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Abstract 11 

Single cell genomics is rapidly advancing our knowledge of cell phenotypic types and 12 

states. Driven by single cell/nucleus RNA sequencing (scRNA-seq) data, 13 

comprehensive atlas projects covering a wide range of organisms and tissues are 14 

currently underway. As a result, it is critical that the cell transcriptional phenotypes 15 

discovered are defined and disseminated in a consistent and concise manner. 16 

Molecular biomarkers have historically played an important role in biological research, 17 

from defining immune cell-types by surface protein expression to defining diseases by 18 

molecular drivers.  Here we describe a machine learning-based marker gene selection 19 

algorithm, NS-Forest version 2.0, which leverages the non-linear attributes of random 20 

forest feature selection and a binary expression scoring approach to discover the 21 

minimal marker gene expression combinations that precisely captures the cell type 22 

identity represented in the complete scRNA-seq transcriptional profiles.  The marker 23 

genes selected provide a barcode of the necessary and sufficient characteristics for 24 

semantic cell type definition and serve as useful tools for downstream biological 25 

investigation.  The use of NS-Forest to identify marker genes for human brain middle 26 

temporal gyrus cell types reveals the importance of cell signaling and non-coding RNAs 27 

in neuronal cell type identity. 28 

  29 
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Introduction 30 

Cells are the fundamental functional units of life.  In multicellular organisms, different 31 

cell types play different physiological roles in the body.  The identity and function of a 32 

cell - the cell phenotype - is dictated by the subset of genes/proteins expressed in that 33 

cell at any given point in time.  Abnormalities in this expressed genome are disorders 34 

that form the physical basis of disease (1)  Thus, understanding normal and abnormal 35 

cellular phenotypes is key for diagnosing disease and for identifying therapeutic targets. 36 

Single cell transcriptomic technologies that measure cell phenotypes using single 37 

cell/single nucleus RNA sequencing (scRNA-seq) are revolutionizing cellular biology. 38 

The expression profiles produced by these technologies can be used to define cell 39 

types and their states.  Numerous atlas projects designed to provide a comprehensive 40 

enumeration of normal cell types and states are currently underway, including the 41 

Human Cell Atlas (2), California Institute for Regenerative Medicine (CIRM) (3-5), 42 

LungMAP (6), Pancreas atlas (7), Heart atlas (8), and NIH Brain initiative (9). By 43 

leveraging these atlases of normal cell types defined from healthy patients as 44 

references, the role of expression deviations in disease are being investigated (10-12). 45 

These projects rely primarily upon two scRNA-seq single cell technologies: Droplet 46 

based technologies (13) or FACS sorting followed by Smart-Seq library preparation 47 

(14). In the standard data processing pipeline, the raw sequencing reads are processed 48 

using reference-based alignment, transcript reconstruction, and expression level 49 

estimation. From the expression matrix, the typical downstream analysis workflows 50 

produce a set of gene expression data clusters representing cells/nuclei with similar 51 

expression patterns. We interpret these distinct transcriptional profiles to represent 52 

distinct cell phenotypes, which include canonical cell types and distinct cell states, that 53 

have achieved a state of equilibrium. This is in contrast to transitional trajectories in 54 

developing tissues and populations in the process of responding to perturbations that 55 

can show gradual expression pattern changes between discrete cell phenotypes (15-56 

17). 57 

Despite the incredible promise of single cell transcriptomic analysis for identifying and 58 

quantifying known and novel cell types, the cell type clusters and their transcriptional 59 
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phenotypes are not being formalized in a standardized way to ensure dissemination is 60 

in accordance with FAIR principles (18). One approach for formalizing knowledge 61 

representation and dissemination is to use the sematic framework provided by 62 

biomedical ontologies.  For cell phenotypes defined by single cell transcriptomics, the 63 

Cell Ontology (CL) is an established biomedical ontology already applying ontological 64 

methodologies that could be used to address FAIR-compliant cell phenotype 65 

dissemination (19-22). With the rapid expansion in both datasets and cell phenotypes 66 

being defined using scRNA-seq, the challenge will be to make the generation of these 67 

semantic knowledge representations scalable.      68 

To develop this scalable dissemination solution, we propose to define cell type 69 

phenotypes based on the minimum combination of necessary and sufficient features 70 

that capture cell type identity and uniquely characterize a discrete cell phenotype.  In 71 

the case of cell types identified by scRNA-seq experiments, these features correspond 72 

to the combination of differentially expressed marker genes unique to a given gene 73 

expression cluster. Historically, marker gene expression, especially at the protein level, 74 

has been an essential tool to connect cell type identity with defining cell type functional 75 

characteristics. For example, the classical markers CD19 and CD3 have been used 76 

extensively to differentiate between B cells and T cells, while within the T cell population 77 

CD3 and CD4 and CD8 are used to further separate helper and cytotoxic types (23). In 78 

neurology, SLC17A7 and GAD1 are well-known markers for excitatory (glutamatergic) 79 

and inhibitory (GABAergic) neuron types, respectively (24). 80 

In the case of scRNA-seq expression clusters, an optimal cell type marker would be a 81 

cellular feature or unique combination of features that provides high sensitivity and high 82 

specificity for cell type classification. The ideal scenario would be to have a marker gene 83 

that is expressed at high levels in all individual cells of a given cell type and not 84 

expressed at all in any cell of any other cell type.  We refer to this phenomenon as a 85 

binary expression pattern. Finding markers with this binary expression pattern can be 86 

quite useful for downstream experimental validation and investigation using 87 

technologies such as multiplex fluorescence in situ hybridization (mFISH), quantitative 88 

PCR, or flow cytometry. However, in complex tissues this ideal scenario is rarely 89 

observed. Candidate marker genes are often expressed at high levels in the target 90 
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cluster and lower levels in off-target clusters. We refer to these markers as quantitative 91 

markers as their discriminatory power is derived from specific expression level cutoffs, 92 

which are dependent on the sensitivity of the assay being performed.  Or a single binary 93 

marker may be expressed in multiple related cell types. 94 

Though similar in concept, determining markers from cell type clusters is different from 95 

differential expression analysis (DE) in that DE analysis evaluates each gene for 96 

expression level variation between groups, whereas marker genes are tested for their 97 

classification power.  The most common scRNA-seq analysis tools - Seurat (16) and 98 

Scanpy (17) – handle gene selection in a similar fashion. After cluster analysis, genes 99 

are evaluated by comparing expression in cells in a target cluster versus expression in 100 

all other cells using, for example, the Wilcoxon Rank Sum test, which produces a gene 101 

list that can be ranked by adjusted p-value. However, while the best marker genes for 102 

discriminating and defining a cell type cluster are often found among the differentially 103 

expressed genes, their utility in defining a cell type is not apparent from either their p-104 

value rank nor their fold difference in expression. Furthermore, DE analysis tests genes 105 

individually, while defining cell types often requires the combined contribution of sets of 106 

marker genes.  107 

Here we describe Necessary and Sufficient Forest (NS-Forest) version 2.0, which 108 

leverages the non-linear attributes of random forest feature selection and Binary 109 

Expression Score ranking to discover marker gene combinations that can be used to 110 

both define cell type phenotypes and in downstream biological investigations. The initial 111 

version of NS-forest was based on a simple approach in which feature selection by 112 

Random Forest machine learning was used to discover potential marker genes (21). 113 

Here we describe user community-driven improvements upon this original methodology. 114 

NS-Forest version 2.0 is available at https://github.com/JCVenterInstitute/NSForest 115 

under an open source MIT license.   116 

Results 117 

User driven development of NS-Forest  118 
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NS-Forest version 2.0 was developed in close collaboration with the brain cell user 119 

community. The primary goal was to optimize the NS-Forest method in order to discover 120 

marker genes that can both uniquely define the cell type phenotype and aid in their 121 

downstream experimental investigation. In order to accomplish this, several major 122 

changes were made to NS-Forest version 1 (Table 1). First, negative markers were 123 

removed by implementing a positive expression level filter.  A negative marker is not 124 

expressed in the target cluster while having expression in off-target clusters. These 125 

markers are not optimal for many downstream assays or definitional purposes. These 126 

genes are now filtered out by applying a cluster median expression threshold. The 127 

default setting is zero; however, this can be changed to enrich for genes at varying 128 

expression levels (Figure 1C).  129 

Table 1: Major changes between NS-Forest version 1.3 and version 2.0 130 

 131 

Next, the way genes are ranked after Random Forest (RF) selection was refined. Genes 132 

selected by RF have an expression level split point between target and off-target 133 

clusters. Often the genes selected discriminate based on a specific value of expression 134 

resulting in quantitative expression markers.  As will be demonstrated below, these 135 

quantitative markers are good for classification but are less useful in many downstream 136 

biological assays. To address this issue, we optimized version 2.0 for the selection of 137 

binary expression markers. Binary expression markers are characterized by having 138 

expression within the target cell type while being expressed at low or negligible levels in 139 

other cell types. We accomplished this by developing a new Binary Expression Score 140 

metric with subsequent re-ranking based on this score after random forest feature 141 

determination (Figure 1D/E). 142 

Lastly, the marker gene evaluation framework was redesigned. In early NS-Forest 143 

versions, the top ranked genes were evaluated by unweighted F-1 score in an additive 144 

Workflow step NS-Forest v1.3 NS-Forest v2.0

Feature Selection (Figure1A/B)
Random Forest (RF) driven feature 
selection No changes

Feature Ranking (Figure1C) Used RF ranking Filtering of negative markers 
Feature Ranking (Figure1D/E) NA Binary score reranking 

Minimum feature determination (Figure1F)
Gene expression criteria determined by 
median cluster expression

Gene expression criteria determined by 
Decision Tree split

Minimum feature determination (Figure1G) Calculate F-score Calculate Fbeta-score
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fashion. First, each of the top genes were tested individually and the best gene then 145 

removed from the list. Next all pairings with the previously determined gene were tested 146 

to find an improvement over the previous individual gene F-score. This additive process 147 

continued until the F-score plateaued or the selected number of top rank genes were all 148 

tested. In the new version of NS-Forest, all combinations of the selected top ranked 149 

genes are tested by weighted F-beta score. The F-beta score contains a weighting 150 

term, beta, that allows for emphasizing either precision or recall. By weighting toward 151 

precision, zero inflation (drop-out) can be controlled, which is a known technical artifact 152 

with scRNA-seq data. These adjustments result in better final marker gene 153 

combinations given the known limitations of scRNA-seq analysis (Figure 1F/G).  154 

 155 

Figure 1: NS-Forest version 2.0 workflow. The method begins with a cell by gene matrix 156 

and cluster assignments. These are used to generate binary classification models using 157 

Random Forest. Features are extracted from the model and ranked by Gini index. Top 158 

features are filtered by expression level before being ranked by binary expression. 159 

Decision point expression level cutoffs are then determined for the most binary features 160 

and F-beta score used as an objective function to evaluate the discriminatory power of 161 

all combinations.  162 

 163 
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Performance Testing of Binary Scoring Approach 164 

Simulation testing of the NS-Forest Binary Expression Score was performed to evaluate 165 

re-ranking behavior. First, anticipated marker gene expression patterns were 166 

themselves ranked by order of hypothetical preference (Figure 2A). The highest 167 

preference was given to a marker gene that shows a binary expression pattern and is 168 

only expressed in the target cluster (Figure 2A(a)/2B). Next, preference is given to a 169 

marker gene that shows binary expression and is only expressed in the target cluster 170 

and a limited number of off-target clusters (Figure 2A(b)). This is followed by 171 

quantitative markers which have a high expression in the target cluster and lower 172 

expression in off-target clusters (Figure 2A(c)/2C) or high expression in the target 173 

cluster and a limited number of off-target clusters (Figure 2A(d)). The least preferred 174 

pattern is when the marker is expressed at only slightly different levels between the 175 

target and off-target clusters (Figure 2A(e)/2D).  176 

Simulations varying the binary expression pattern and level of zero inflation (Figure 2E) 177 

were then performed. First, the ideal scenario of binary expression, as described above, 178 

produced a simulated Binary Expression Score of 1.0 (Figure 2E red). When the 179 

candidate marker gene was expressed in one (Figure 2E green) or four (Figure 2E 180 

blue) off-target clusters, the Binary Expression Score decreased to 0.95 and 0.90, 181 

respectively.  In addition, these scores were robust to high zero inflation proportions, 182 

demonstrating no decrease in Binary Expression Score up to 45% zero values. 183 

Next, quantitative marker expression patterns was added to the simulation (Figures 2F 184 

& G) by varying the number of off-target clusters with high expression levels and adding 185 

moderate expression to the remaining off-target clusters. In all cases in which 186 

quantitative difference in expression are simulated, the Binary Expression Scores are 187 

substantially reduced (Figures 2F). In the best case, where only the target cluster has 188 

high expression and the off-target clusters have moderate expression, the Binary 189 

Expression Score was 0.52.  Further Binary Expression Score reductions are found 190 

when the high expression levels are present in additional off-target clusters. Adjusting 191 

the level of zero inflation for these scenarios showed that these Binary Expression 192 
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Scores were also robust to increasing zero inflation levels until they drop dramatically 193 

after 35% zero values. 194 

Finally, simulations were performed to again test how a high-expressing marker is 195 

effected by the addition of 1 or 4 high expressing off-target clusters together with 196 

increasing expression levels in the remaining off-target clusters from low (2) to high (8) 197 

expression (Figures 2G). With the remaining off-target clusters held at low expression 198 

levels, these three scenarios returned high Binary Expression Scores [0.7-0.85], but 199 

these Binary Expression Scores quickly decreased with increasing levels of off-target 200 

expression. For example, when the off-target expression level was set to 6, all three 201 

high-expressing off-target scenarios returned Binary Expression Scores below 0.5. In 202 

the worst case, where the candidate marker has relatively high expression in all off-203 

target clusters, the Binary Expression Score was less than 0.2. 204 

These simulations demonstrate that the Binary Expression Score value produced by the 205 

algorithm recapitulates the preferred expression pattern ranking order (Figure 2A). In all 206 

simulations tested, the Binary Expression Score decreases with the addition of marker 207 

expression in off-target clusters and were robust to zero inflation.     208 

 209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.308932doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.308932
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Performance testing of Binary Expression Score. In panel A) Possible marker 210 

gene expression patterns were ranked by order of preference. Violin plots showing 211 

three different expression scenarios: panel B) binary expression only in the target 212 

cluster, panel C) quantitative expression with high expression in the target cluster and 213 

one other cluster and large differences in expression in the other off-target clusters, 214 

panel D) quantitative expression with high expression in the target cluster and four other 215 

cluster, small differences in expression in the other off-target clusters, and higher levels 216 

of zero inflation. Below, line graphs show the full range of tested simulations from which 217 

the above example violin plots are taken. For panels E-G there were three defined test 218 

cases: the red where there is one cluster with high expression of the marker gene, 219 

green where there are two clusters with high expression of the marker gene, and lastly 220 

blue where 5 clusters have high expression of the marker gene. Panel E) gives 221 

simulation testing of the Binary Expression Score increasing the proportion of zeros 222 

while maintaining off target expression at zero. Panel F) off-target clusters were given 223 

moderate levels of expression while the proportion of zeros was increased. In panel G) 224 

expression levels were varied in all off-target clusters from low (2) to high expression 225 

(8).  226 

Marker Gene Comparison Between NS-Forest Versions 227 

To evaluate the differences in results between NS-Forest v1.3 and v2.0, we analyzed 228 

marker genes selected for cell type clusters generated from single nuclei transcriptomes 229 

prepared from all layers (1-6) of the human middle temporal gyrus (MTG) obtained from 230 

postmortem and surgically resected samples (sTables 1-3). For this dataset, three 231 

broad classes of cells were identified: excitatory neurons (10,708 cells), inhibitory 232 

neurons (4,297 cells), and non-neuronal cells (923 cells). These nuclei were clustered 233 

iteratively by first clustering into the larger groups, followed by subsequent re-clustering 234 

within each group until 75 putative cell types were found (25). From left to right of the 235 

hierarchical clustering of clusters shown at the top of both heatmaps there are 46 236 

inhibitory, 23 excitatory, and 6 non-neuronal types (Figure 3). Subsequent figures 237 

investigating these cell type clusters are ordered by these taxonomic relationship. In 238 

Figure 3, the 155 marker genes determined by NS-Forest version 1.3 and the 157 239 
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marker genes determined by version 2.0 are the rows while the clusters are columns 240 

where the row normalized expression level is reflected in the color gradient of high in 241 

red to low in blue/white. The diagonal corresponds to the marker gene set for each 242 

cluster type.  From the heatmaps it is clear that the binary expression has dramatically 243 

improved between NS-Forest version 1.3 and version 2.0 as the diagonal contains more 244 

genes with red or bright yellow levels of expression and off-diagonal expression levels 245 

are more blue (closer to 0).  246 

Given the intention of the Binary Expression Score ranking step to preferentially find 247 

marker genes with binary expression, there are tradeoffs in both the number of genes 248 

required and the classification power when compared to markers ranked by importance 249 

from the random forest model. In general, NS-Forest version 2.0 requires more unique 250 

genes for a given dataset. In the case of the full MTG dataset the increase is marginal 251 

requiring only two additional unique genes (155 vs 157 genes); however, a larger 252 

difference in the number of marker genes required has been observed for other 253 

datasets (data not shown). Furthermore, the genes that have a high Binary Expression 254 

Score are usually not the same genes that were ranked highest by Information Gain 255 

within the random forest model. This suggests that in terms of pure classification the 256 

markers determined by v2.0 might be expected to underperform. To directly compare 257 

the F-scores between these two versions of NS-Forest, an additional analysis was run 258 

setting the beta weight of the F-score to 1 in version 2.0 thereby making it directly 259 

comparable to version 1.3. As expected, the mean F-score for version 1.3 (0.62) was 260 

slightly higher than the mean F-score for version 2.0 (0.58); however, the average 261 

Binary Expression Score for the version 1.3 markers was significantly lower at 0.72 262 

versus 0.94 for version 2.0. (For cluster-by-cluster correlations of F-scores and Binary 263 

Expression Scores see sFigure 2).  264 

Within the major branches of the taxonomy, major subclasses are labeled by important 265 

neurological markers such as VIP, SST, and PVALB within the inhibitory subclass, and 266 

RORB and FEZF2 within the excitatory subclass. Binary marker genes for the cell types 267 

within these subclass branches of the taxonomy can be more difficult to determine, 268 

especially when there are many closely related types. For example, both the SST and 269 

PVALB contain a number of closely related cell types. When looking at the expression 270 
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of the marker genes, we can see that between these two major subclasses there is little 271 

expression overlap; however, within each subclass there are number of closely-related 272 

cell types that show overlapping expression, for example the cell types circled in red 273 

within the SST subclass or the types circled in blue within the PVALB subclass  (Figure 274 

3C). These cell types tend to have lower F-beta scores and lower marker Binary 275 

Expression Scores.   276 

Looking in more detail at the properties of the marker genes selected for individual cell 277 

types, we can clearly see the differences between NS-Forest Version 1.3 and 2.0. The 278 

expression patterns for the astrocyte cell type Astro_L1_6_FGFR3_SLC14A1 show 279 

these differences in the marker genes selected by the two NS-Forest version in more 280 

detail (Figure 4A/B). NS-Forest v1.3 selects a single marker gene to best discriminate 281 

this cluster, while v2.0 selects two. NS-Forest v1.3 selects only the GPM6A gene which 282 

performs well at classifying this cell type along a quantitative boundary at the high log2 283 

expression level of 12.5, but also shows intermediate expression in several off-target 284 

clusters centered around 10 (Figure 4A). Consequently, this quantitative marker is 285 

good for classification only when this small window of expression difference is 286 

discernible.  In contrast, version 2.0 selects LOC105376917 and SLC1A3, both of which 287 

have binary expression patterns across clusters (Figure 4B). LOC105376917 is highly 288 

expressed in only the target cluster and one additional closely-related off-target cluster. 289 

Adding SLC1A3 further improves classification by removing cells from this off-target 290 

cluster. 291 

In the case of the inhibitory neuron Inh_L1_2_PAX6_CDH12 both v1.3 and v2.0 select 292 

two marker genes; however, their characteristics are very different (Figure 4C/D). NS-293 

Forest v1.3 again found markers that classified along quantitative boundaries. DDR2 is 294 

expressed in all the related clusters in the taxonomy and in some glial clusters at the far 295 

end of the taxonomy. The addition of IL1RAPL2 removes the glial clusters and improves 296 

the classification; however, IL1RAPL2 is another example of a quantitative marker as it 297 

separates the target cluster from the related cluster by narrow differences in expression.  298 

NS-Forest v2.0 selected two highly binary markers: TGFBR2, which is very specific to 299 

only two clusters, the target cluster and a non-neuronal type at the other end of the 300 
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taxonomy. The addition of the LOC101927870 gene eliminates cells in the non-neuronal 301 

cluster to refine the classification. 302 

Lastly, the excitatory neuron Exc_L5_6_RORB_TTC12 required three markers by both 303 

NS-Forest versions to optimize the classification (Figure 4E/F). Again, as previously 304 

described, NS-Forest v1.3 determined genes that used a quantitative boundary for 305 

classification while NS-Forest v2.0 discovered binary markers. A more detailed look at 306 

these binary markers provides a clear demonstration of the combinatorics employed by 307 

NS-Forest v2.0. Within the target cluster, demarcated by the arrow, all three markers 308 

have high expression; however, the off-target excitatory clusters marked as 1 and 2 also 309 

express some but not all these markers. By leveraging the combinatorics of the three 310 

marker combination, highly discriminative solution is obtained. Gene LOC105371833 is 311 

the most binary marker; however, it has high expression in a number of off-target cells 312 

in clusters 1 and 2. The addition of the NPFFR2 gene removes most of the false 313 

positives in cluster 1, while adding the TNNT2 gene removes the false positives from 314 

cluster 2. Together this combination of three marker genes discriminates 315 

Exc_L5_6_RORB_TTC12 from other excitatory cell types.  316 

These results show that while adding the Binary Expression Score criteria does slightly 317 

decrease the overall classification power of the markers selected, it dramatically 318 

increases the binary expression pattern making the markers more useful for 319 

downstream applications. 320 
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321 
Figure 3: A & B) Heatmaps of NS-Forest v1.3 and v2.0 markers from Human Middle 322 

Temporal Gyrus. Clustering solution is described in (citation). Expression values are 323 

log2 cluster median normalized by row. Panel C) we have the SST and PVALB clades 324 

which demonstrate how relatedness can impact the ability to discover binary markers. 325 
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 326 

Figure 4: Violin plots for marker gene expression for a selection of cell type clusters 327 

representative of the three major classes in the taxonomy: glial cells, inhibitory neurons, 328 

and excitatory neurons. Panels A, C, and E (red) give markers determined by NS-Forest 329 

v2.0 while panels B, D, and F (blue) give markers from NS-Forest v1.3. Expression is 330 

given in log2 scale. Expression thresholds are demarcated by light blue lines and values 331 

are given on the right. Thresholds for NS-Forest v2.0 were determined by decision tree 332 

split points, while NS-Forest v1.3 were fixed at the cluster median expression for that 333 

gene.  334 

 335 

Characterization of NS-Forest v2.0 Markers 336 

Overall, the results from NS-Forest v2.0 reflect the high quality of the data and 337 

clustering analysis as NS-Forest is a supervised machine learning method and is reliant 338 

on the quality of the clustering results. The median number of markers required for 339 

optimal classification was 2, with only two clusters needing 4 markers, producing a 340 

mean F-beta score of 0.69. Overall, the 75 clusters required 157 unique genes to 341 

achieve optimal classification. Occasionally, marker genes are shared between clusters, 342 
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with eleven genes that were not unique [MOXD1, MME, LOC101928196, SULF1, 343 

NPFFR2, LINC01583, TAC1, COL15A1, LOC401478, CPED1, TAC3].  344 

Out of the 157 NS-Forest v2.0 marker genes, 37 (24%) were long non-coding RNAs 345 

(lncRNAs) or uncharacterized loci (LOCs). Non-coding RNAs have been previously 346 

found to be prevalent when analyzing RNA-seq data from single neuronal cells or nuclei 347 

and surprisingly these non-coding RNAs had higher specificity as markers when 348 

compared to coding genes (27). In particular, lncRNAs are known to show cell line 349 

specific expression (28). In contrast, little is known about the LOC genes. These genes 350 

are particularly intriguing as they are highly specific to individual cell types and are likely 351 

important for their function. As such, they represent areas of unknown biology 352 

discovered by scRNA-seq and NS-Forest machine learning that warrant further 353 

investigation.   354 

For the characterized marker genes, the most enriched annotations both by adjusted p-355 

value and number of genes involved are for signaling (signal peptide, Signal, 356 

GO:0007218~neuropeptide) and extracellular matrix (Glycoprotein, Extracellular matrix, 357 

GO:0005615~extracellular space, GO:0005578~proteinaceous extracellular matrix, 358 

GO:0030198~extracellular matrix organization, GO:0005576~extracellular region, 359 

GO:0031012~extracellular matrix), including neuropeptide, GO:0007218~neuropeptide 360 

signaling pathway, and calcium (sTable 4). There are fewer genes annotated with these 361 

specific functions as neurology is a rapidly expanding field; however, many other genes 362 

assessed here are known signaling peptides in other contexts and would benefit from 363 

further characterization in neurological context.  Taken together, these results suggests 364 

that specific signaling pathways and extracellular signaling molecules are key to 365 

neuronal cell type identity. 366 

Comparison with other Marker Gene Selection Approaches 367 

To understand how the NS-Forest marker genes compare to previously published 368 

markers for the human middle temporal gyrus (MTG), we compared the NS-Forest 369 

markers to those determined in Hodge et al (25) using a different binary expression 370 

approach for use in cell cluster naming. In addition to a broad marker determined by the 371 
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taxonomy and prior knowledge (such as GAD1 or SST), a single marker per cell type 372 

cluster was assigned. In total, sixteen of the seventy-five Hodge markers overlapped 373 

with the NS-Forest markers [BAGE2, GGH, CASC6, NPY, HPGD, STK32A, ADGRG6, 374 

TH, MEPE, PENK, CARM1P1, TWIST2, IL26, SULF1, ADAMTSL1, PDGFRA].  These 375 

sixteen were spread across the taxonomy, representing cell type clusters from all three 376 

major cell type lineages. Unscaled heatmaps of mean gene expression per cluster for 377 

both the Hodge and NS-Forest marker sets (Figure 5A) demonstrate that both are 378 

characterized by binary expression patterns, having a higher expression along the 379 

diagonal versus off-diagonal; however, the Hodge markers have an overall lower mean 380 

expression level of 4.8 log2 CPM in comparison with the mean expression for the NS-381 

Forest markers of 7.0 log2 CPM.  382 

One major difference between these two approaches is that the Hodge marker set 383 

contains a single marker per cluster to label a distinct cluster phenotype while NS-384 

Forest selects combinations of markers that optimize classification power. By running 385 

the Hodge markers through NS-forest v2.0, we estimated F-beta scores for the single 386 

Hodge markers in order to compare their classification power to the best single NS-387 

Forest markers, and the NS-Forest combination of markers (Figure 5B).  Overall, the 388 

trend lines show that the F-beta scores for single markers, both blue and orange lines, 389 

follow a similar trajectory with some clusters being more difficult to classify then others, 390 

i.e., having lower F-beta scores. However, the NS-Forest combination of markers, 391 

shown in grey, demonstrate that combinations of markers yield a uniformly higher power 392 

of discrimination over a single marker, regardless of how the single best marker is 393 

chosen.   394 

When evaluating the F-beta scores for the Hodge markers, it became clear that many 395 

had elevated false positive rates. To directly compare the two sets of markers, we 396 

computed the false discovery rate (FDR= FP/FP+TP) for each cell type and averaged 397 

across the entire set. The Hodge markers had an average FDR of 0.7 versus 0.14 for 398 

the NS-Forest markers. GLP2R, which is a marker for Exc_L2_4_LINC00507_GLP2R, 399 

offers a good visual example (Figure 5C) . This gene expressed in the target cluster but 400 

also the nearest cell types within the LINC00507 group. NS-Forest also has difficulty 401 
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finding markers for this cell cluster phenotype, requiring 3 markers in total; however, in 402 

combination these markers help reduced the FDR rate from 0.89 to 0.11.  403 

 404 

Figure 5: Comparison of Hodge et al markers to NS-Forest v2.0 for the full MTG data. 405 

Panel A gives an unscaled heatmap where the rows are the mean expression per gene 406 

and the columns are clusters. Panel B) Gives the F-beta scores for the single Hodge 407 

marker, the best NS-Forest single marker, and the combination of markers found by 408 

NS-Forest. C) an example violin plot of a binary expression pattern selected for by the 409 

method used by Hodge et al for cluster Exc_L2_4_LINC00507_GLP2R. 410 

 411 

Validation of Human MTG NS-Forest v2.0 Markers 412 

At current, the ground truth for the neuron types and their marker genes in human MTG 413 

taxonomy is not available as it is an active area of investigation.  Consequently, a true 414 

biological validation of the marker genes is not possible. As an alternative, we asked the 415 

question, do the minimum set of marker genes selected by NS-Forest capture the 416 

underlying structure of cell type identity reflected in the entire expressed transcriptome?  417 

To do this, we generated tSNE plots using the complete 5574 variable genes used for 418 
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the original MTG clustering, the minimum set of 157 NS-Forest v2.0 marker genes, and 419 

157 genes randomly selected from the complete variable genes list. These embeddings 420 

were then painted using the cell type assignments from the MTG taxonomy. From the 421 

tSNE plots it is clear that the NS-Forest markers closely recapitulate the clustering 422 

structure of the complete variable genes set, much better than the randomly selected 423 

genes (Figure 6A). For example, in the bottom of the complete variable gene tSNE 424 

there is a light salmon and dark salmon colored group of clusters, and these two 425 

clusters are preserved in the right hand side of the NS-Forest marker tSNE, whereas in 426 

the tSNE from the randomly selected variable genes these two clusters spread out and 427 

a third brown cluster is now merged with light salmon cluster. Examples like this can be 428 

seen throughout the three embeddings.  A more quantitative analysis of these tSNE 429 

embeddings using the Nearest-Neighbor Preservation metric shows that both the 430 

precision and recall are higher using the 157 NS-Forest markers compared with 50 431 

sampling of 157 genes randomly selected from the variable gene set (sFigure 3).         432 

In addition, the local embedding structures within a given tSNE cluster also appear to be 433 

well preserved (Figure 6B). The complete variable gene tSNE was painted using a 434 

color gradient based on the coordinate positioning. This yields a visual way of 435 

comparing where individual nuclei are located within the full tSNE embedding versus 436 

other tSNE embeddings.  The NS-Forest marker tSNE was then painted using the 437 

colors derived from the full tSNE gradient. The fact that the same color gradients are 438 

observed in the NS-Forest embedding demonstrates that the positional gradients, and 439 

thus the nuclei-to-nuclei relationships, in the NS-Forest embedding closely reflect the 440 

positional gradients in the complete full tSNE embedding. For example, in the full tSNE 441 

there is a long cluster of nuclei beginning on the left in green that extends toward the 442 

middle moving into bluish green and ending with a purplish blue. This same cluster, with 443 

the same color gradient is preserved within the center left cluster of the NS-Forest 444 

tSNE. 445 
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 446 

Figure 6: Validation of the 157 NS-Forest v2.0 Middle Temporal Gyrus (MTG) marker 447 

genes. In panel A) we have tSNE plots for the full DE list of 5574 genes, the 157 NS-448 

Forest markers, and 157 genes randomly selected from the variable gene list. In panel 449 

B) left is a tSNE generated from the full variable gene list of 5574 genes colored by 450 

coordinate position while right is a tSNE generated using the 157 NS-Forest markers 451 

then painted by nuclei according to the color scheme established in the full tSNE on the 452 

left.  453 

Discussion 454 

Here we describe NS-Forest version 2.0. Development was driven by user community 455 

requirements for data derived cell type phenotype definitions that are testable in future 456 

investigations. To this end, a number of changes were made after the random forest 457 

feature selection. In earlier version of NS-Forest, negative markers were occasionally 458 

found. These are marker genes that are expressed in most off-target clusters but not 459 

the target cluster. Given that testing for a something that is not expressed is 460 

methodologically difficult, it was decided to avoid this category of markers. By 461 

implementing a median expression level cutoff greater than zero for the target cluster, 462 

A

B

5574 variable genes 157 NS-Forest marker genes 157 randomly chosen variable genes 

5574 variable genes 157 NS-Forest marker genes
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we removed all possible negative marker genes. In addition, this cutoff also defines one 463 

basic characteristic of a NS-Forest Marker: they are required to be expressed in greater 464 

than half of the cells within the cell type cluster.   465 

NS-Forest v1.3 contained simple random forest feature selection approach that 466 

discovered quantitative markers that were good for classification but generally 467 

problematic for further biological investigation. This limitation of random forest feature 468 

selection may be shared with other machine learning methods. Consequently, a ranking 469 

step was incorporated to select for markers with binary expression patterns. Simulation 470 

testing performed on this Binary Expression Score ranking step demonstrated that it 471 

selected for marker genes with binary expression patterns and accurately ranked them 472 

according to level of binary expression. As a result, NS-Forest v2.0 demonstrated clear 473 

improvement in the enrichment for binary expression patterns but at a small cost to the 474 

overall classification power and number of marker genes necessary. Consequently, If 475 

the user requires classification with less requirement for downstream investigation, then 476 

we would recommend using NS-Forest v1.3; however, in all other cases NS-Forest v2.0 477 

is recommended. Both versions are available as official releases at the github 478 

repository.   479 

Beyond their use for defining and investigating cell type phenotypes, necessary and 480 

sufficient marker genes also offer a dimensionality reduction with limited loss of fidelity 481 

to the originally clustering solution. This dimensionality reduction offers a feasible way of 482 

representing the clustering solution with a minimal amount of information which is ideal 483 

for data dissemination.  These marker genes can then be used to generate a reference 484 

knowledgebase for cell types, in effect generating an expression barcode of marker 485 

genes for a given cell phenotype.  486 

As mentioned above, NS-Forest markers are optimized for downstream experimental 487 

investigation. There are a number of assays for which known markers could facilitate 488 

biological investigation such qPCR and the burgeoning field of spatial transcriptomics 489 

based on multiplex FISH. To date a number of projects have used NS-Forest markers 490 

for these purposes. For example, qPCR probes based on NS-Forest markers were 491 

made to detect genes in scRNA-seq libraries from myeloid dendritic cells (mDCs) FACS 492 
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sorted from peripheral blood in patients treated with the Hepatitis B vaccine (30, 493 

publication in preparation). In a similar fashion, gene probes were designed based on 494 

NS-Forest markers for cell type detection using a number of spatial transcriptomic 495 

technologies. These technologies aim to resolve the location within the tissue of cell 496 

types derived from scRNA-seq generated taxonomies (31). 497 

Another possible application of NS-Forest is to utilize selected gene sets of particular 498 

interest as input to produce marker gene sets designed to capture specific cell type 499 

properties.  For example, the input of gene sets composed of transcription factors could 500 

reveal master regulators of developmental programs (32).  Input gene sets composed of 501 

neuropeptides and neurotransmitters could be used to shed new light on the specific 502 

signaling properties of different neuronal cell subsets (33).  Input gene sets composed 503 

of cell surface markers could be used to identify markers for use in FACS sorting.    504 

As the number of experiments performed and datasets made publicly available 505 

dramatically increase, the greater biological community is left with the monumental task 506 

of integrating these data into a consensus of canonical cell types. With cell phenotypes 507 

defined by NS-Forest marker genes, we can move ahead with the creation of a 508 

dissemination framework that defines ontological classes based upon these molecular 509 

markers as the necessary and sufficient criteria in an axiomatic semantic representation 510 

compliant with FAIR principles. Ontological representation has numerous advantages 511 

over simple vocabularies, including the structuring of knowledge in a computationally 512 

readable format so that findings from many experiments can be easily accessible and 513 

“reasoning” can be performed to ensure the consistency of the representation as the 514 

knowledge rapidly grows.  These provisional instances of “cell type clusters” defined by 515 

NS-Forest markers can form the basis for the instantiation of an ontology class that can 516 

be in the future adopted into the official Cell Ontology (CL). Progress is already 517 

underway in developing programmatic and scalable methods to handle the amount of 518 

single cell data being generated. This ontological representation can address several 519 

pressing needs of the wider biological research community. Producing an easy, visually 520 

accessible overview of the results of many single cell experiments in a traversable 521 

structure while preserving the hierarchical relationships inherent in a taxonomy of cells. 522 

In addition, this ontology will provide a platform for integration with other data modalities 523 
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such as cell morphology, electrophysiology, cell-cell interactions.  A provisional cell 524 

ontology (pCL) generated in this manner for Middle Temporal Gyrus and primary motor 525 

cortex is available for exploration at https://bioportal.bioontology.org/ontologies/PCL . 526 

Methods 527 

NS- Forest version 2.0 528 

Initial Feature Selection: The NS-Forest version 2.0 workflow (Figure 1a-b) begins with 529 

a cell-by-gene expression matrix, with an additional column containing cluster 530 

membership labels, produced by any expression data clustering method applied to 531 

single cell/nucleus RNA sequencing (scRNA-seq) datasets. This cluster-labelled 532 

expression matrix is then used to generate Random Forest classification models 533 

distinguishing each target cluster from all other clusters (binary classification) using 534 

RandomForestClassifier scikit. RandomForestClassifier hyperparameters were left at 535 

default except that the number of trees was set at 10,000 to give sufficient coverage of 536 

the sample and gene expression feature space; necessary coverage for a given feature 537 

space is estimated as the square root of the number of samples (~10,000 cells) times 538 

the square root of the number of features (~10,000 genes). From the resulting Random 539 

Forest model, the average Gini Impurity value is used to initially rank genes based on 540 

their feature importance. 541 

Feature Re-ranking Based on Positive Binary Expression: Re-ranking the features after 542 

initial Random Forest selection begins with positive expression filtering (Figure 1c). By 543 

default, genes with a median cluster expression of 0 are removed in order to exclude 544 

genes that are not expressed in the relevant cluster, which we refer to as negative 545 

markers, or show high zero inflation. This parameter is tunable and can be adjusted 546 

according to the desired positive expression level.   547 

Next, genes are re-ranked to enrich for genes with binary expression patterns (Figure 548 

1d).  A “Binary Expression Score” was developed to select for genes that show all-or-549 

none expression patterns, with expression in the target cluster and as few other cell 550 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.23.308932doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.308932
http://creativecommons.org/licenses/by-nc-nd/4.0/


type clusters as possible. The Binary Expression Score is calculated for each gene in 551 

the initial Random Forest feature list according to the equation: 552 

 553 

where yi is the median gene expression level for each cluster i, yT is the median 554 

expression in the target cluster, and n is the number of clusters. This results in a Binary 555 

Expression Score in the range of 0 – 1, with a Binary Expression Score of 1 being the 556 

ideal case where the gene is only expressed in the target cluster (Figure 1e). 557 

Minimum Feature Combination Determination: After the top genes are re-ranked based 558 

on positive binary expression, they are then tested for their classification power 559 

individually and in combination. First, the top M genes (6 genes by default) are used to 560 

generate individual decision trees to determine the optimal expression level cut-off 561 

value for each gene (Figure 1F). The maximum leaf nodes parameter is set at two, 562 

thereby ensuring a single split point per tree. From these trees, the optimal gene 563 

expression threshold at the split point is extracted. 564 

To evaluate the discriminative power of a given combination of candidate marker genes, 565 

we use the F-beta score as an objective function. The F-score is the harmonic mean of 566 

precision and recall providing equal weight for these two classification measures.  The 567 

F-beta score includes a beta term that allows for the weighting of the function towards 568 

either precision (beta < 1) or recall (beta > 1) (Figure 1G). The beta for the analysis 569 

described here was estimated empirically at 0.5 ( Supplemental Figure 1).  570 

Finally, all combinations of the top ranked genes (6 genes by default) are then 571 

evaluated at the expression levels determined earlier by decision tree analysis. The F-572 

beta scores for all combinations are written to a complete results file and the gene 573 

feature combination producing the best F-beta result selected per cluster.     574 

Simulation Testing of the Binary Expression Score 575 

Simulation studies were conducted to investigate the properties of the Binary 576 

Expression Score weighting using a three-component mixture model to reflect the zero-577 

T
T
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inflation technical artifact and the background and positive expression signals in real 578 

data distributions. Denoting X as the gene expression value, our simulated data follow a 579 

mixture distribution: 580 

 581 

Where δ0(x) is the probability density function of the degenerate distribution at 0 for the zero-582 

inflation technical artifact, fGamma(x) is the probability density function of a Gamma 583 

distribution (with hyperparameters α and β) for low level background expression from off-target 584 

cells or on-target cells with low expression, and fNormal(x) is the probability density function of a 585 

Normal distribution (with hyperparameters μ and σ)  for positive expression 586 

signals; parameters π1, π2 and π3 are the corresponding mixture weights for each component 587 

such that π1, π2 , π3 > 0 and π1+ π2+π3 = 1. In our simulations, we generated 20 clusters with 588 

300 cells in each cluster. We designed cases where the simulated gene is expressed at high 589 

levels in 1, 2, or 5 clusters. Both binary and quantitative markers were simulated for on-target 590 

and off-target clusters by setting different parameters and hyperparameters in the mixture 591 

model. 592 

 snRNA-seq Data 593 

The scRNA-seq data evaluated here were obtained from the Allen Institute for Brain 594 

Science (https://portal.brain-map.org/atlases-and-data/rnaseq).  Experimental design, 595 

including tissue sampling and data processing, can be found in Hodge et al. (23). In 596 

brief, layers 1-6 of the human Middle Temporal Gyrus (MTG) were vibratome sectioned, 597 

nuclei were extracted and labelled for NeuN expression. Nuclei were then FACS sorted 598 

and libraries were generated using the Smart-Seq4 and Nextera XT chemistries. Data 599 

processing and clustering were then performed as detailed in (22).  600 

NS-Forest v2.0 was run using the cluster assignments given in Hodge et al. (23). Cells 601 

not assigned to a cluster were removed from the analysis. CPM expression values were 602 

log2 (x+1) transformed and genes with a sum of zero median expression across all 603 

clusters were removed. After filtering, 15,928 cells and 13,946 genes remained. Given 604 

the size of the input matrix, we increased the number of trees in the random forest 605 

model from the default of ten thousand to fifty thousand.  606 
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Marker Validation 607 

In order to demonstrate the preservation of the cell type clustering characteristics using 608 

NS-Forest marker genes, tSNE embeddings were generated using Cytosplore. The 609 

original clustering solution is represented by an embedding generated from the 5574 610 

variable genes used for the iterative clustering originally performed (22, 23). Additional 611 

embeddings were made using the combined set of 157 marker genes for all cell type 612 

clusters determined by NS-Forest version 2.0, and 50 sets of 157 genes chosen at 613 

random from the original 5574 genes.  614 

Data Access 615 

All data used herein is publicly available.  616 
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Supplemental Figures (legends only) 787 

sFigure 1: Empirical determination of the beta weighting parameter for the F-beta 788 

score. All 75 clusters from full Middle Temporal Gyrus data were used to estimate the 789 

average true positive (TP), false positive (FP), false negative (FN), and true negative 790 

(TN), and number of markers for all clusters at beta values of 0.01, 0.5, 1, 1.5 and 2.   791 

sFigure 2: Correlation between F-scores and average Binary Expression Scores per 792 

cluster for v1.3 and v2.0. The F-score per cluster was computed using a beta=1 for NS-793 

Forest v2.0 to make both versions comparable.  794 

sFigure 3: Quantitative assessment of Nearest-Neighbor Preservation metric (NNP, by 795 

Venna et al. and IM). In brief, this is computed as follows: for each data point, the K-796 

Nearest-Neighborhood (KNN) in the high-dimensional space is compared with the KNN 797 

in the reduced-dimensional space. Average precision/recall curves are generated by 798 

taking into account high-dimensional neighborhoods of increasing size up to Kmax = 50. 799 

The True-Positive number is the intersection between high-dimensional and the low 800 

dimensional neighborhood based on 157 selected genes. The precision is computed as 801 

TP/K and the recall as TP/Kmax. In A) red curve: NNP curves for the random-forest 802 

selected 157 genes, while blue curves: NNP curves for 50 random gene sets of the 803 

same size (selected from the full 5574 high-variance gene set). In B) green curve is the 804 

tSNE generated from the complete 5574 variable genes, the red curve: NNP curves for 805 

the random-forest selected 157 genes, while blue curves: NNP curves for 50 random 806 

gene sets of the same size (selected from the full 5574 high-variance gene set) 807 

 808 

sTable 1: Complete NS-Forest results for v1.3 809 

sTable 2: Complete NS-Forest results for v2.0 810 

sTable 3: Supplemental ranked binary results from NS-Forest v2.0 811 

sTable 4: Enrichment of annotations 812 

 813 
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