	 This	 latter	

sequence	 enabled	 us	 to	 control	 for	 a	 low-level	 confound	 which	 could	 trivially	 explain	

enhanced	 neural	 response	 at	 meter	 periodicities.	 That	 is,	 if	 selective	 contrast	 at	 meter	

periodicities	 is	 observed	 in	 the	 EEG	 in	 response	 to	 a	 sequence	 lacking	 such	 prominent	

periodic	cues,	this	selective	contrast	at	meter	periodicities	cannot	be	explained	easily	by	the	

stimulus	 structure	or	 low-level	 processing	of	 the	 stimulus.	 Importantly,	 the	decision	as	 to	

what	 frequencies	 would	 correspond	 to	 meter	 periodicities	 was	 informed	 by	 previous	

studies,	 which	 used	 tapping	 tasks	 to	 carefully	 test	 the	 metric	 pulses	 most	 consistently	

induced	by	these	two	rhythmic	patterns	across	listeners	(Nozaradan	et	al.,	2012,	2018;	Lenc	

et	 al.,	 2018).	 This	 ensured	 that	 these	 specific	 frequencies	 were	 relevant	 for	 meter	

perception,	 in	 contrast	 to	other	 frequencies	 that	 are	 also	elicited	by	 the	 rhythms	but	 are	

irrelevant	to	the	perceived	meter.		

Participants	 listened	 to	 the	 rhythms	while	performing	 three	different	demanding	 tasks.	 In	

the	 first	 task,	 participants	 were	 required	 to	 detect	 small	 changes	 in	 the	 speed	 of	 the	

rhythmic	sequence.	Because	the	sequence	was	non-isochronous,	this	task	cannot	be	carried	

out	 by	 simply	 comparing	 successive	 inter-tone	 intervals	 and	 therefore	 encourages	

participants	 to	 build	 an	 internal	 representation	 of	meter	 that	 aids	 tracking	 of	 the	 overall	

speed	of	 the	rhythm	(Schulze,	1978;	Grube	and	Griffiths,	2009;	Grube	et	al.,	2010).	 In	 the	

second	task,	participants	were	required	to	detect	small	changes	in	the	pitch	of	a	single	tone	

among	the	rhythmic	sequences,	 thus	still	 focusing	on	the	sound	but	not	necessarily	on	 its	

timing.	 Finally,	 in	 the	 third	 task,	 participants	 were	 required	 to	 mentally	 sum	 numbers	

sequentially	presented	on	the	screen	while	ignoring	the	sounds	altogether.		

The	EEG	was	recorded	while	participants	were	presented	with	the	auditory	sequences	and	

carried	out	 the	behavioral	 tasks	without	any	movement.	From	the	EEG,	we	measured	 the	

difference	 in	 amplitude	 of	 the	 neural	 activity	 at	 meter-related	 frequencies	 vs.	 meter-

unrelated	 frequencies	 elicited	 by	 the	 rhythms,	 i.e.,	 the	 contrast	 at	 perceptually-relevant	

timescales,	 using	 frequency	 tagging.	 This	 approach	 has	 proven	 to	 be	 a	 powerful	 tool	 for	

capturing	the	contrast	in	brain	responses	between	periodically	spaced	time	points	with	high	

signal-to-noise	 ratio	 and	 without	 assumptions	 about	 the	 latency	 or	 the	 shape	 of	 the	

response	 (Nozaradan,	 2014;	 Rossion,	 2014;	 Norcia	 et	 al.,	 2015;	 Nozaradan	 et	 al.,	 2017a;	

Rossion	et	al.,	2020).	Moreover,	the	approach	also	allows	the	overall	gain	of	the	response	
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(i.e.	 the	 general	 sensitivity	 to	 auditory	 stimulation)	 to	 be	 disentangled	 from	 the	 selective	

contrast	at	meter-relevant	periodicities.		

We	 also	 examined	whether	 the	 contrast	 at	meter	 frequencies	 in	 the	 EEG	 activity	 elicited	

across	behavioral	 tasks	could	be	trivially	accounted	 for	by	 fixed	nonlinear	 transformations	

along	 the	 early	 auditory	 pathway.	 To	 this	 end,	 we	 used	 biologically	 plausible	 models	 to	

simulate	 responses	 to	 the	 rhythmic	 stimuli	 in	 the	 auditory	 nerve,	 as	 well	 as	 inferior	

colliculus.	To	complement	these	simulations,	we	also	directly	captured	responses	presumed	

to	be	predominantly	driven	by	brainstem	auditory	nuclei	and	primary	auditory	areas	using	

the	 same	 frequency-tagging	 method	 as	 Nozaradan	 et	 al.	 (2016c,	 2018).	 These	 early	

responses	 were	 observed	 at	 a	 faster	 timescale	 (>	 150	 Hz)	 due	 to	 neural	 tracking	 of	 the	

amplitude-modulated	fine	structure	of	the	sound	input.	By	comparing	these	early	auditory	

responses	 to	 the	 higher-level	 responses	 observed	 at	 slower	 timescales	 (<	 5Hz,	

corresponding	 to	 the	 amplitude	 envelope	 of	 the	 input),	 which	mainly	 capture	 activity	 in	

higher-level	 cortical	 networks,	 we	 aimed	 to	 estimate	 the	 contribution	 of	 different	

processing	stages	to	the	selective	contrast	at	meter	frequencies	across	different	attentional	

contexts.		

	

	

Materials	and	methods		

Participants	

Seventeen	healthy	volunteers	(mean	age	=	23.3,	SD	=	6.7,	15	females)	with	various	levels	of	

formal	musical	training	(mean	=	2.5,	SD	=	4.6,	range	=	0-16	years)	participated	in	the	study	

after	providing	written	 informed	consent.	All	participants	reported	normal	hearing	and	no	

history	 of	 neurological	 or	 psychiatric	 disorder.	 The	 study	 was	 approved	 by	 the	 Research	

Ethics	Committee	of	Western	Sydney	University.		

	

Auditory	stimuli	

The	 auditory	 stimuli	 were	 created	 in	 Matlab	 R2016b	 (The	 MathWorks,	 Natick,	 MA)	 and	

presented	binaurally	through	insert	earphones	(ER-2;	Etymotic	Research,	Elk	Grove	Village,	

IL)	 at	 a	 comfortable	 listening	 level	 (~	 75	 dB	 SPL)	 using	 PsychToolbox,	 version	 3.0.14	

(Brainard,	 1997)	 running	 on	 a	MacBook	 Pro	 laptop	 (mid-2015,	 OSX	 10.12).	 Triggers	were	
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sent	 to	 the	 EEG	 system	 using	 LabJack	 U3	 interface.	 The	 stimuli	 consisted	 of	 a	 2.4-s	 long	

rhythmic	pattern	(made	up	of	twelve	200-ms	long	events)	continuously	looped	14	times	to	

create	a	33.6-s	long	sequence.	The	rhythmic	structure	of	the	pattern	was	based	on	a	specific	

arrangement	 of	 8	 sound	 events	 and	 4	 silent	 events	 (amplitude	 at	 0).	 Each	 sound	 event	

corresponded	to	a	complex	tone	consisting	of	three	partials	(f1	=	209	Hz,	f2	=	398	Hz,	f3	=	

566	Hz)	with	linear	onset	and	offset	ramp	lasting	10%	of	the	event	duration	(i.e.	20	ms).		

We	used	 two	different	 rhythmic	patterns	 (depicted	 in	Figure	1).	These	 two	patterns	were	

selected	based	on	previous	evidence	that	they	both	induce	a	perception	of	musical	meter,	

consistent	across	individuals,	based	on	nested	grouping	of	the	individual	event	rate	(200	ms)	

by	 2	 (2	 x	 200	 ms	 =	 400	 ms),	 2	 (2	 x	 400	 ms	 =	 800	 ms)	 and	 3	 (3	 x	 800	 ms	 =	 2400	 ms)	

(Nozaradan	et	al.,	2012,	2018;	Lenc	et	al.,	2018).		

Importantly,	 although	 the	 two	 rhythmic	 patterns	 induce	 perception	 of	 musical	 meter	 at	

consistent	 periods	 across	 individuals,	 they	 provide	 the	 listener	with	 different	 amounts	 of	

direct	 sensory	 cues	 to	 this	 perceived	 metric	 structure.	 One	 way	 to	 quantify	 this	 is	 to	

examine	 the	 degree	 of	mismatch	 between	 the	 perceived	meter	 and	 the	 arrangement	 of	

sound	 events	 in	 the	 rhythm	 using	 syncopation	 scores.	 Even	 though	 different	 ways	 to	

calculate	 syncopation	 scores	 have	 been	 proposed,	 the	 main	 principle	 they	 share	 is	

quantifying	 to	what	 extent	 the	 rhythmic	 stimulus	 creates	 a	 contrast	 between	 time	points	

that	coincide	with	the	putative	metric	pulses,	and	the	rest	of	the	time	points,	i.e.	a	contrast	

at	meter	 periodicities	 (Longuet-Higgins	 and	 Lee,	 1984;	 Povel	 and	 Essens,	 1985;	 Parncutt,	

1994;	Eck,	2003).	We	calculated	syncopation	scores	for	the	two	rhythmic	patterns	using	an	

algorithm	originally	proposed	by	Longuet-Higgins	and	Lee,	which	simultaneously	takes	into	

account	the	whole	nested	hierarchy	of	metric	pulses	(Longuet-Higgins	and	Lee,	1984;	Witek	

et	al.,	2014).	Additionally,	a	C	score	(counterevidence)	was	calculated	using	the	method	and	

parameters	 proposed	 by	 Povel	 and	 Essens	 (1985).	 While	 C	 score	 calculates	 syncopation	

using	only	one	pulse	in	the	metric	structure,	it	accounts	for	variable	perceptual	salience	of	

tones	 making	 up	 the	 pattern	 based	 on	 their	 relative	 temporal	 proximity	 (Povel	 and	

Okkerman,	1981).		

Even	though	the	periods	of	the	perceived	metric	pulses	for	the	two	rhythms	are	generally	

consistent	across	participants,	 the	alignment	of	 these	pulses	with	 respect	 to	 the	 rhythmic	

stimulus	 can	vary	 (Nozaradan	et	 al.,	 2012,	2018;	 Lenc	et	 al.,	 2018).	 To	avoid	assumptions	

regarding	 particular	 pulse	 alignment,	 the	minimum	 syncopation	 and	C	 score	 across	 all	 12	
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possible	positions	of	the	slowest	metric	pulse	with	respect	to	the	rhythm	was	taken	(Lenc	et	

al.,	2020).	This	yielded	smaller	scores	for	one	rhythm	(syncopation	=	1,	C	=	1),	in	comparison	

to	 the	 other	 rhythm	 (syncopation	 =	 2,	 C	 =	 2).	 In	 other	words,	 both	measures	 revealed	 a	

greater	mismatch	between	the	perceived	meter	and	the	arrangement	of	sound	events	for	

the	second	rhythm.		

This	 reflects	 the	 fact	 that	 the	 physical	 structure	 of	 the	 first	 rhythm	 provides	 clear	 and	

unambiguous	 information	 about	 the	 perceived	 meter.	 On	 the	 other	 hand,	 the	 second	

rhythm	 provides	 less	 sensory	 information	 about	 the	 metric	 periodicities	 (there	 is	 no	

plausible	alignment	of	 the	perceived	pulses	 that	would	 lead	to	systematic	match	with	 the	

distribution	 of	 sound	 onsets	 in	 the	 pattern).	 For	 these	 reasons,	 the	 first	 and	 the	 second	

rhythm	are	further	referred	to	as	"high	meter	contrast"	and	"low	meter	contrast"	rhythm,	

respectively	 (note	 that	 various	 terms	 have	 been	 previously	 used	 to	 describe	 these	 same	

rhythms,	e.g.	unsyncopated	and	syncopated,	Nozaradan	et	al.,	2016b,	2017b,	2018).	Despite	

these	 differences,	 both	 rhythms	 consistently	 induce	meter	 perception	 across	 listeners,	 as	

revealed	by	previous	studies	(Nozaradan	et	al.,	2012,	2018;	Lenc	et	al.,	2018).		

	

Frequency-tagging	analysis		

Another	way	to	measure	the	amount	of	contrast	at	meter	periodicities	is	to	directly	analyze	

the	 modulation	 spectrum	 of	 the	 acoustic	 stimulus	 using	 Fourier	 transform.	 This	 allows	

quantification	of	the	extent	to	which	the	continuous	modulation	of	acoustic	features	of	the	

input	(here	amplitude	envelope)	emphasizes	particular	periodicities.		

Because	 the	 stimulus	 sequence	 consisted	 of	 seamless	 repetitions	 of	 the	 same	 rhythmic	

pattern,	 the	 modulation	 spectra	 were	 expected	 to	 contain	 energy	 at	 frequencies	

corresponding	 to	 the	 repetition	 of	 the	 pattern	 (1/2.4	 s	 =	 0.416	 Hz)	 and	 harmonics.	 The	

relative	distribution	of	energy	across	these	different	harmonics	reveals	how	much	contrast	

was	 present	 in	 the	 signal	modulations	 at	 the	 corresponding	 frequencies.	 From	 the	 set	 of	

first	12	harmonics	(up	to	5	Hz,	the	frequency	of	individual	event	rate	in	the	rhythms),	four	

frequencies	were	considered	meter-related	(0.416,	1.25,	2.5,	5	Hz),	as	they	corresponded	to	

the	frequencies	of	the	perceived	metric	pulses	(1/2.4	s,	1/0.8	s,	1/0.4	s,	1/0.2	s	respectively).	

The	remaining	8	frequencies	in	the	set	were	considered	meter-unrelated.		
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To	measure	the	relative	prominence	of	meter	frequencies,	amplitudes	at	the	12	frequencies	

corresponding	to	the	stimulus	modulation	spectrum	were	converted	to	z-scores	as	follows:	

([x]	−	[mean	across	the	12	frequencies])/[SD	across	the	12	frequencies].	A	higher	z-score	at	a	

specific	 frequency	 indicates	 that	 the	 response	 at	 that	 frequency	 stands	 out	 prominently	

relative	to	the	whole	set	of	frequencies	in	the	modulation	spectrum.	The	z-scores	for	meter-

related	 frequencies	were	 averaged	 to	obtain	 an	 index	of	 their	 relative	prominence	 in	 the	

modulation	spectra.			

The	main	advantage	of	using	FFT	is	that	it	can	be	applied	to	a	variety	of	signals	representing	

(i)	modulations	in	the	acoustic	input,	(ii)	simulated	responses	of	neurons	in	the	subcortical	

auditory	 nuclei,	 (iii)	 surface	 EEG,	 and	 (iv)	 movement.	 Importantly,	 using	 the	 z-scoring	

standardization	yields	a	measure	invariant	to	differences	in	unit	and	scale,	thus	allowing	for	

objective	measurement	of	the	relative	distance	between	these	different	signals.	In	sum,	this	

method	represents	a	powerful	tool	to	track	the	transformation	of	the	input,	i.e.	the	changes	

in	contrast	at	meter	periodicities	across	different	processing	stages	from	input	to	output.		

	

Models	of	subcortical	auditory	processing	

To	estimate	to	what	extent	the	neural	transformation	of	a	rhythmic	acoustic	stimulus	could	

be	driven	by	early	stages	of	the	auditory	pathway,	we	simulated	responses	to	the	rhythmic	

stimuli	 using	 multiple	 biologically-plausible	 models	 of	 subcortical	 auditory	 processing,	 as	

described	below.	Comparing	the	EEG	responses	to	these	early	representations	thus	helps	to	

disentangle	 the	 contribution	 of	 higher-level	 transformations	 that	 cannot	 be	 trivially	

explained	by	early	sound	processing	stages.			

(i)	 Broadband	 envelope.	 A	 number	 of	 previous	 EEG	 studies	 used	 broadband	 envelopes	 to	

represent	modulations	in	the	acoustic	input	(Aiken	and	Picton,	2008;	Nozaradan	et	al.,	2012,	

2018;	 Chemin	 et	 al.,	 2014;	 Cirelli	 et	 al.,	 2016;	 Tal	 et	 al.,	 2017;	 Broderick	 et	 al.,	 2019;	 Di	

Liberto	et	al.,	2020).	To	provide	a	point	of	 comparison	with	 these	 studies,	 the	broadband	

amplitude	envelope	of	the	33.6-s	auditory	sequences	(high	and	low	meter	contrast	rhythm)	

was	 extracted	 using	 the	 Hilbert	 transform	 (as	 implemented	 in	 Matlab)	 and	 then	

transformed	 into	 the	 frequency	 domain	 using	 a	 fast	 Fourier	 transform	 (FFT,	 yielding	 a	

spectral	resolution	of	1/33.6	s,	i.e.	approximately	0.03	Hz).		
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	(iia)	 UR-EAR-AN.	 The	 model	 of	 the	 auditory	 nerve	 developed	 by	 Bruce	 et	 al.	 (2018)	 as	

implemented	in	UR_EAR	toolbox	(version	2020a)	was	used	to	simulate	responses	from	128	

cochlear	channels	with	characteristic	 frequencies	 logarithmically	 spaced	between	130	and	

8000	 Hz.	 The	 parameters	 used	 for	 cochlear	 tuning	 matched	 data	 available	 from	 human	

subjects	(Shera	et	al.,	2002).	For	each	channel,	51	auditory	nerve	fibers	were	simulated	with	

biologically	plausible	distribution	of	high,	mid,	and	 low-spontaneous-rate	fibers	(Liberman,	

1978).	 The	 model	 provides	 faithful	 simulation	 of	 physiological	 processes	 associated	 with	

cochlear	nonlinearities,	 inner	hair	cell	 transduction	process,	 the	synapse	between	the	hair	

cell	and	the	auditory	nerve,	and	the	associated	firing	rate	adaptation.		

(iib)	UR-EAR-IC.	The	simulated	auditory	nerve	firing	rates	were	fed	into	the	same-frequency	

inhibition	and	excitation	model	(SFIE)	used	to	simulate	enhanced	onset	synchrony	and	the	

decreased	upper	limit	for	phase-locking	to	stimulus	envelope	in	the	ventral	cochlear	nucleus	

(Nelson	and	Carney,	2004).	The	default	parameters	in	the	UR_EAR	toolbox	were	used,	which	

were	based	on	Carney	et	al.	(2015).	A	second	SFIE	model	was	then	used	to	simulate	band-

pass	modulation	filtering	and	enhanced	onset	responses	of	neurons	in	the	inferior	colliculus	

(IC).	 The	 parameters	were	 set	 to	 simulate	 IC	 units	 with	 the	 best	modulation	 frequencies	

separately	at	2,	4,	8,	16,	32,	and	64	Hz.		

For	both	the	AN	and	IC	stage	of	the	UR_EAR	model,	the	simulated	instantaneous	firing	rates	

were	 summed	 across	 cochlear	 channels	 (Zuk	 et	 al.,	 2018;	 Rajendran	 et	 al.,	 2020),	 and	

transformed	 into	 the	 frequency	 domain	 using	 FFT.	 While	 averaging	 firing	 rates	 across	

channels	might	yield	different	results	than	averaging	FFT	magnitudes	for	spectrally	complex	

inputs,	the	two	methods	should	give	very	similar	results	for	the	stimuli	in	the	current	study,	

as	 the	 modulation	 waveform	 was	 identical	 across	 the	 whole	 spectrum.	 Subsequently,	

amplitudes	at	the	12	frequencies	of	interest	were	extracted	from	the	obtained	spectra	and	

normalized	 by	 z-scoring	 separately	 for	 each	model	 output	 (see	 section	 Frequency-tagging	

analysis).		

		

Early	auditory	responses	

The	frequencies	of	the	partials	of	the	complex	tones	delivering	the	rhythm	(f1	=	209	Hz,	f2	=	

398	 Hz,	 f3	 =	 566	 Hz)	 were	 selected	 because	 sustained	 frequency-following	 responses	 at	

these	frequencies	are	expected	to	originate	predominantly	from	sub-cortical	auditory	nuclei	
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due	 to	 low-pass	 characteristics	 of	 the	 ascending	 auditory	 pathway	 (Chandrasekaran	 and	

Kraus,	 2010;	 Skoe	 and	 Kraus,	 2010;	 but	 see	 Coffey	 et	 al.,	 2016,	 2019,	 who	 show	 that	 a	

portion	of	this	response	could	also	be	explained	by	activity	from	early	cortical	stages).	Non-

harmonic	 spacing	 of	 the	 partials	was	 used	 in	 the	 current	 study	 as	 it	 is	 expected	 to	 elicit	

responses	 at	 frequencies	 that	 are	 not	 physically	 present	 in	 the	 stimulus	 spectrum.	 These	

frequencies	 corresponded	 to	 distortion-product	 otoacoustic	 emissions	 generated	 by	

nonlinear	 processes	 at	 the	 cochlear	 level	 and	 transmitted	 along	 the	 ascending	 auditory	

pathway	 (Lee	 et	 al.,	 2009).	 Hence,	 any	 EEG	 response	 at	 these	 frequencies	 could	 not	 be	

explained	by	an	electromagnetic	artifact	from	the	sound-delivery	system.	These	responses	

were	 expected	 at	 frequencies	 corresponding	 to	 quadratic	 distortion	 products	 across	 the	

three	partials,	 i.e.	 f2-f1	(168	Hz),	 f3-f2	(189	Hz),	and	f3-f1	(357	Hz).	Due	to	the	frequency-

shifting	 theorem,	 each	 of	 the	 distortion-product	 frequencies	 was	 expected	 to	 be	

symmetrically	flanked	by	sidebands	representing	the	amplitude	modulation	spectrum	of	the	

response	(Oppenheim	and	Schafer,	2009).	This	allowed	the	contrast	at	meter	frequencies	to	

be	 quantified	 at	 earlier	 auditory	 processing	 stages	 with	 the	 same	 method	 as	 described	

above	 for	 the	 sound	 input	 (see	 section	 Frequency-tagging	 analysis).	 Furthermore,	 this	

contrast	at	meter	frequencies	obtained	from	earlier	auditory	stages	was	also	compared	to	

the	contrast	at	meter	frequencies	obtained	from	EEG	responses	measured	in	a	much	lower	

frequency	 range	 (here	 at	 5	Hz	 and	 below)	 and	 assumed	 to	 predominantly	 originate	 from	

higher-level	processing	stages	(further	referred	to	as	"higher-level"	responses)	 (Nozaradan	

et	al.,	2018).	 Importantly,	because	the	index	of	contrast	at	meter	frequencies	consists	 in	a	

relative	 measure	 of	 the	 amplitude	 at	 meter	 frequencies	 vs.	 meter-unrelated	 frequencies	

obtained	after	z-scoring	standardization,	this	measure	is	invariant	to	differences	in	unit	and	

scale,	thus	providing	valid	estimation	of	the	relative	distance	between	signals	as	different	as	

the	 early	 auditory	 responses	 and	 higher-level	 responses,	 irrespective	 of	 differences	 in	

overall	gain.	

	

Experimental	design	and	procedure	

Participants	were	presented	with	the	rhythmic	auditory	stimuli	in	separate	blocks	of	10	self-

paced	 trials.	 The	 polarity	 of	 the	 acoustic	 waveform	 was	 inverted	 on	 every	 other	 trial	 to	
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prevent	potential	electromagnetic	artifact	at	the	frequencies	of	the	sound	input	(Skoe	and	

Kraus,	2010).	In	each	block,	participants	were	asked	to	perform	a	specific	behavioral	task.		

Tempo	task.	The	block	contained	two	additional	randomly-placed	trials	where	one	rhythm	

cycle	(at	a	random	position	after	the	first	3	cycles)	contained	a	decrease	in	tempo.	This	was	

implemented	by	gradually	increasing	(and	then	decreasing)	the	inter-onset	intervals	of	the	

individual	 constituent	events	within	one	 rhythm	cycle	according	 to	a	 cosine	window	 from	

the	standard	inter-onset	interval	(200	ms)	to	the	maximum	interval	determined	individually	

for	 each	 participant.	 Participants	were	 asked	 to	 focus	 on	 the	 tempo	of	 the	 stimuli,	while	

ignoring	 all	 other	 parameters,	 as	 well	 as	 any	 visually	 presented	 stimuli.	 They	 reported	

whether	the	change	was	present	after	the	end	of	each	trial.		

Pitch	 task.	 The	 block	 contained	 two	 additional	 trials	 with	 increased	 pitch	 of	 a	 single	

constituent	tone	(implemented	as	a	proportional	increase	in	the	frequency	of	each	partial).	

Participants	were	asked	to	report	the	presence	of	the	pitch	change	at	the	end	of	each	trial,	

while	ignoring	other	sound	parameters	and	visual	stimuli.		

Visual	 stimuli	 and	 task.	 Throughout	 all	 trials	 and	 blocks,	 participants	 also	 viewed	

sequentially	 presented	 numbers	 in	 the	 center	 of	 the	 screen	 positioned	 in	 front	 of	 them	

(approximately	 one	meter	 distance).	 The	 numbers	were	 randomly	 sampled	 such	 that	 the	

first	 number	 for	 each	 trial	was	 between	 100	 and	 200,	 and	 all	 subsequent	 numbers	were	

between	10	and	30.	The	 time	 interval	between	 the	onset	of	each	sequential	number	was	

individually	 determined	 for	 each	participant,	 and	 a	 jitter	 of	 10%	of	 this	 time	 interval	was	

then	applied	to	avoid	any	strict	periodicity	in	the	visual	presentation	of	the	numbers,	which	

could	result	in	a	narrow	frequency	peak	elicited	in	the	EEG	spectrum	at	the	frequency	of	the	

visual	presentation.	Each	number	stayed	on	the	screen	for	80%	of	the	 inter-onset	 interval	

(with	10%	random	jitter	applied	to	this	value).	Participants	were	asked	to	fixate	their	eyes	

on	the	numbers	in	every	trial	across	all	blocks	in	order	to	prevent	eye	movements.	During	

the	Visual	task,	they	were	asked	to	mentally	add	these	numbers	and	report	the	sum	at	the	

end	 of	 each	 trial,	 while	 ignoring	 the	 sound	 stimuli.	 Participants	 were	 instructed	 to	 keep	

adding	 the	 incoming	 numbers	 even	 in	 case	 they	 missed	 any.	 This	 was	 to	 make	 sure	

participants	did	not	“give	up”	in	the	middle	of	the	trial,	but	kept	continuously	engaged	with	

the	visual	task.		

Each	task	and	rhythm	were	presented	as	a	separate	block,	yielding	3	x	2	=	6	blocks	 in	the	

whole	EEG	session	(block	order	was	counterbalanced	across	participants).	Participants	were	
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seated	 in	 a	 comfortable	 chair	 and	 asked	 to	 avoid	 any	 unnecessary	movement	 or	muscle	

tension.	 For	 each	 block,	 the	 two	 trials	 containing	 tempo	 or	 pitch	 changes	were	 excluded	

from	the	EEG	analyses,	thus	leaving	10	trials	per	task	and	rhythm	for	subsequent	analysis.	

Before	 the	EEG	 session,	 the	parameters	 for	 the	 three	 tasks	were	 individually	adjusted	 for	

each	participant	using	a	two-down,	one-up	staircase	method,	targeting	70.7%	accuracy	in	all	

tasks	(Leek,	2001),	separately	for	the	high	meter	contrast	and	low	meter	contrast	rhythm.	

This	 individual	 adjustment	 aimed	 to	 make	 each	 block	 equally	 demanding	 for	 the	 EEG	

session.	 These	additional	 trials	performed	before	 the	EEG	 session	 to	determine	 individual	

parameters	also	allowed	participants	to	familiarize	themselves	with	the	nature	of	the	tasks.	

For	 the	Pitch	and	Tempo	 tasks,	 the	 staircase	procedure	 contained	a	 single	 run	where	 the	

rhythmic	pattern	was	seamlessly	cycled	and	deviants	appeared	randomly,	separated	by	at	

least	one	intact	pattern	cycle.	Participants	were	instructed	to	press	a	button	as	soon	as	they	

detected	 a	 deviant.	 Button	 presses	 within	 1	 second	 were	 considered	 hits,	 otherwise	 the	

response	was	considered	a	miss.	The	procedure	finished	after	6	reversals.	The	threshold	was	

determined	as	 the	average	deviant	magnitude	at	 the	 last	4	 reversals.	 This	procedure	was	

carried	 out	 separately	 for	 the	 high	 and	 low	 meter	 contrast	 rhythm.	 For	 the	 Visual	 task,	

participants	were	asked	to	mentally	sum	5	sequentially	presented	numbers	with	the	same	

parameters	 as	 in	 the	 EEG	 session.	 This	 was	 done	 in	 discrete	 trials,	 and	 the	 mean	 inter-

stimulus	 interval	 for	 each	 trial	was	 adjusted	 according	 to	 the	 correctness	 of	 participant’s	

response	on	the	previous	trial.	The	procedure	finished	after	6	reversals	(threshold	estimated	

as	 the	 average	 inter-stimulus	 interval	 at	 the	 last	 4	 reversals),	 or	 after	 20	 trials	 (threshold	

taken	as	the	mean	of	any	available	reversals,	or	the	value	from	the	last	trial).		

After	the	EEG	session,	participants	rated	the	subjective	difficulty	of	each	task	on	a	discrete	

scale	from	1	(easy)	to	7	(difficult).		

	

	

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.309443doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309443


	 14		

	
	

Figure	1.	Stimulus	design	and	higher-level	EEG	responses.	(Top)	The	sound	waveform	representing	one	cycle	of	

the	 high	 meter	 contrast	 (Left)	 and	 low	 meter	 contrast	 (Right)	 rhythmic	 pattern	 is	 depicted	 in	 grey.	 The	

broadband	 envelope	 is	 overlaid	 as	 a	 black	 line.	 Above	 each	 pattern,	 the	 meter	 typically	 induced	 by	 these	

patterns	 is	 shown	 as	 red	 arches	 representing	 individual	 pulses	 in	 the	metric	 structure.	 (Bottom)	 Spectra	 of	

higher-level	 EEG	 responses	 elicited	 for	 each	 rhythm	 and	 task	 (average	 across	 all	 participants	 and	 EEG	

channels).	Mean	z-scored	amplitude	elicited	at	meter-related	(red)	and	meter-unrelated	(blue)	frequencies	is	

shown	 next	 to	 the	 corresponding	 spectra	 (data	 points	 represent	 individual	 participants),	 along	 with	 the	

topographical	 distribution	 of	 mean	 EEG	 amplitude	 at	 these	 two	 subsets	 of	 frequencies	 (average	 across	 all	

participants).		

	

	

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.309443doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309443


	 15		

	
	

Figure	2.	Diagram	showing	dissociation	between	higher-level	and	early	auditory	EEG	responses.	Cochleogram	

on	the	 left	shows	a	response	to	one	cycle	of	the	 low	meter	contrast	rhythm	across	a	population	of	cochlear	

channels	 tuned	 to	 different	 frequencies	 (obtained	 using	 the	 model	 of	 Bruce	 et	 al.,	 2018).	 Summing	 the	

peristimulus	 time	histogram	across	all	 cochlear	channels	yields	a	composite	 response	 (shown	 in	black	 in	 the	

middle).	The	FFT	of	this	composite	response	(shown	on	the	bottom)	reveals	how	the	whole	population	tracks	

amplitude	envelope	modulations	(concentrated	in	the	low	frequency	portion	of	the	spectrum,	i.e.	at	the	exact	

amplitude	 modulation	 frequencies),	 but	 also	 phase-locks	 to	 the	 fine	 structure	 of	 the	 sound	 input	 (higher	

frequency	range	 in	 the	spectrum,	at	 the	actual	 frequencies	of	 the	partials	and	distortion	products).	Because	

the	 fine	 structure	 is	 itself	amplitude	modulated,	 the	 spectrum	of	 the	modulator	 (i.e.	amplitude	envelope)	 is	

reflected	in	symmetrical	sidebands	surrounding	each	partial	and	distortion	product	frequency,	in	line	with	the	

shifting	 theorem	of	 the	Fourier	Transform	 (Oppenheim	and	Schafer,	2009).	 Thus,	 the	 two	 responses	 can	be	

separated	in	the	frequency	domain	by	zooming	onto	the	relevant	portions	of	the	spectrum,	as	depicted	by	the	

orange	 rectangle	 (for	 the	higher-level	 response)	and	 the	green	 rectangle	 (for	 the	early	auditory	 response	at	

168-Hz	 distortion	 product).	 To	 isolate	 the	 higher-level	 response	 in	 the	 time	 domain	 (orange	waveform,	 top	

right),	low-pass	filter	can	be	applied	to	the	peristimulus	time	histogram,	which	is	assumed	to	take	place	along	

the	 auditory	 pathway	 (Chandrasekaran	 and	 Kraus,	 2010).	 The	 early	 auditory	 response	 (green	 waveform,	

bottom	right)	can	be	isolated	in	the	time	domain	by	high-pass	filtering	the	peristimulus	time	histogram.		

	

	

EEG	recording	and	preprocessing	

The	 EEG	 was	 recorded	 using	 a	 Biosemi	 Active-Two	 system	 (Biosemi,	 Amsterdam,	

Netherlands)	with	64	Ag-AgCl	electrodes	placed	on	the	scalp	according	to	the	international	

10/20	 system,	 and	 two	additional	 electrodes	 attached	 to	 the	mastoids.	Head	movements	
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were	monitored	using	an	accelerometer	with	two	axes	(front-back	and	left-right)	attached	

to	the	EEG	cap	and	recorded	as	2	additional	channels.	The	signals	were	digitized	at	8192-Hz	

sampling	 rate,	which	was	 high	 enough	 to	 capture	 distortion-product	 frequencies	 relevant	

for	the	early	auditory	responses	(Skoe	and	Kraus,	2010).	

Analysis	 of	 higher-level	 EEG	 responses.	 Higher-level	 EEG	 responses	 refer	 to	 EEG	 activity	

measured	 in	 a	 low-frequency	 range	 (here,	 at	 5	Hz	 and	below),	 thus	 corresponding	 to	 the	

frequency	range	of	the	actual	envelope	modulations	 in	the	rhythmic	 inputs	(see	Figure	2).	

These	responses	were	analyzed	by	first	downsampling	the	EEG	signals	offline	to	512	Hz.	The	

continuous	EEG	signals	were	then	high-pass	filtered	at	0.1	Hz	(4th-order	Butterworth	filter)	

to	 remove	 slow	 drifts	 from	 the	 signals.	 Artifacts	 related	 to	 eye	 blinks	 and	 horizontal	 eye	

movements	were	identified	and	removed	using	independent	component	analysis	(Bell	and	

Sejnowski,	 1995;	 Jung	 et	 al.,	 2000)	 based	 on	 visual	 inspection	 of	 their	 typical	 waveform	

shape	and	 topographic	distribution.	One	 component	was	 removed	 for	7	participants,	 two	

components	 for	9	participants,	and	9	components	 for	one	participant	 (the	eye-movement	

related	 activity	 was	 clearly	 distributed	 across	 a	 larger	 number	 of	 components	 for	 this	

participant).	 Channels	 containing	 excessive	 artifacts	 or	 noise	were	manually	 selected	 and	

linearly	 interpolated	 across	 all	 trials	 and	 conditions,	 separately	 for	 each	 participant	 (1	

channel	for	3	participants,	2	channels	for	1	participant).	The	data	were	then	segmented	into	

33.6-s	 long	 epochs,	 starting	 from	 the	 onset	 of	 the	 sound	 sequence	 in	 each	 trial	 and	 re-

referenced	to	the	average	of	the	66	channels.	The	mastoid	channels	were	included	because	

they	were	 expected	 to	 prominently	 capture	 the	 responses	 to	 auditory	 rhythms	 based	 on	

previous	studies	 (Nozaradan	et	al.,	2012,	2016b;	Lenc	et	al.,	2018,	2020).	This	was	 indeed	

the	case,	as	 revealed	by	 the	 topographical	distributions	 shown	 in	Figure	1.	Thus	 including	

the	mastoid	 electrodes	 would	 enhance	 the	 overall	 signal-to-noise	 ratio	 (SNR)	 of	 the	 EEG	

spectra	after	averaging	across	all	channels	(see	below).		

Analysis	of	early	auditory	EEG	responses.	Early	auditory	EEG	responses	refer	to	EEG	activity	

measured	in	a	much	higher	frequency	range	than	the	higher-level	responses	(>	150	Hz),	thus	

corresponding	 to	 the	 frequency	 range	 of	 the	 actual	 partials	 conveying	 the	 envelope	

modulations	 of	 the	 rhythmic	 inputs	 (see	 Figure	 2).	 Here,	 preprocessing	 did	 not	 include	

independent	 component	 analysis	 and	 channel	 interpolation.	 The	 data	 at	 the	 original	

sampling	rate	(8192	Hz)	were	re-referenced	to	the	average	of	mastoid	electrodes,	and	only	

signals	from	three	fronto-central	channels	(Fz,	FCz,	Cz)	were	kept	for	further	analyses.	Based	
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on	 previous	 studies,	 this	 standard	 montage	 was	 expected	 to	 most	 strongly	 capture	 the	

auditory	 frequency-following	 responses	 (Skoe	 and	 Kraus,	 2010;	 Nozaradan	 et	 al.,	 2016c,	

2018).		

The	preprocessed	data	were	averaged	in	the	time	domain	across	the	10	trials	separately	for	

each	 participant	 and	 condition.	 Time-domain	 averaging	 was	 performed	 to	 increase	 the	

signal-to-noise	ratio	by	cancelling	signals	 that	were	not	 time-locked	to	 the	stimulus,	while	

preserving	 evoked	 responses	 elicited	 by	 the	 stimulus,	 as	 well	 as	 any	 ongoing	 activity	

entrained	by	the	stimulus,	which	were	both	assumed	to	be	stationary	across	trials.		

The	averaged	signals	were	transformed	into	the	frequency	domain	using	FFT.	The	obtained	

spectra	 were	 considered	 to	 consist	 of	 (i)	 activity	 elicited	 by	 the	 auditory	 stimulus,	

concentrated	within	narrow	peaks	and	(ii)	 residual	background	noise	smoothly	distributed	

across	a	broad	range	of	frequencies	(Mouraux	et	al.,	2011;	Retter	and	Rossion,	2016).	The	

contribution	 of	 broadband	 noise	 was	 therefore	 minimized	 by	 subtracting	 the	 average	

amplitude	at	neighboring	bins	on	both	sides	relative	to	each	frequency	bin	(bins	2-5	for	the	

higher-level	responses	and	3-10	for	the	early	auditory	responses).	A	narrower	range	of	bins	

used	 for	 the	 higher-level	 responses	 was	 to	 avoid	 bias	 in	 the	 noise	 estimate	 due	 to	

prominent	1/f	in	the	lower	part	of	the	EEG	spectrum.	For	the	early	auditory	responses,	two	

(instead	 of	 one)	 directly	 adjacent	 bins	 were	 excluded	 from	 the	 noise	 estimate	 due	 to	

potential	FFT	leakage	of	the	response	(as	the	tagged	frequencies	were	not	exactly	centered	

on	a	single	frequency	bin).		

The	 noise-subtracted	 spectra	 were	 averaged	 across	 all	 channels	 (66	 channels	 for	 higher-

level	responses,	3	channels	for	early	auditory	responses)	separately	for	each	condition	and	

participant.	 The	 magnitudes	 of	 higher-level	 responses	 were	 extracted	 from	 the	 bins	

centered	at	the	12	frequencies	expected	based	on	the	stimulus	modulation	spectrum	(see	

section	 Frequency-tagging	 analysis).	 Magnitudes	 of	 the	 early	 auditory	 responses	 were	

estimated	at	 the	 frequencies	of	 the	distortion	products	and	 their	 corresponding	 sideband	

frequencies	(by	taking	the	bin	closest	to	the	frequency	of	interest).		

	

Overall	EEG	response	magnitude	

The	 overall	 magnitude	 of	 the	 higher-level	 responses	 was	 estimated	 as	 the	 summed	

amplitude	across	all	12	frequencies	corresponding	to	the	envelope	modulation	spectrum	of	
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the	stimulus	(see	Figure	3A).	The	same	measure	was	taken	for	the	early	auditory	responses	

by	 summing	 across	 all	 sideband	 frequencies,	 separately	 for	 the	 three	 distortion-product	

frequencies	(see	Figure	4A).		

To	make	sure	the	differences	in	the	overall	response	magnitude	were	not	due	to	increased	

noise	 floor	obscuring	the	sound-evoked	responses,	we	carried	out	a	control	analysis	using	

amplitudes	from	frequency-bins	at	positions	offset	by	+7	(i.e.	~0.21	Hz)	relative	to	the	bins	

centered	 at	 the	 frequencies	 of	 interest.	 These	 were	 extracted	 from	 the	 EEG	 spectra	

obtained	 without	 any	 noise	 subtraction,	 and	 therefore	 provided	 an	 estimate	 of	 the	

broadband	noise	 level	across	conditions.	This	 control	analysis	was	only	performed	 for	 the	

higher-level	 responses,	 as	 no	 significant	 differences	 in	 overall	 response	 magnitude	 were	

found	in	the	early	auditory	responses	(see	Results	section).		

Because	 the	 responses	 at	 sideband	 frequencies	were	 generally	 small,	 particularly	 for	 the	

sidebands	 flanking	 higher	 distortion-product	 frequencies,	 the	 overall	 magnitude	 for	 the	

early	auditory	 responses	was	 first	 compared	 to	 zero	separately	 for	 the	sidebands	 flanking	

each	distortion	product	to	assess	whether	a	significant	response	was	elicited.	The	validity	of	

this	test	relies	on	the	fact	that,	because	the	spectra	were	noise-subtracted,	an	absence	of	

response	should	result	in	magnitudes	distributed	around	zero.	Only	responses	at	sidebands	

flanking	the	lowest	distortion	product	at	168	Hz	were	consistently	above	zero	(see	Table	S1	

and	 Figure	 4A)	 across	 all	 rhythms	 and	 tasks.	 Therefore,	 all	 further	 analyses	 of	 the	 early	

auditory	 responses	 were	 carried	 out	 only	 on	 this	 distortion-product	 frequency	 and	

corresponding	sidebands.		

	

Relative	EEG	response	at	meter	frequencies	

To	 assess	 the	 relative	 prominence	 of	 specific	 frequencies	 in	 the	 higher-level	 responses,	

amplitudes	at	the	12	frequencies	corresponding	to	the	stimulus	modulation	spectrum	were	

converted	to	z-scores,	in	the	same	way	as	for	the	models	of	subcortical	auditory	processing	

(see	 section	 Frequency-tagging	 analysis).	 For	 the	 early	 auditory	 responses,	 amplitudes	

corresponding	 to	 the	 same	 modulation	 frequency	 were	 first	 averaged	 across	 the	

symmetrical	positive	and	negative	sidebands	and	the	resulting	12	values	were	converted	to	

z-scores	(only	for	168-Hz	distortion-product	frequency,	see	Table	S1	and	Figure	4A).	Higher	
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z-score	at	a	specific	frequency	indicated	that	the	response	at	that	frequency	stood	out	more	

prominently	relative	to	the	whole	set	of	12	frequencies	elicited	by	the	auditory	stimulus.		

The	 z-scores	 were	 averaged	 separately	 for	 the	 meter-related	 frequencies	 (frequencies	

where	metric	pulses	are	consistently	perceived	for	these	rhythms	across	listeners,	i.e.	0.416,	

1.25,	 2.5,	 5	 Hz)	 and	 meter-unrelated	 frequencies	 (the	 remaining	 8	 frequencies	 in	 the	

stimulus	modulation	spectrum).	The	mean	z-score	at	meter-related	frequencies	was	taken	

as	a	measure	of	 contrast	at	 these	 frequencies	 in	 the	neural	 response,	and	was	compared	

across	conditions.		

Comparison	of	EEG	with	models	of	 subcortical	auditory	processing.	To	assess	whether	 the	

observed	 EEG	 responses	 could	 be	 explained	 by	 nonlinearities	 at	 the	 early	 stages	 of	 the	

auditory	pathway,	the	elicited	higher-level	responses	were	directly	compared	to	the	sound	

representation	estimated	by	 the	auditory	models.	 First,	 the	 relative	prominence	of	meter	

frequencies	was	calculated	separately	for	each	model	of	subcortical	auditory	processing	by	

taking	 the	 mean	 z-score	 at	 meter-related	 frequencies.	 Then,	 the	 mean	 meter-related	 z-

scores	obtained	from	the	higher-level	EEG	responses	across	participants	were	compared	to	

the	corresponding	meter	z-score	from	each	auditory	model,	separately	for	each	rhythm	and	

task,	 using	 a	 one-sample	 t-test.	 The	 same	 analysis	 was	 performed	 for	 the	 early	 auditory	

responses	 to	 confirm	 that	 these	 responses	 could	 be	 largely	 explained	 by	 the	 auditory	

models.		

Comparison	of	higher-level	and	early	auditory	responses.	To	compare	the	contrast	at	meter-

related	 frequencies	 between	 early	 and	 later	 processing	 stages	 in	 the	 same	 participants,	

mean	z-scored	amplitude	at	these	frequencies	was	compared	between	the	higher-level	and	

early	auditory	responses	across	tasks	and	rhythms.	

Moreover,	 because	 the	 highest	 meter-related	 frequency	 (5	 Hz)	 seemed	 selectively	

attenuated	in	the	early	auditory	responses	(see	Figure	4B),	we	carried	out	a	control	analysis	

to	make	sure	the	differences	between	higher-level	and	early	auditory	responses	were	not	

solely	 driven	 by	 differences	 in	 the	 low-pass	 characteristics	 of	 the	 two	 responses.	 The	 z-

scores	 were	 re-calculated	 using	 only	 11	 frequencies	 of	 interest,	 i.e.	 after	 excluding	 the	

amplitude	at	5	Hz	from	the	set.	Subsequently,	only	z-scores	at	0.416,	1.25,	and	2.5	Hz	were	

considered	meter-related,	 and	 their	 average	was	 taken	 to	estimate	how	prominent	 these	

frequencies	were	 relative	 to	 the	whole	 set	 of	 11	 frequencies	 in	 the	 control	 analysis.	 This	

control	measure	was	 then	used	 to	 repeat	 the	 comparison	between	higher-level	 and	early	
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auditory	 responses,	 as	 well	 as	 their	 respective	 comparisons	 to	 the	models	 of	 subcortical	

auditory	processing.		

	

Behavioral	analyses	

Responses	 to	 the	 Tempo	 and	Pitch	 task	 from	 the	 EEG	 session	were	 transformed	 into	 the	

sensitivity	index	d-prime	using	the	equation	Z(hit	rate)	-	Z(false	alarm	rate),	where	Z	is	the	

inverse	 of	 the	 normal	 cumulative	 distribution	 function	 (Stanislaw	 and	 Todorov,	 1999).	 To	

avoid	infinite	values,	hit	rates	and	false	alarm	rates	with	values	1	and	0	were	converted	to	

1/(2N)	and	1-1/(2N)	respectively	(where	N	is	the	number	of	trials	on	which	the	proportion	is	

based,	 Macmillan	 and	 Creelman,	 2005).	 The	 response	 accuracy	 on	 the	 Visual	 task	 was	

calculated	by	taking	the	root-mean-square	deviation	from	the	correct	response	(i.e.	the	sum	

of	 the	 sequentially-presented	 number)	 across	 trials	 and	 averaging	 across	 the	 two	 rhythm	

conditions.		

	

Statistical	analyses	

The	statistical	analyses	were	performed	in	R	(version	3.6.1).	Comparisons	of	EEG	measures	

across	conditions	were	implemented	using	linear	mixed	models	with	lme4	package	(version	

1.1-21,	 Bates	 et	 al.,	 2015).	 The	main	 effects	 of	 Rhythm	 (high	meter	 contrast,	 low	meter	

contrast)	 and	 Task	 (Tempo,	 Pitch,	 Visual),	 and	 their	 interaction	 were	 included	 as	 fixed	

effects.	 For	 the	 comparison	 between	 the	 higher-level	 and	 early	 auditory	 responses,	 the	

factor	 Response	 (higher-level,	 early	 auditory)	 was	 also	 included	 in	 the	 model.	 Each	

participant	was	 included	as	a	 random-effect	 intercept.	The	model	comparison	was	carried	

out	 with	 the	 Anova	 function	 from	 package	 car	 (version	 3.0-3),	 using	 F-tests.	 Post-hoc	

comparisons	on	 the	 fitted	models	were	 conducted	using	 emmeans	package	 (version	1.4).	

Degrees	of	freedom	were	approximated	using	the	Kenward-Roger	approach	and	Bonferroni	

correction	was	used	 to	 adjust	 the	post-hoc	 test	 for	multiple	 comparisons.	Nonparametric	

Wilcoxon	 signed	 rank	 tests	 were	 used	 to	 compare	 the	 behavioural	 responses	 between	

conditions,	and	to	assess	the	significance	of	the	early	auditory	overall	response	magnitude	

against	 zero	 (FDR	 correction	 for	multiple	 comparisons	was	 used	 in	 the	 latter	 case).	 One-

sample	t-tests	were	used	to	compare	the	meter-related	z-scores	from	the	EEG	data	to	the	
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models	of	 subcortical	auditory	processing	 (one-tailed,	 testing	EEG	>	model;	p-values	were	

adjusted	for	multiple	comparisons	using	FDR).		

In	 addition	 to	 the	 null-hypothesis	 significance	 tests,	we	 calculated	 Bayes	 factors	 (BF10)	 to	

express	the	probability	of	data	under	alternative	hypothesis	(H1)	relative	to	null	hypothesis	

(H0),	as	implemented	in	BayesFactor	package	(version	0.9.12-4.2).	We	considered	a	BF10	>	3	

as	evidence	 in	favour	of	the	alternative	hypothesis	and	BF10	<	0.3	as	evidence	 in	favour	of	

the	null	hypothesis	(Jeffreys,	1998;	Lee	and	Wagenmakers,	2014).		

	

	

Results	

Behavioral	results	

Participants	 successfully	 detected	 the	 deviants	 during	 the	 EEG	 session	 for	 both	 the	 Pitch	

task	 (mean	 d’	 [SD]	 for	 the	 high	meter	 contrast	 rhythm	 =	 1.23	 [0.92],	 for	 the	 low	meter	

contrast	 rhythm	 =	 1.28	 [0.55]),	 and	 the	 Tempo	 task	 (mean	 d’	 [SD]	 for	 the	 high	 meter	

contrast	rhythm	=	1.28	[0.77],	for	the	low	meter	contrast	rhythm	=	1.28	[1.10]).	There	was	

no	difference	in	the	sensitivity	between	the	Pitch	and	Tempo	task	(Ps	>	0.25,	BFs10	<	0.6).	In	

the	Visual	task,	the	root-mean-square	error	of	the	responses	averaged	across	rhythms	was	

87.1	 (SD	 =	 71.6),	 suggesting	 that	 the	 task	was	 difficult	 and	 participants	might	 have	 often	

missed	some	numbers	 in	the	sequence.	This	was	 in	 line	with	participants	rating	the	Visual	

task	as	much	more	difficult	 than	 the	Pitch	 task	 (Wilcoxon	 signed	 rank	 test,	 two-sided	P	=	

0.0007),	or	the	Tempo	task	(Wilcoxon	signed	rank	test,	P	=	0.0003).	One	participant’s	data	

were	 excluded	 from	 the	 calculation	 of	 the	 error,	 due	 to	 the	 misunderstanding	 of	 the	

instructions	 -	 instead	 of	 summing,	 the	 participant	 was	 concatenating	 the	 presented	

numbers	and	memorizing	the	sequence.	However,	the	EEG	data	of	this	participant	were	not	

excluded,	as	she	reported	similar	difficulty	for	the	Visual	task	as	the	rest	of	the	participants.		
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Figure	 3.	 Characteristics	 of	 the	 higher-level	 EEG	 responses.The	 example	 magnitude	 spectra	 on	 the	 right	

visualize	how	each	measure	was	quantified.	 Individual	participants	are	 shown	as	 lightly	 shaded	data	points.	

Error	 bars	 represent	 95%	 CIs	 (Morey,	 2008).	 (A)	 Overall	 response	 magnitude	 for	 the	 higher-level	 EEG	

responses.	The	amplitudes	of	the	response	at	all	12	frequencies	corresponding	to	the	modulation	spectrum	of	

the	sound	were	summed	and	compared	across	conditions.	For	both	 rhythms,	 the	 response	was	significantly	

lower	during	Visual	task	compared	to	the	two	other	tasks	involving	attention	to	the	auditory	stimulus	(marked	

by	asterisks).	(B)	Prominence	of	meter	frequencies	(mean	z-scored	amplitude	at	meter-related	frequencies)	in	

the	higher-level	EEG	responses.	There	was	no	difference	across	the	three	tasks	for	either	rhythm	(BF10	<	0.3).	

Moreover,	the	z-scores	show	prominent	meter	frequencies	even	in	response	to	the	rhythm	with	low	contrast	

at	meter	frequencies	in	the	acoustic	input.	The	horizontal	dashed	line	represents	zero.		
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Figure	4.	Characteristics	of	 the	early	auditory	EEG	responses.(A)	Summed	early	auditory	 response	amplitude	

averaged	across	all	sidebands,	separately	for	each	distortion	product	frequency	(DP1	=	168	Hz,	DP2	=	189	Hz,	

DP3	 =	 357	 Hz).	 The	 example	magnitude	 spectrum	 on	 the	 top	 illustrates	 how	 the	measure	 was	 quantified.	

Purple	data	points	 represent	 individual	participants.	Asterisks	 indicate	 the	statistical	 significance	 level	of	 the	

response	when	tested	against	zero	(grey	dashed	line)	across	participants.	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001	

(Wilcoxon	 signed	 rank	 test,	 FDR	 corrected).	 (B)	 Spectra	 of	 early	 auditory	 responses	 (average	 across	 all	

participants)	plotted	 for	 the	168	Hz	distortion	product	 (DP1)	after	 the	corresponding	symmetrical	 sidebands	

elicited	 at	 stimulus	 modulation	 frequencies	 were	 averaged.	 Meter-related	 frequencies	 are	 shown	 in	 red,	

meter-unrelated	 frequencies	 in	blue.	 The	 frequency	axis	 is	normalized	by	 subtracting	 the	distortion-product	

frequency	for	better	comparison	with	the	higher-level	EEG	responses.	
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Overall	EEG	response	magnitude	

Figure	1	shows	the	spectra	of	the	higher-level	EEG	responses	elicited	by	the	rhythmic	stimuli	

across	 the	 three	 tasks.	As	 shown	 in	 Figure	3A,	 the	 summed	amplitude	of	 the	higher-level	

responses	 across	 all	 twelve	 frequencies	 was	 significantly	 different	 across	 the	 three	 tasks	

(F2,80	=	16.3,	P	<	0.0001,	BF10	>	100).	This	was	due	to	smaller	overall	amplitude	in	the	Visual	

task	relative	to	the	Tempo	task	(β	=	-0.21,	t82	=	-5.61,	P	<	0.0001,	95%	CI	=	[-0.31,	-0.12]),	

and	the	Pitch	task	(β	=	-0.15,	t82	=	-4,	P	=	0.0004,	95%	CI	=	[-0.25,	-0.06]).	The	corresponding	

analysis	performed	on	 the	shifted	 frequency	bins	where	no	signal	was	expected	 indicated	

that	 broadband	 noise	 amplitude	 was	 comparable	 across	 conditions	 (no	 significant	 main	

effect	of	Task:	P	=	0.62,	BF10	=	0.13,	and	no	interaction	Task	x	Rhythm:	P	=	0.39,	BF10	=	0.32).	

Thus,	increased	noise	alone	could	not	account	for	the	observed	overall	response	decrease	in	

the	Visual	task.		

Figure	4B	shows	the	spectra	of	the	early	auditory	EEG	responses.	Unlike	for	the	higher-level	

responses,	the	summed	amplitude	across	all	sidebands	for	the	early	auditory	responses	did	

not	differ	across	conditions	(Ps	>	0.22,	BFs10	<	0.21).	This	suggested	that	attentional	 focus	

did	not	 affect	 the	putatively	earlier	 stage	of	 sound	processing,	 and	only	emerged	at	 later	

stages.		

	

Relative	EEG	response	at	meter	frequencies	

The	relative	prominence	of	meter	frequencies	in	the	elicited	higher-level	EEG	responses	was	

significantly	larger	for	the	high	than	low	meter	contrast	rhythm	(F1,80	=	38.9,	P	<	0.0001,	BF10	

>	100),	as	expected	based	on	 the	physical	 structure	of	 the	 rhythmic	 stimuli	 (see	Methods	

section).	However,	as	shown	in	Figure	3B,	z-scores	at	meter	frequencies	were	comparable	

across	tasks	(no	significant	main	effect	of	Task:	P	=	0.32,	BF10	=	0.24,	and	no	interaction	Task	

x	 Rhythm:	 P	 =	 0.79,	 BF10	 =	 0.18).	 Similarly,	 meter-related	 frequencies	 were	 significantly	

more	prominent	in	the	early	auditory	responses	to	the	high	meter	contrast	rhythm	(F1,80	=	

42.8,	P	<	0.0001,	BF10	>	100),	but	there	was	no	effect	of	task	(Ps	>	0.65,	BFs10	<	0.13).		
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Table	 1.	 Comparison	 of	 mean	 z-scored	 amplitude	 at	 meter-related	 frequencies	 between	 higher-level	 EEG	

responses	and	models	of	auditory	subcortical	processing	using	one-sample	t-tests.		

	
EEG	variable	 rhythm	 model	 task	 mean_model	 mean_eeg	 sd_eeg	 t	 df	 p	 	
higher-level	
response	

high	meter	
contrast	
rhythm	

	
broadband	
	

pitch	 0.81	 0.71	 0.19	 -1.99	 16	 0.988	 		
tempo	 0.81	 0.64	 0.31	 -2.28	 16	 0.988	 		
visual	 0.81	 0.67	 0.38	 -1.47	 16	 0.988	 		

UREAR_AN	
pitch	 0.52	 0.71	 0.19	 4.15	 16	 0.0010	 ***	
tempo	 0.52	 0.64	 0.31	 1.61	 16	 0.112	 		
visual	 0.52	 0.67	 0.38	 1.69	 16	 0.101	 		

UREAR_IC_BMF2	
pitch	 0.83	 0.71	 0.19	 -2.36	 16	 0.988	 		
tempo	 0.83	 0.64	 0.31	 -2.51	 16	 0.988	 		
visual	 0.83	 0.67	 0.38	 -1.65	 16	 0.988	 		

UREAR_IC_BMF4	
pitch	 0.79	 0.71	 0.19	 -1.58	 16	 0.988	 		
tempo	 0.79	 0.64	 0.31	 -2.01	 16	 0.988	 		
visual	 0.79	 0.67	 0.38	 -1.25	 16	 0.988	 		

	
UREAR_IC_BMF8	
	

pitch	 0.75	 0.71	 0.19	 -0.787	 16	 0.988	 		
tempo	 0.75	 0.64	 0.31	 -1.51	 16	 0.988	 		
visual	 0.75	 0.67	 0.38	 -0.846	 16	 0.988	 		

UREAR_IC_BMF16	
pitch	 0.80	 0.71	 0.19	 -1.76	 16	 0.988	 		
tempo	 0.80	 0.64	 0.31	 -2.13	 16	 0.988	 		
visual	 0.80	 0.67	 0.38	 -1.35	 16	 0.988	 		

UREAR_IC_BMF32	
pitch	 0.81	 0.71	 0.19	 -2.09	 16	 0.988	 		
tempo	 0.81	 0.64	 0.31	 -2.34	 16	 0.988	 		
visual	 0.81	 0.67	 0.38	 -1.51	 16	 0.988	 		

UREAR_IC_BMF64	
pitch	 0.68	 0.71	 0.19	 0.655	 16	 0.447	 		
tempo	 0.68	 0.64	 0.31	 -0.601	 16	 0.988	 		
visual	 0.68	 0.67	 0.38	 -0.105	 16	 0.896	 		

low	meter	
contrast	
rhythm	

broadband	
pitch	 0.06	 0.43	 0.33	 4.66	 16	 0.0004	 ***	
tempo	 0.06	 0.33	 0.35	 3.31	 16	 0.005	 **	
visual	 0.06	 0.30	 0.35	 2.88	 16	 0.010	 *	

UREAR_AN	
pitch	 -0.13	 0.43	 0.33	 6.96	 16	 <0.0001	 ***	
tempo	 -0.13	 0.33	 0.35	 5.48	 16	 0.0001	 ***	
visual	 -0.13	 0.30	 0.35	 5	 16	 0.0003	 ***	

UREAR_IC_BMF2	
pitch	 -0.04	 0.43	 0.33	 5.93	 16	 <0.0001	 ***	
tempo	 -0.04	 0.33	 0.35	 4.5	 16	 0.0005	 ***	
visual	 -0.04	 0.30	 0.35	 4.04	 16	 0.001	 **	

UREAR_IC_BMF4	
pitch	 -0.29	 0.43	 0.33	 9.01	 16	 <0.0001	 ***	
tempo	 -0.29	 0.33	 0.35	 7.42	 16	 <0.0001	 ***	
visual	 -0.29	 0.30	 0.35	 6.89	 16	 <0.0001	 ***	

UREAR_IC_BMF8	
pitch	 -0.27	 0.43	 0.33	 8.76	 16	 <0.0001	 ***	
tempo	 -0.27	 0.33	 0.35	 7.18	 16	 <0.0001	 ***	
visual	 -0.27	 0.30	 0.35	 6.66	 16	 <0.0001	 ***	

UREAR_IC_BMF16	
pitch	 -0.08	 0.43	 0.33	 6.42	 16	 <0.0001	 ***	
tempo	 -0.08	 0.33	 0.35	 4.97	 16	 0.0003	 ***	
visual	 -0.08	 0.30	 0.35	 4.5	 16	 0.0005	 ***	

UREAR_IC_BMF32	
pitch	 0.05	 0.43	 0.33	 4.73	 16	 0.0004	 ***	
tempo	 0.05	 0.33	 0.35	 3.37	 16	 0.004	 **	
visual	 0.05	 0.30	 0.35	 2.94	 16	 0.010	 **	

UREAR_IC_BMF64	
pitch	 0.01	 0.43	 0.33	 5.28	 16	 0.0002	 ***	
tempo	 0.01	 0.33	 0.35	 3.89	 16	 0.002	 **	
visual	 0.01	 0.30	 0.35	 3.45	 16	 0.004	 **	

.	P	<	0.1,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001,	FDR	corrected	
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Figure	5.	Comparison	of	higher-level	EEG	responses	with	models	of	auditory	subcortical	processing.	Data	 for	

the	high	meter	contrast	rhythms	are	shown	on	the	left,	and	data	for	the	low	meter	contrast	rhythm	are	shown	

on	the	right.	The	higher-level	EEG	response	to	one	pattern	cycle	averaged	across	all	pattern	repetitions,	trials,	

tasks,	and	participants	is	depicted	on	the	top	in	yellow.	This	response	was	extracted	after	low-pass	filtering	at	

30	Hz,	and	averaging	9	frontocentral	channels	(F1,	F2,	Fz,	C1,	C2,	Cz,	FC1,	FC2,	FCz).	Each	row	below	the	EEG	

response	 corresponds	 to	 the	 output	 of	 one	model	 of	 subcortical	 auditory	 processing.	 The	model	 labels	 are	

shown	on	the	left	(depending	on	the	parameter	settings,	the	IC	cell	simulated	with	UR_EAR	had	a	specific	best	

modulation	frequency,	which	is	listed	in	square	brackets	in	Hz).	In	the	center	of	the	figure	are	the	responses	of	

the	models	to	one	cycle	of	the	rhythmic	pattern	depicted	as	mean	firing	rate	across	time.	The	mean	rate	over	

time	was	transformed	into	the	frequency	domain	using	FFT,	and	the	resulting	spectra	are	shown	next	to	the	

time-domain	responses.	Meter-related	frequencies	are	shown	in	red,	and	meter-unrelated	frequencies	in	blue.	

On	the	sides	of	the	figure	are	the	z-scored	spectral	amplitudes	averaged	separately	across	meter-related	and	

meter-unrelated	 frequencies.	 The	 yellow	 data	 points	 represent	 EEG	 responses	 of	 individual	 participants	 (z-

scores	 averaged	 across	 the	 3	 tasks),	 and	 the	 black	 data	 points	 represent	 the	 auditory	model.	While	 the	 z-

scores	at	meter-related	frequencies	did	not	differ	reliably	between	the	models	and	the	EEG	responses	for	the	

high	meter	contrast	rhythm	on	the	 left,	 the	EEG	response	at	these	frequencies	was	selectively	enhanced	for	

the	low	meter	contrast	rhythm	(right).		
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Comparison	of	EEG	responses	with	models	of	subcortical	auditory	processing	

For	the	high	meter	contrast	rhythm,	the	relative	prominence	of	meter-related	frequencies	

in	 the	 higher-level	 EEG	 responses	 was	 explained	 by	 all	 considered	models	 of	 subcortical	

auditory	 processing	 (see	 Figure	 5	 and	 Table	 1).	 The	 mean	 z-score	 at	 meter-related	

frequencies	measured	in	the	elicited	EEG	was	not	significantly	different	from	either	model,	

except	there	was	a	significantly	greater	z-score	for	the	EEG	responses	in	the	pitch	task	when	

compared	 to	 the	 UR_EAR	 model	 of	 the	 auditory	 nerve	 response.	 However,	 for	 the	 low	

meter	contrast	rhythm,	meter-related	frequencies	were	consistently	more	prominent	in	the	

elicited	 EEG	 responses	 than	 predicted	 by	 all	 models	 of	 subcortical	 auditory	 processing.	

Importantly,	 this	 was	 the	 case	 even	when	 participants	 were	 carrying	 out	 the	 visual	 task.	

These	 results	were	 further	 corroborated	by	a	 control	 analysis	 showing	 that	meter-related	

frequencies	 in	 the	higher-level	 responses	were	 robustly	 enhanced	even	when	 the	highest	

meter	frequency	(5	Hz)	was	excluded	from	the	analysis	(see	Table	S2).		

As	expected,	the	same	set	of	comparisons	for	the	early	auditory	responses	showed	no	clear	

differences	from	the	models	of	subcortical	auditory	processing	(see	Table	S3).	Even	though	

the	 meter	 frequencies	 in	 the	 early	 auditory	 responses	 were	 significantly	 above	 some	

auditory	models	after	excluding	the	highest	meter-related	frequency	in	the	control	analysis	

(UR-EAR-IC	 with	 best	 modulation	 frequencies	 4,	 8,	 16	 Hz,	 see	 Table	 S4),	 this	 was	 not	

systematic	 (in	 contrast	 to	 the	 higher-level	 responses),	 and	 was	 related	 to	 a	 selective	

suppression	of	 the	 lower	meter	 frequencies	 in	 these	models	 compared	 to	 the	 rest	of	 the	

models	(see	Figure	5).		

Together,	these	results	indicate	that,	as	expected,	the	contrast	at	meter	frequencies	in	the	

EEG	 response	 to	 the	 rhythmic	 input	 with	 prominent	 meter	 frequencies	 in	 its	 acoustic	

structure	 was	 mainly	 driven	 by	 low-level	 processing	 of	 this	 input.	 However,	 these	 early	

processing	 stages	 cannot	 fully	 explain	 the	 EEG	 response	 to	 the	 rhythmic	 input	 with	 less	

prominent	 meter	 frequencies	 in	 its	 acoustic	 structure.	 Most	 importantly,	 the	 processes	

responsible	 for	 the	 selective	 enhancement	 of	 meter	 frequencies	 for	 this	 latter	 rhythm	

seemed	to	be	involved	to	a	similar	degree	across	the	three	attentional	tasks.		
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Figure	6.	Comparison	of	prominence	of	meter-related	frequencies	 in	the	higher-level	and	early	auditory	EEG	

responses.The	 mean	 z-scored	 amplitude	 at	 meter-related	 frequencies	 is	 plotted	 separately	 for	 each	 task,	

rhythm,	and	EEG	response	type.	Individual	data	points	represent	participants.	Horizontal	continuous	grey	lines	

correspond	to	the	mean	z-scores	at	meter	frequencies	taken	from	the	broadband	amplitude	envelope	of	the	

corresponding	 acoustic	 stimulus.	 The	 horizontal	 dashed	 grey	 lines	 represent	 zero	 (i.e.	 equal	 relative	

prominence	 of	 meter-related	 and	 meter-unrelated	 frequencies).	 The	 meter-related	 frequencies	 were	

consistently	more	 prominent	 in	 the	 higher-level	 EEG	 responses	 across	 all	 rhythms	 and	 task	 (main	 effect	 of	

response	type,	indicated	by	asterisks).		

	

	

Comparison	of	higher-level	and	early	auditory	EEG	responses	

A	mixed	model	with	factors	Rhythm,	Task	and	Response	revealed	a	main	effect	of	Rhythm	

(F1,176	=	68.03,	P	<	0.0001,	BF10	>	100),	as	expected	from	the	separate	analyses	of	the	higher-

level	 and	 early	 auditory	 responses	 above,	 suggesting	 that	 both	 types	 of	 response	 were	

sensitive	 to	 the	physical	 structure	of	 the	auditory	 input.	 	 There	was	also	a	main	effect	of	

Response	 (F1,176	 =	 58.5,	 P	 <	 0.0001,	 BF10	 >	 100).	 As	 shown	 in	 Figure	 6,	 the	 relative	

prominence	 of	 meter	 frequencies	 was	 consistently	 larger	 in	 the	 higher-level	 responses	

across	 all	 tasks	 and	 both	 rhythms.	 Moreover,	 this	 could	 not	 be	 easily	 explained	 by	

differences	 in	 the	 low-pass	 characteristic	 of	 the	 responses,	 as	 the	 same	 results	 were	

obtained	 in	 a	 control	 analysis	 where	 the	 highest	meter-related	 frequency	 (i.e.	 5	 Hz)	 was	

excluded	 (see	 Supplementary	 Material).	 This	 suggests	 that	 there	 was	 a	 significant	
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enhancement	 of	 meter-related	 frequencies	 at	 the	 later	 processing	 stage	 indexed	 by	 the	

higher-level	responses.		

	

	
Discussion	

Our	results	show	that	while	attentional	 focus	affects	 the	overall	 sensitivity	of	 the	brain	to	

auditory	 rhythmic	 inputs,	 it	 has	 little	 influence	 on	 the	 selective	 contrast	 at	 meter	

periodicities	in	the	elicited	neural	response.	Moreover,	while	the	magnitude	of	this	selective	

contrast	in	the	EEG	response	was	readily	explained	by	low-level	auditory	processing	for	the	

rhythm	with	prominent	meter	 frequencies	 in	 the	acoustic	 input,	 this	was	not	 the	case	 for	

the	 rhythm	that	 lacked	prominent	contrast	at	meter	periodicities	 in	 its	physical	 structure.	

Together,	 these	results	suggest	 the	critical	engagement	of	high-level	processes	that	shape	

the	 neural	 representation	 of	 a	 rhythmic	 input	 by	 selectively	 enhancing	 contrast	 at	meter	

periodicities	 across	 behavioral	 contexts	 even	 in	 rhythms	 where	 this	 contrast	 is	 not	

prominent.	These	results	add	to	the	evidence	that	rhythm	perception	is	shaped	by	a	range	

of	processes	 including	higher-level	 cortical	 stages,	with	different	degrees	of	 flexibility	 and	

automaticity.		

	

Wide	range	of	low-level	and	higher-level	processes	in	meter	perception		

	A	 number	 of	 studies	 have	 consistently	 shown	 that	 brain	 can	 selectively	 enhance	meter-

related	 frequencies,	particularly	 for	 low	meter	contrast	 rhythms.	However,	 the	behavioral	

context	 varied	 across	 these	 studies.	 Some	 asked	 participants	 to	 report	 small	 occasional	

changes	 in	 the	duration	of	 a	 sound	event	making	up	 the	 rhythm	 (Nozaradan	et	 al.,	 2012,	

2017b;	Lenc	et	al.,	2018).	While	those	small	changes	in	duration	of	single	time	intervals	are	

difficult	to	detect	at	a	local	scale,	their	detection	is	easier	on	a	global	scale,	as	the	deviant	

interval	 results	 in	 a	misalignment	 of	 the	 subsequent	 sequence	with	 the	 perceived	meter.	

Therefore,	this	task	implicitly	encourages	participants	to	rely	on	an	internal	metric	structure	

(Schulze,	 1978;	 Jones	 and	 Yee,	 1997;	 Grube	 and	 Griffiths,	 2009).	 Similarly,	 some	 studies	

asked	participants	to	focus	on	the	tempo	(overall	perceived	speed)	of	the	sequences,	either	

searching	for	local	transient	changes	(Lenc	et	al.,	2020),	of	for	later	comparison	with	a	test	

sequence	 (Tal	 et	 al.,	 2017).	Other	 studies	have	asked	participants	 to	 report	 any	 temporal	
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irregularities	in	the	stimuli	while	none	were	actually	present	(Nozaradan	et	al.,	2018),	or	to	

simply	attend	to	the	sequences	(Nozaradan	et	al.,	2016a).	Our	results	suggest	that	selective	

neural	 enhancement	 of	meter	 frequencies	 can	 take	 place	 even	without	 attention	directly	

focused	 on	 the	 temporal	 properties	 of	 the	 stimulus	 (as	 observed	 during	 the	 pitch	 task).	

Interestingly,	this	enhancement	was	also	observed	when	sound	was	ignored	altogether,	i.e.,	

even	 when	 the	 overall	 signal-to-noise	 ratio	 (SNR)	 of	 the	 response	 was	 decreased.	

Nevertheless,	 our	 results	 inform	 future	 frequency-tagging	 studies,	 which	 may	 find	 it	

advantageous	 to	 employ	 behavioral	 tasks	 that	 encourage	 participants	 to	 focus	 on	 the	

auditory	 stimuli,	 even	 when	 the	 task-relevant	 dimension	 is	 orthogonal	 to	 rhythm	

processing,	to	increase	the	SNR	and	facilitate	estimation	of	response	properties.		

While	our	results	suggest	that	neural	responses	to	rhythmic	 input	might	 involve	processes	

largely	 independent	 on	 attentional	 focus,	 this	 does	 not	 imply	 that	 neural	 processing	 of	

rhythm	is	fixed	and	inflexible.	A	number	of	recent	studies	have	shown	that	selective	neural	

enhancement	 of	 meter	 periodicities	 reflects	 flexible	 processes,	 which	 are	 sensitive	 to	

mental	 imagery	 (Nozaradan	 et	 al.,	 2011;	 Li	 et	 al.,	 2019),	 non-temporal	 features	 of	 the	

acoustic	input	(Lenc	et	al.,	2018),	prior	experience	(Chemin	et	al.,	2014),	and	recent	context	

(Lenc	et	al.,	2020).	Importantly,	our	current	findings	show	that	the	internal	transformation	

of	a	rhythmic	input	towards	a	particular	metric	category	can	be	flexibly	enhanced,	possibly	

changed,	but	it	is	difficult	to	suppress	completely:	it	has	an	automatic	component.	Whether	

the	robust	component	can	be	changed	by	long-term	exposure	remains	to	be	seen	in	future	

studies	(Hannon	et	al.,	2012b,	2012a;	London	et	al.,	2017;	van	der	Weij	et	al.,	2017;	Polak	et	

al.,	2018).		

These	 findings	 thus	 reveal	 similarities	 between	 meter	 processing	 and	 other	 higher-level	

auditory	 processes,	 such	 as	 auditory	 stream	 segregation	 or	 change	 detection	 (Sussman,	

2017).	While	automatic	in	some	contexts	(Woods	et	al.,	1992;	Alho	et	al.,	1994;	Dyson	et	al.,	

2005;	 Teki	 et	 al.,	 2011,	 2016;	Masutomi	 et	 al.,	 2016),	 attention	 can	 boost	 or	 bias	 these	

processes	 (Haroush	 et	 al.,	 2010;	 Auksztulewicz	 and	 Friston,	 2015;	 O’Sullivan	 et	 al.,	 2015;	

Costa-Faidella	et	al.,	2017),	particularly	when	the	input	provides	ambiguous	sensory	cues	to	

the	 system	 (Sussman	et	al.,	 2007;	Gutschalk	et	al.,	 2015).	 Similarly,	 the	brain	 response	 to	

isochronous	auditory	sequences	might	be	spontaneously	shaped	by	the	intrinsic	preference	

for	 binary	 structures	 (Brochard	 et	 al.,	 2003;	 Pablos	Martin	 et	 al.,	 2007),	 but	 this	 can	 be	

biased	 towards	 different	 forms	 of	 organization	 by	 top-down	 processes	 dependent	 on	
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attentional	resources	(Nozaradan	et	al.,	2011;	Chemin	et	al.,	2014;	Celma-Miralles	and	Toro,	

2019).	 Importantly,	 some	 higher-level	 auditory	 processes	 can	 be	 largely	 suppressed	

(especially	 by	 high	 load)	 but	 not	 completely	 abolished	 (Woldorff	 et	 al.,	 1991;	 Alain	 and	

Izenberg,	2003;	Chait	et	al.,	2012;	Billig	and	Carlyon,	2016;	Molloy	et	al.,	2019).	Together,	

these	 studies	 suggest	 that	when	 assessing	 effects	 of	 attention	 on	 a	 particular	 perceptual	

phenomenon,	 it	 is	 important	 to	 keep	 in	mind	 that	 (i)	multiple	 processes	 can	 be	 involved	

(Chait	et	al.,	2012),	(ii)	these	different	processes	may	be	differentially	affected	by	different	

kinds	of	tasks	(Bidet-Caulet	et	al.,	2007;	Yerkes	et	al.,	2019),	and	(iii)	the	effect	of	task	may	

also	depend	on	the	sensory	 information	provided	by	the	stimulus	 (Gutschalk	et	al.,	2015).	

With	 respect	 to	meter	 perception,	 identification	 of	 the	 underlying	 internal	 processes	 and	

the	types	of	resources	they	rely	on	remains	worthwhile	goal	for	future	investigations	(Lenc	

et	al.,	2018).		

	

Dissociation	between	overall	gain	and	selective	contrast	at	meter	periodicities	

An	overall	decrease	 is	 sensitivity	 to	 sound	 input	while	 carrying	out	a	 visual	 task	has	been	

previously	reported	by	a	 large	number	of	studies	measuring	early	event-related	potentials	

(Woods	et	al.,	1992;	Alho	et	al.,	1994;	Okamoto	et	al.,	2011),	 frequency	tagged	responses	

(Keitel	et	al.,	2011,	2013;	Riecke	et	al.,	2014),	or	BOLD	activations	in	sensory	cortices	(Petkov	

et	al.,	2004;	Shomstein	and	Yantis,	2004;	Johnson	and	Zatorre,	2005;	Riecke	et	al.,	2017).	In	

line	 with	 these	 studies,	 we	 observed	 increased	 overall	 gain	 of	 the	 higher-level	 EEG	

responses	during	the	auditory	tasks	in	comparison	to	the	visual	task.	In	other	words,	there	

was	 a	 general	 increase	 in	 the	 amplitude	 of	 neural	 activity	 time-locked	 to	 the	 rhythmic	

auditory	 stimulus.	 However,	 this	 non-specific	 enhancement	 could	 simply	 represent	 a	

proportional	increase	of	magnitude	across	the	response	spectrum,	thus	being	equivalent	to	

a	multiplicative	enhancement	of	the	response	in	the	time	domain.	In	that	case,	the	relative	

contrast	in	the	response	at	meter	periodicities	should	necessarily	remain	constant.	

As	 opposed	 to	 such	 non-specific	 enhanced	 gain	 of	 the	 whole	 response,	 a	 change	 in	 the	

selective	 contrast	 at	 meter	 periodicities	 would	 demonstrate	 selective	 increase	 at	 meter-

related	 frequencies.	The	 important	distinction	between	overall	gain	and	selective	contrast	

at	 meter	 frequencies	 has	 been	 often	 neglected	 in	 studies	 claiming	 to	 measure	 “neural	

entrainment	 to	 meter”	 (e.g.	 Tierney	 and	 Kraus,	 2014;	 Hickey	 et	 al.,	 2020).	 Our	 results	
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provide	 a	 cautionary	 example,	 whereby	 non-specific	 increase	 in	 response	 to	 the	 sound	

trivially	explained	by	attention	could	have	been	misinterpreted	as	an	enhancement	of	meter	

periodicities	 in	 brain	 responses.	 Instead,	 our	 method	 allowed	 us	 to	 dissociate	 between	

these	 two	 accounts,	 exploiting	 the	 fact	 that	 energy	 in	 the	 modulation	 spectra	 of	 our	

complex	rhythmic	stimuli	is	not	solely	distributed	across	meter-related	frequencies.	For	this	

reason,	 using	 non-isochronous	 rhythms,	 particularly	 rhythms	 with	 less	 energy	 at	 meter	

frequencies,	 is	 advantageous	 over	 strictly	 isochronous	 stimuli	 where	 changes	 in	 overall	

response	 gain	 and	 selective	 contrast	 enhancement	 cannot	 be	 differentiated.	 In	 addition,	

using	z-score	normalization	instead	of	the	difference	in	raw	spectral	magnitude	makes	the	

measure	robust	to	multiplicative	gain	(which	would	yield	greatest	raw	magnitude	increase	

at	frequencies	already	prominent	in	the	spectra).		

	

Robust	responses	at	meter	periodicities	even	with	low	meter	contrast	in	the	input	

Despite	 the	 significant	 differences	 in	 the	 gain	 of	 the	 higher-level	 EEG	 responses,	 the	

selective	contrast	at	meter	frequencies	was	not	affected	by	task.	However,	this	finding	could	

be	 trivially	 explained	 by	 passive	matching	 of	 stimulus	modulation	 structure	 in	 the	 neural	

response.	 While	 faithful	 tracking	 of	 stimulus	 envelope	 is	 fundamental	 for	 auditory	

perception	(Peelle	et	al.,	2013;	Di	Liberto	et	al.,	2018;	Etard	and	Reichenbach,	2019;	Ghinst	

et	al.,	2019),	the	brain	must	go	beyond	one-to-one	representation	of	the	sensory	 input	to	

achieve	 adaptive	 behavior	 (Kuchibhotla	 and	 Bathellier,	 2018).	 Thus,	 the	 sensory	 input	 is	

continuously	transformed	within	the	brain	towards	higher-level	categories	(Ley	et	al.,	2014;	

Brodbeck	 et	 al.,	 2018;	 Rossion	 et	 al.,	 2020;	 Sankaran	 et	 al.,	 2020;	 Yin	 et	 al.,	 2020).	 Such	

transformations	 are	 critical	 for	 timing	 perception	 already	 at	 the	 level	 of	 single	 intervals	

(Desain	 and	 Honing,	 2003;	 Jacoby	 and	 McDermott,	 2017),	 but	 also	 patterns	 of	 intervals	

(Notter	 et	 al.,	 2018),	 and	 for	 meter	 perception,	 where	 a	 range	 of	 physically	 different	

acoustic	 inputs	 can	 be	 mapped	 onto	 the	 same	 set	 of	 periodic	 pulses	 (Nozaradan	 et	 al.,	

2017a).	 To	 assess	 whether	 the	 internal	 processes	 involved	 in	 this	 transformation	 were	

engaged	even	when	 attention	was	withdrawn	 from	 the	 auditory	 input,	we	 compared	 the	

higher-level	 EEG	 responses	 to	 simulated	 representation	 of	 the	 auditory	 input	 across	

different	auditory	subcortical	stages.	While	keeping	in	mind	that	absence	of	evidence	is	not	

evidence	 of	 absence,	 our	 results	 suggests	 that	 well-described	 low-level	 nonlinearities	 in	
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early	auditory	pathway	cannot	fully	account	for	the	cortical	brain	response	to	the	low	meter	

contrast	rhythm.				

This	was	further	confirmed	by	the	early	sensory	responses	measured	in	the	same	EEG	as	the	

high-level	responses.	Even	though	the	tagged	frequencies	used	to	identify	the	early	sensory	

responses	 in	 the	 current	 study	were	most	 likely	not	 in	 a	high	enough	 frequency	 range	 to	

strictly	 isolate	brainstem	responses	from	cortical	responses	(Coffey	et	al.,	2016;	Holmes	et	

al.,	 2018),	 these	 responses	 may	 have	 preferentially	 captured	 contributions	 from	 primary	

auditory	fields,	as	well	as	subcortical	nuclei	(Chandrasekaran	and	Kraus,	2010;	Nourski	and	

Brugge,	2011).	Therefore,	comparing	EEG	responses	tagged	at	low	frequencies	(higher-level	

responses)	 vs.	 high	 frequencies	 (early	 auditory	 responses)	 may	 still	 be	 a	 useful	 way	 to	

separate	 sound	 representation	 in	 early	 auditory	 cortices	 from	 responses	 originating	 in	 a	

wide	 network	 of	 structures	 involved	 in	 rhythm	 processing	 (Patel	 and	 Iversen,	 2014;	

Merchant	et	al.,	2015).	

Our	results	are	in	line	with	Nozaradan	et	al.	(2018)	who	observed	a	similar	enhancement	of	

meter-related	frequencies	in	the	higher-level	EEG	responses	compared	to	the	early	auditory	

EEG	 responses.	While	 they	only	observed	higher-level	 response	enhancement	 for	 the	 low	

meter	contrast	rhythm,	this	was	the	case	for	both	rhythms	in	the	current	study.	However,	if	

our	 current	 results	 were	 related	 to	 low	 SNR	 for	 early	 auditory	 responses	 resulting	 in	

attenuation	of	the	most	prominent	peaks	in	the	spectra,	one	would	expect	to	find	opposite	

effects	 on	meter-related	 frequencies	 for	 the	 two	 rhythms	 due	 to	 the	 differences	 in	 their	

physical	 structure.	 Moreover,	 non-selective	 attenuation	 of	 high	 frequencies	 in	 the	 early	

auditory	responses	alone	did	not	fully	explain	the	smaller	prominence	of	meter	frequencies	

when	 compared	 to	 the	 higher-level	 EEG	 responses.	 Finally,	 the	 prominence	 of	 meter	

frequencies	in	the	early	auditory	responses	was	strongly	modulated	by	the	type	of	rhythm,	

showing	 sensitivity	 to	 the	 acoustic	 structure	 of	 the	 input.	 Therefore,	 together	 with	 the	

output	 of	 subcortical	 auditory	 processing	 models,	 our	 results	 provide	 evidence	 that	 (i)	

higher-level	processes	further	enhance	contrast	at	meter	frequencies,	especially	when	these	

meter	frequencies	are	not	prominent	in	the	auditory	input,	and	(ii)	these	processes	remain	

active	 even	 when	 overall	 responsiveness	 to	 sound	 input	 is	 decreased	 (e.g.	 during	 a	

demanding	visual	task).		

Recently,	it	has	been	proposed	that	low-level	nonlinearities	such	as	adaptation,	amplitude-

modulation	 tuning,	 and	 heightened	 sensitivity	 to	 contrast	 in	 early	 stages	 of	 the	 auditory	
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pathway	 could	 predict	 whether	 and	 what	 metric	 structure	 is	 perceived	 in	 a	 rhythmic	

stimulus	(Rajendran	et	al.,	2017;	Zuk	et	al.,	2018),	and	the	consistency	of	perceived	meter	

across	 individual	 listeners	 (Rajendran	 et	 al.,	 2020).	While	 these	 low-level	 phenomena	 are	

definitely	 important	 in	 shaping	 rhythm	perception,	 such	models	 are	 inherently	 limited	 to	

enhancement	of	sensitivity	to	contrast	that	is	already	present	in	the	physical	input.	Indeed,	

these	models	are	based	on	 the	 long-standing	assumption	 in	psychology	and	neuroscience	

(likely	 driven	 by	 over-emphasis	 on	 Western	 classical	 and	 popular	 music)	 that	 meter	

perception	is	driven	by	temporal	contrasts	defined	by	acoustic	properties	of	the	sound	input	

(Longuet-Higgins	and	Lee,	1984;	Povel	and	Essens,	1985;	Jones	and	Boltz,	1989;	Palmer	and	

Krumhansl,	 1990;	 Drake	 et	 al.,	 2000;	 Toiviainen	 and	 Snyder,	 2003).	 Strong	 arguments	

against	 these	 assumptions	 have	 been	 recently	 raised	 by	 a	 number	 of	 authors	 (see,	 e.g.	

London	 et	 al.,	 2017;	 van	 der	Weij	 et	 al.,	 2017).	 Indeed,	 such	models	will	 unlikely	 explain	

perception	of	musical	genres	where	the	phase	(e.g.	reggae,	ska,	swing,	mazurka)	or	period	

(e.g.	tresillo,	cascara,	or	rumba	clave	in	afro-cuban	music)	of	the	perceived	metric	structure	

is	weakly	cued	in	the	temporal	distribution	of	features	in	the	physical	sound.	Instead,	over-

constrained	views	may	in	the	end	lose	explanatory	power	by	ignoring	diversity	and	flexibility	

in	 the	 cognitive	 phenomenon	 across	 cultures	 in	 pursuit	 of	 a	 reductionist	 mechanistic	

explanation.		

The	 weak	 explanatory	 power	 of	 biologically	 plausible	 models	 of	 subcortical	 auditory	

processing	 to	 account	 for	 our	 EEG	 results	 adds	 to	 the	 evidence	 that	 meter	 perception	

involves	higher-level	 transformations	of	 the	 input,	providing	 flexibility	within	 (Repp,	2007;	

Repp	et	al.,	2008;	Chemin	et	al.,	2014;	Lenc	et	al.,	2020)	and	across	 individuals	(McKinney	

and	Moelants,	2006;	Martens,	2011;	Hannon	et	al.,	2012a;	Kalender	et	al.,	2013;	Polak	et	al.,	

2018;	Witek	et	al.,	2020).	Instead	of	offering	a	mechanistic	explanation	for	the	current	EEG	

results,	we	emphasize	the	need	for	more	data	and	powerful	designs,	in	order	to	thoroughly	

describe	the	perceptual	phenomenon	 in	question,	and	how	 it	 is	shaped	by	 input	 features,	

behavioral	 goals,	 context,	 exposure,	 and	 learning.	 Similarly,	 we	 do	 not	 claim	 that	 the	

contrast	 at	 meter	 frequencies	 measured	 in	 EEG	 responses	 is	 one-to-one	 with	 meter	

perception	in	a	phenomenological	sense.	At	the	same	time,	 it	 is	 important	to	note	that	all	

measures	of	perception	are	 indirect	 (including	behavioral	measures),	and	critically	depend	

on	the	definition	of	the	perceptual	phenomenon	(see	also	Rossion	et	al.,	2020).	If	meter	is	

defined	as	 the	perception	of	pulses	 that	are	 time-locked	 to	 the	 temporal	 structure	of	 the	
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stimulus,	 and	 if	 pulse	 is	 understood	 as	 something	 that	 consistently	 occurs	 at	 regularly-

spaced	time	points	and	not	otherwise	(thus	creating	a	temporal	contrast),	our	EEG	measure	

is	directly	 relevant	 for	meter	processing.	Moreover,	our	analysis	was	directly	 informed	by	

tapping	 data	 from	 previous	 studies,	 thus	 constraining	 the	 set	 of	 behaviorally	 relevant	

periodicities	based	on	an	additional	measure	of	meter	perception.		

The	fact	that	we	observed	significantly	enhanced	responses	at	meter	frequencies	in	the	low	

meter	 contrast	 rhythm	 irrespective	 of	 attentional	 focus	 may	 seem	 inconsistent	 with	 the	

fMRI	 study	 of	 Chapin	 et	 al.	 (Chapin	 et	 al.,	 2010).	 In	 that	 study,	 participants	 listened	 to	

rhythms	 that	 had	 few	 acoustic	 cues	 to	 meter	 periodicities	 but	 still	 elicited	 stable	 meter	

perception.	 The	 authors	 observed	 larger	 BOLD	 responses	 within	 a	 network	 of	 structures	

typically	 associated	 with	 meter	 perception	 when	 participants	 were	 actively	 listening	

(memorizing	the	rhythm	for	subsequent	reproduction)	than	when	they	were	memorizing	a	

visual	 array	 of	 letters.	However,	 this	 result	 could	 potentially	 be	 explained	by	 non-specific	

changes	 in	 the	 BOLD	 response	 due	 to	 auditory	 stimulation	 interacting	 with	 attention,	 or	

task-related	 motor	 preparation.	 Based	 on	 the	 current	 results,	 we	 suggest	 that	 the	

processing	of	low	meter	contrast	rhythms	may	not	be	inherently	different	from	high	meter	

contrast	rhythms.	 Indeed,	rhythms	with	 little	acoustic	cues	to	meter	are	ubiquitous	across	

cultures	 (Cohn,	 2016;	 London	 et	 al.,	 2017;	 Witek,	 2017;	 Câmara	 and	 Danielsen,	 2018).	

Hence,	such	rhythmic	inputs	may	help	to	reveal	the	transformations	that	take	place	within	

the	 brain	when	 the	 sensory	 input	 is	mapped	onto	 an	 internal	metric	 representation,	 and	

eventually	behavioral	output,	while	controlling	for	acoustic	or	low-level	confounds.		

	

Evidence	for	robust	meter	processing	complementary	to	MMN	studies	of	passive	listening	

Our	 observation	 that	 processes	 related	 to	meter	 perception	 are	 engaged	 robustly	 across	

behavioral	contexts	is	consistent	with	previous	studies	using	the	mismatch-negativity	event-

related	potential,	or	MMN	(Ladinig	et	al.,	2009;	Winkler	et	al.,	2009;	Bouwer	et	al.,	2014,	

2016).	 Complementary	 to	 these	 studies,	 we	 observed	 task-independent	 neural	

enhancement	 of	meter	 frequencies	 even	 for	 the	 low	meter	 contrast	 rhythm,	while	MMN	

responses	have	only	been	assessed	for	rhythms	with	very	prominent	acoustic	cues	to	meter	

periodicities.	Because	MMN	paradigms	rely	on	assumptions	about	predictions	and	regularity	

violations,	which	are	not	well-defined	 for	meter	perception	 (see	e.g.	London	et	al.,	2017),	
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MMN	 studies	 involve	 uncertainty	 about	 the	 type	 of	 deviation	 that	may	 elicit	 differential	

responses	 depending	 on	 its	 timing	 relative	 to	 the	 perceived	 pulse	 (Bouwer	 and	 Honing,	

2015).	MMN	studies	 therefore	 rely	on	 statistically	 linking	 the	perceived	pulse	with	 salient	

sound	 events,	 and	 hence	 limit	 themselves	 to	 study	 of	 high	 meter	 contrast	 rhythms.	

Moreover,	 typical	MMN	 studies	 employ	 passive	 listening	 with	 low	 cognitive	 load	 and	 no	

control	 of	 participant’s	 attentional	 focus	 (Sussman	 et	 al.,	 2014),	 whereas	 we	 directly	

manipulated	 the	 attentional	 state	 of	 the	 listener	 with	 active	 demanding	 tasks	 that	

significantly	affected	the	overall	magnitude	of	the	EEG	responses	and	also	parieto-occipital	

alpha	 power	 (see	 Supplementary	 Material),	 which	 is	 an	 established	 index	 of	 crossmodal	

attentional	 engagement	 (Fu	 et	 al.,	 2001;	 Jensen	 and	 Mazaheri,	 2010;	 Mo	 et	 al.,	 2011;	

Mazaheri	 et	 al.,	 2014).	 Our	 results	 thus	 represent	 an	 important	 step	 towards	 describing	

whether	processes	 involved	 in	meter	perception	depend	on	 limited	 resources,	which	may	

be	shared	across	modalities	and	cognitive	domains	(Marois	and	Ivanoff,	2005;	Chait	et	al.,	

2012;	Murphy	et	al.,	2017;	Molloy	et	al.,	2020).		

	

Conclusions	

The	 human	 auditory	 system	 possesses	 a	 remarkable	 capacity	 to	 carry	 out	 high-level	

processes	 with	 limited	 attentional	 resources	 (Murphy	 et	 al.,	 2017).	 The	 current	 study	

provides	evidence	that	this	may	also	be	the	case	for	processes	involved	in	meter	perception	

in	the	context	of	musical	rhythm.	Our	results	indicate	that	the	brain	selectively	emphasizes	

perceptually	relevant	periodicities	even	when	overall	sensitivity	to	sound	is	decreased	due	

to	a	distracting	task.	Moreover,	such	neural	emphasis	occurs	when	the	periodicities	are	not	

prominent	in	the	sensory	input,	and	their	enhancement	is	not	readily	accounted	for	by	low-

level	 auditory	 processing.	 Therefore,	 these	 robust	 neural	 processes	 may	 support	 the	

spontaneity	 of	meter	 perception	when	 listening	 to	 a	 variety	 of	musical	 inputs,	 while	 still	

allowing	 for	 flexibility	 and	 context	 dependence	 in	 meter	 perception	 within	 and	 across	

individuals.			
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Control	 analysis	 of	 higher-level	 and	 early	 auditory	 EEG	 responses	 excluding	 the	

highest	(5	Hz)	frequency	

To	make	sure	 that	 the	differences	 in	 the	prominence	of	meter-related	 frequencies	

between	 higher-level	 and	 early	 auditory	 EEG	 responses	were	 not	 solely	 driven	 by	

low-pass	biases,	we	re-calculated	the	relative	prominence	of	meter	frequencies	after	

excluding	 the	 highest	 frequency	 of	 interest	 (5	 Hz)	 from	 the	 set.	 This	 frequency	

corresponded	 to	 rate	 of	 individual	 events	 in	 the	 rhythms,	 but	 captured	 also	

harmonics	 of	 the	 slower	 perceived	 metric	 pulses.	 Yet,	 the	 amplitude	 at	 this	

frequency	would	be	affected	most	prominently	if	higher	frequencies	in	the	response	

were	broadly	attenuated	irrespective	of	their	contribution	to	the	contrast	at	meter	

periodicities	 (e.g.	within	a	neural	network	behaving	 like	a	simple	 low-pass	 filter).	A	

mixed	model	with	factors	Rhythm,	Task	and	Response	still	revealed	a	main	effect	of	

Rhythm	(F1,176	=	53.4,	P	<	0.0001,	BF10	>	100)	and	Response	(F1,176	=	35.0,	P	<	0.0001,	

BF10	>	100),	 thus	 replicating	 the	 results	 from	 the	main	analysis.	 This	 indicates	 that	

the	enhanced	selective	contrast	at	meter	periodicities	in	the	higher-level	responses	

cannot	be	 fully	explained	by	non-selective	enhancement	of	higher	 frequencies	 (i.e.	

without	considering	their	relevance	for	the	perceived	meter).		
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Table	 S1.	 Comparison	 of	 mean	 early	 auditory	 response	 amplitude	 averaged	 across	 all	 sidebands	

against	zero	using	non-parametric	Wilcoxon	signed	rank	tests.		

	

distortion	product	
frequency	

rhythm	 task	 mean	 p	 	

168	 high	meter	
contrast	
rhythm	

pitch	 0.048039	 0.007	 **	
tempo	 0.044929	 0.007	 **	
visual	 0.056336	 0.057	 .	

low	meter	
contrast	
rhythm	

pitch	 0.056919	 0.003	 **	
tempo	 0.053233	 0.007	 **	
visual	 0.068828	 0.0003	 ***	

189	 high	meter	
contrast	
rhythm	

pitch	 0.008148	 0.057	 .	
tempo	 -0.000029	 0.463	 		
visual	 0.015129	 0.007	 **	

low	meter	
contrast	
rhythm	

pitch	 0.007007	 0.156	 		
tempo	 0.007147	 0.155	 		
visual	 0.011202	 0.243	 		

357	 high	meter	
contrast	
rhythm	

pitch	 0.002491	 0.057	 .	
tempo	 0.004959	 0.019	 *	
visual	 0.001892	 0.329	 		

low	meter	
contrast	
rhythm	

pitch	 0.000452	 0.452	 		
tempo	 0.001185	 0.089	 .	
visual	 0.000780	 0.440	 		

.	P	<	0.1,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001,	FDR	corrected	
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Table	 S2.	 Control	 analysis	 of	mean	 z-scored	 amplitude	 at	meter-related	 frequencies	without	 taking	

the	 highest	 frequency	 (5	 Hz)	 into	 account.	 Comparison	 between	 higher-level	 EEG	 responses	 and	

models	of	auditory	subcortical	processing	using	one-sample	t-tests.		

	
EEG	variable	 rhythm	 model	 task	 mean_model	 mean_eeg	 sd_eeg	 t	 df	 p	 	
higher-level	
response	

high	meter	
contrast	
rhythm	

broadband	 pitch	 1.06	 0.84	 0.23	 -4.03	 16	 1.000	 		
tempo	 1.06	 0.78	 0.39	 -2.98	 16	 1.000	 		
visual	 1.06	 0.76	 0.48	 -2.63	 16	 1.000	 		

UREAR_AN	 pitch	 0.97	 0.84	 0.23	 -2.27	 16	 1.000	 		
tempo	 0.97	 0.78	 0.39	 -1.96	 16	 1.000	 		
visual	 0.97	 0.76	 0.48	 -1.79	 16	 1.000	 		

UREAR_IC_BMF2	 pitch	 1.06	 0.84	 0.23	 -4.02	 16	 1.000	 		
tempo	 1.06	 0.78	 0.39	 -2.97	 16	 1.000	 		
visual	 1.06	 0.76	 0.48	 -2.62	 16	 1.000	 		

UREAR_IC_BMF4	 pitch	 0.90	 0.84	 0.23	 -1.08	 16	 1.000	 		
tempo	 0.90	 0.78	 0.39	 -1.28	 16	 1.000	 		
visual	 0.90	 0.76	 0.48	 -1.23	 16	 1.000	 		

UREAR_IC_BMF8	 pitch	 0.76	 0.84	 0.23	 1.48	 16	 0.171	 		
tempo	 0.76	 0.78	 0.39	 0.20	 16	 0.748	 		
visual	 0.76	 0.76	 0.48	 -0.01	 16	 0.865	 		

UREAR_IC_BMF16	 pitch	 0.79	 0.84	 0.23	 0.94	 16	 0.338	 		
tempo	 0.79	 0.78	 0.39	 -0.11	 16	 0.899	 		
visual	 0.79	 0.76	 0.48	 -0.27	 16	 0.967	 		

UREAR_IC_BMF32	 pitch	 0.91	 0.84	 0.23	 -1.20	 16	 1.000	 		
tempo	 0.91	 0.78	 0.39	 -1.35	 16	 1.000	 		
visual	 0.91	 0.76	 0.48	 -1.29	 16	 1.000	 		

UREAR_IC_BMF64	 pitch	 0.94	 0.84	 0.23	 -1.80	 16	 1.000	 		
tempo	 0.94	 0.78	 0.39	 -1.69	 16	 1.000	 		
visual	 0.94	 0.76	 0.48	 -1.57	 16	 1.000	 		

low	meter	
contrast	
rhythm	

broadband	 pitch	 0.13	 0.51	 0.40	 4.01	 16	 0.002	 **	
tempo	 0.13	 0.40	 0.39	 2.85	 16	 0.015	 *	
visual	 0.13	 0.25	 0.48	 1.05	 16	 0.317	 		

UREAR_AN	 pitch	 0.14	 0.51	 0.40	 3.86	 16	 0.002	 **	
tempo	 0.14	 0.40	 0.39	 2.70	 16	 0.019	 *	
visual	 0.14	 0.25	 0.48	 0.93	 16	 0.338	 		

UREAR_IC_BMF2	 pitch	 0.02	 0.51	 0.40	 5.11	 16	 0.0002	 ***	
tempo	 0.02	 0.40	 0.39	 3.95	 16	 0.002	 **	
visual	 0.02	 0.25	 0.48	 1.96	 16	 0.077	 .	

UREAR_IC_BMF4	 pitch	 -0.46	 0.51	 0.40	 10.16	 16	 <0.0001	 ***	
tempo	 -0.46	 0.40	 0.39	 9.03	 16	 <0.0001	 ***	
visual	 -0.46	 0.25	 0.48	 6.14	 16	 <0.0001	 ***	

UREAR_IC_BMF8	 pitch	 -0.65	 0.51	 0.40	 12.05	 16	 <0.0001	 ***	
tempo	 -0.65	 0.40	 0.39	 10.94	 16	 <0.0001	 ***	
visual	 -0.65	 0.25	 0.48	 7.71	 16	 <0.0001	 ***	

UREAR_IC_BMF16	 pitch	 -0.49	 0.51	 0.40	 10.46	 16	 <0.0001	 ***	
tempo	 -0.49	 0.40	 0.39	 9.33	 16	 <0.0001	 ***	
visual	 -0.49	 0.25	 0.48	 6.38	 16	 <0.0001	 ***	

UREAR_IC_BMF32	 pitch	 -0.08	 0.51	 0.40	 6.18	 16	 <0.0001	 ***	
tempo	 -0.08	 0.40	 0.39	 5.04	 16	 0.0002	 ***	
visual	 -0.08	 0.25	 0.48	 2.85	 16	 0.015	 *	

UREAR_IC_BMF64	 pitch	 0.13	 0.51	 0.40	 3.98	 16	 0.002	 **	
tempo	 0.13	 0.40	 0.39	 2.82	 16	 0.015	 *	
visual	 0.13	 0.25	 0.48	 1.03	 16	 0.317	 		

.	P	<	0.1,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001,	FDR	corrected	
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Table	 S3.	 Comparison	 of	 mean	 z-scored	 amplitude	 at	 meter-related	 frequencies	 between	 early	

auditory	EEG	responses	and	models	of	auditory	subcortical	processing	using	one-sample	t-tests.		

	
EEG	variable	 rhythm	 model	 task	 mean_model	 mean_eeg	 sd_eeg	 t	 df	 p	 	
early	auditory	
response	

high	meter	
contrast	
rhythm	

broadband	 pitch	 0.81	 0.41	 0.39	 -4.20	 16	 1.0	 		
tempo	 0.81	 0.42	 0.42	 -3.80	 16	 1.0	 		
visual	 0.81	 0.32	 0.41	 -5.00	 16	 1.0	 		

UREAR_AN	 pitch	 0.52	 0.41	 0.39	 -1.15	 16	 1.0	 		
tempo	 0.52	 0.42	 0.42	 -0.93	 16	 1.0	 		
visual	 0.52	 0.32	 0.41	 -2.04	 16	 1.0	 		

UREAR_IC_BMF2	 pitch	 0.83	 0.41	 0.39	 -4.38	 16	 1.0	 		
tempo	 0.83	 0.42	 0.42	 -3.98	 16	 1.0	 		
visual	 0.83	 0.32	 0.41	 -5.17	 16	 1.0	 		

UREAR_IC_BMF4	 pitch	 0.79	 0.41	 0.39	 -4.00	 16	 1.0	 		
tempo	 0.79	 0.42	 0.42	 -3.61	 16	 1.0	 		
visual	 0.79	 0.32	 0.41	 -4.80	 16	 1.0	 		

UREAR_IC_BMF8	 pitch	 0.75	 0.41	 0.39	 -3.60	 16	 1.0	 		
tempo	 0.75	 0.42	 0.42	 -3.24	 16	 1.0	 		
visual	 0.75	 0.32	 0.41	 -4.42	 16	 1.0	 		

UREAR_IC_BMF16	 pitch	 0.80	 0.41	 0.39	 -4.09	 16	 1.0	 		
tempo	 0.80	 0.42	 0.42	 -3.69	 16	 1.0	 		
visual	 0.80	 0.32	 0.41	 -4.89	 16	 1.0	 		

UREAR_IC_BMF32	 pitch	 0.81	 0.41	 0.39	 -4.25	 16	 1.0	 		
tempo	 0.81	 0.42	 0.42	 -3.85	 16	 1.0	 		
visual	 0.81	 0.32	 0.41	 -5.04	 16	 1.0	 		

UREAR_IC_BMF64	 pitch	 0.68	 0.41	 0.39	 -2.89	 16	 1.0	 		
tempo	 0.68	 0.42	 0.42	 -2.56	 16	 1.0	 		
visual	 0.68	 0.32	 0.41	 -3.73	 16	 1.0	 		

low	meter	
contrast	
rhythm	

broadband	 pitch	 0.06	 -0.10	 0.40	 -1.58	 16	 1.0	 		
tempo	 0.06	 -0.04	 0.38	 -1.03	 16	 1.0	 		
visual	 0.06	 -0.09	 0.33	 -1.84	 16	 1.0	 		

UREAR_AN	 pitch	 -0.13	 -0.10	 0.40	 0.31	 16	 1.0	 		
tempo	 -0.13	 -0.04	 0.38	 0.95	 16	 1.0	 		
visual	 -0.13	 -0.09	 0.33	 0.45	 16	 1.0	 		

UREAR_IC_BMF2	 pitch	 -0.04	 -0.10	 0.40	 -0.54	 16	 1.0	 		
tempo	 -0.04	 -0.04	 0.38	 0.06	 16	 1.0	 		
visual	 -0.04	 -0.09	 0.33	 -0.58	 16	 1.0	 		

UREAR_IC_BMF4	 pitch	 -0.29	 -0.10	 0.40	 2.00	 16	 0.3	 		
tempo	 -0.29	 -0.04	 0.38	 2.72	 16	 0.2	 		
visual	 -0.29	 -0.09	 0.33	 2.49	 16	 0.2	 		

UREAR_IC_BMF8	 pitch	 -0.27	 -0.10	 0.40	 1.79	 16	 0.4	 		
tempo	 -0.27	 -0.04	 0.38	 2.50	 16	 0.2	 		
visual	 -0.27	 -0.09	 0.33	 2.24	 16	 0.2	 		

UREAR_IC_BMF16	 pitch	 -0.08	 -0.10	 0.40	 -0.13	 16	 1.0	 		
tempo	 -0.08	 -0.04	 0.38	 0.48	 16	 1.0	 		
visual	 -0.08	 -0.09	 0.33	 -0.09	 16	 1.0	 		

UREAR_IC_BMF32	 pitch	 0.05	 -0.10	 0.40	 -1.53	 16	 1.0	 		
tempo	 0.05	 -0.04	 0.38	 -0.98	 16	 1.0	 		
visual	 0.05	 -0.09	 0.33	 -1.77	 16	 1.0	 		

UREAR_IC_BMF64	 pitch	 0.01	 -0.10	 0.40	 -1.07	 16	 1.0	 		
tempo	 0.01	 -0.04	 0.38	 -0.50	 16	 1.0	 		
visual	 0.01	 -0.09	 0.33	 -1.22	 16	 1.0	 		

.	P	<	0.1,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001,	FDR	corrected	
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Table	 S4.	 Control	 analysis	 of	mean	 z-scored	 amplitude	 at	meter-related	 frequencies	without	 taking	

the	 highest	 frequency	 (5	Hz)	 into	 account.	 Comparison	 between	 early	 auditory	 EEG	 responses	 and	

models	of	auditory	subcortical	processing	using	one-sample	t-tests.		

	
EEG	variable	 rhythm	 model	 task	 mean_model	 mean_eeg	 sd_eeg	 t	 df	 p	 	
early	auditory	
response	

high	meter	
contrast	
rhythm	

broadband	 pitch	 1.06	 0.51	 0.45	 -5.07	 16	 1.000	 		
tempo	 1.06	 0.60	 0.47	 -4.07	 16	 1.000	 		
visual	 1.06	 0.31	 0.68	 -4.52	 16	 1.000	 		

UREAR_AN	 pitch	 0.97	 0.51	 0.45	 -4.18	 16	 1.000	 		
tempo	 0.97	 0.60	 0.47	 -3.23	 16	 1.000	 		
visual	 0.97	 0.31	 0.68	 -3.93	 16	 1.000	 		

UREAR_IC_BMF2	 pitch	 1.06	 0.51	 0.45	 -5.06	 16	 1.000	 		
tempo	 1.06	 0.60	 0.47	 -4.06	 16	 1.000	 		
visual	 1.06	 0.31	 0.68	 -4.51	 16	 1.000	 		

UREAR_IC_BMF4	 pitch	 0.90	 0.51	 0.45	 -3.58	 16	 1.000	 		
tempo	 0.90	 0.60	 0.47	 -2.66	 16	 1.000	 		
visual	 0.90	 0.31	 0.68	 -3.54	 16	 1.000	 		

UREAR_IC_BMF8	 pitch	 0.76	 0.51	 0.45	 -2.29	 16	 1.000	 		
tempo	 0.76	 0.60	 0.47	 -1.42	 16	 1.000	 		
visual	 0.76	 0.31	 0.68	 -2.68	 16	 1.000	 		

UREAR_IC_BMF16	 pitch	 0.79	 0.51	 0.45	 -2.57	 16	 1.000	 		
tempo	 0.79	 0.60	 0.47	 -1.68	 16	 1.000	 		
visual	 0.79	 0.31	 0.68	 -2.86	 16	 1.000	 		

UREAR_IC_BMF32	 pitch	 0.91	 0.51	 0.45	 -3.64	 16	 1.000	 		
tempo	 0.91	 0.60	 0.47	 -2.71	 16	 1.000	 		
visual	 0.91	 0.31	 0.68	 -3.58	 16	 1.000	 		

UREAR_IC_BMF64	 pitch	 0.94	 0.51	 0.45	 -3.95	 16	 1.000	 		
tempo	 0.94	 0.60	 0.47	 -3.00	 16	 1.000	 		
visual	 0.94	 0.31	 0.68	 -3.78	 16	 1.000	 		

low	meter	
contrast	
rhythm	

broadband	 pitch	 0.13	 -0.03	 0.48	 -1.39	 16	 1.000	 		
tempo	 0.13	 0.02	 0.45	 -0.99	 16	 1.000	 		
visual	 0.13	 -0.06	 0.39	 -1.94	 16	 1.000	 		

UREAR_AN	 pitch	 0.14	 -0.03	 0.48	 -1.51	 16	 1.000	 		
tempo	 0.14	 0.02	 0.45	 -1.11	 16	 1.000	 		
visual	 0.14	 -0.06	 0.39	 -2.08	 16	 1.000	 		

UREAR_IC_BMF2	 pitch	 0.02	 -0.03	 0.48	 -0.48	 16	 1.000	 		
tempo	 0.02	 0.02	 0.45	 -0.03	 16	 1.000	 		
visual	 0.02	 -0.06	 0.39	 -0.82	 16	 1.000	 		

UREAR_IC_BMF4	 pitch	 -0.46	 -0.03	 0.48	 3.71	 16	 0.005	 **	
tempo	 -0.46	 0.02	 0.45	 4.38	 16	 0.002	 **	
visual	 -0.46	 -0.06	 0.39	 4.29	 16	 0.002	 **	

UREAR_IC_BMF8	 pitch	 -0.65	 -0.03	 0.48	 5.28	 16	 0.0006	 ***	
tempo	 -0.65	 0.02	 0.45	 6.04	 16	 0.0002	 ***	
visual	 -0.65	 -0.06	 0.39	 6.21	 16	 0.0002	 ***	

UREAR_IC_BMF16	 pitch	 -0.49	 -0.03	 0.48	 3.95	 16	 0.003	 **	
tempo	 -0.49	 0.02	 0.45	 4.64	 16	 0.001	 **	
visual	 -0.49	 -0.06	 0.39	 4.59	 16	 0.001	 **	

UREAR_IC_BMF32	 pitch	 -0.08	 -0.03	 0.48	 0.41	 16	 1.000	 		
tempo	 -0.08	 0.02	 0.45	 0.91	 16	 0.901	 		
visual	 -0.08	 -0.06	 0.39	 0.27	 16	 1.000	 		

UREAR_IC_BMF64	 pitch	 0.13	 -0.03	 0.48	 -1.41	 16	 1.000	 		
tempo	 0.13	 0.02	 0.45	 -1.01	 16	 1.000	 		
visual	 0.13	 -0.06	 0.39	 -1.96	 16	 1.000	 		

.	P	<	0.1,	*	P	<	0.05,	**	P	<	0.01,	***	P	<	0.001,	FDR	corrected	
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EEG	oscillatory	alpha	activity	

Parieto-occipital	alpha	power	was	measured	as	an	independent	index	of	attentional	

engagement	during	the	visual	task,	compared	to	the	two	auditory	tasks.	To	separate	

the	oscillatory	activity	from	the	1/f	background,	the	time-domain	preprocessed	data	

were	subjected	to	irregular-resampling	auto-spectral	analysis	(IRASA)	(Wen	and	Liu,	

2016).	 This	 method	 utilizes	 the	 fact	 that	 irregular	 resampling	 with	 non-integer	

factors	 results	 in	 shifts	 of	 the	 oscillatory	 component	 along	 the	 frequency	 axis,	

whereas	 the	 1/f	 component	 remains	 constant.	 The	 procedure	 was	 carried	 out	

separately	 for	 each	 channel,	 condition,	 and	 participant.	 The	 data	 from	 each	 trial	

were	segmented	into	15	overlapping	windows	that	were	equally	spaced	throughout	

the	trial.	The	number	of	samples	in	each	window	corresponded	to	the	largest	power	

of	 2	 that	 did	 not	 exceed	 90%	 of	 trial	 duration.	 For	 each	window,	 the	 auto-power	

spectrum	was	 estimated	 using	 FFT	 after	multiplication	with	 a	 Hann	 function.	 This	

was	performed	for	the	original	sampling	rate,	and	also	after	resampling	using	pairs	

of	resampling	factors	f	and	1/f	(where	f	was	taken	from	0.1	to	0.9	in	steps	of	0.05).	

The	 geometric	 mean	 of	 the	 auto-power	 spectra	 was	 taken	 across	 each	 pair	 of	

resampling	factors.	The	power	spectrum	of	the	fractal	component	was	estimated	as	

the	median-average	spectrum	across	all	values	of	f,	separately	for	each	window.	The	

power	spectrum	of	the	fractal	component	was	then	averaged	across	the	15	windows	

and	subtracted	from	the	average	power	spectrum	of	the	original	signal	(without	any	

resampling),	to	obtain	an	estimate	of	the	oscillatory	component.		

In	 the	 resulting	 oscillatory	 power	 spectra,	 all	 frequencies	 that	 were	 expected	 to	

contain	neural	activity	elicited	by	the	acoustic	stimulus	(i.e.	harmonics	of	the	pattern	

repetition	 rate,	 0.416	Hz)	were	 set	 to	 zero.	 Subsequently,	 the	 power	 in	 the	 alpha	

range	was	quantified	by	 taking	 the	mean	power	between	8	and	12	Hz	 (Iemi	et	al.,	

2017;	van	Diepen	and	Mazaheri,	2017;	Van	Diepen	et	al.,	2019),	separately	for	each	

condition.	 Alpha	 power	was	 averaged	 across	 18	 parieto-occipital	 channels	 (Iz,	 O1,	

Oz,	 O2,	 PO7,	 PO3,	 POz,	 PO4,	 PO8,	 P9,	 P7,	 P3,	 P1,	 Pz,	 P2,	 P4,	 P8,	 P10)	 that	 were	

expected	to	show	largest	effects	of	cross-modal	attention	based	on	previous	studies	

(Fu	et	al.,	2001;	Mazaheri	et	al.,	2014;	van	Diepen	and	Mazaheri,	2017).		
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The	 power	 of	 alpha	 oscillatory	 activity	 from	 the	 parieto-occipital	 electrodes	 was	

significantly	modulated	by	task	(F2,80	=	10,	P	=	0.0001,	BF10	>	100).	As	shown	in	Figure	

S1,	the	power	significantly	decreased	during	the	Visual	task	compared	to	the	Tempo	

task	(β	=	-0.03,	t82	=	-4.39,	P	=	0.0001,	95%	CI	=	[-0.05,	-0.01])	and	Pitch	task	(β	=	-

0.02,	t82	=	-3.08,	P	=	0.008,	95%	CI	=	[-0.04,	-0.005]).		

Visual	inspection	of	the	data	suggested	that	the	effect	might	have	been	only	present	

for	 participants	 who	 had	 higher	 baseline	 alpha	 power.	 This	 was	 supported	 by	 a	

significant	improvement	of	the	model	after	adding	the	interaction	between	Task	and	

alpha	power	in	the	Visual	task	as	a	continuous	predictor	(F3,72.5	=	11.72,	P	<	0.0001).	

Across	participants,	higher	power	in	the	Visual-task	condition	was	related	to	greater	

power	increase	in	the	Tempo	task	(β	=	1.41,	t45.3	=	5.41,	P	<	0.0001,	95%	CI	=	[0.73,	

1.98])	and	in	the	Pitch	task	(β	=	1.16,	t45.3	=	4.47,	P	<	0.0001,	95%	CI	=	[0.49,	1.73]).		

	

	

Figure	S1.	EEG	power	at	the	alpha	frequency	elicited	across	the	different	tasks	at	posterior	channels.	

Alpha	power	was	significantly	smaller	(p	<	0.01,	marked	by	asterisks)	during	the	visual	task,	and	the	

magnitude	of	the	effect	depended	on	the	baseline	alpha	response	across	participants.		
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