
BigDataProcessor2: A free and open-source Fiji plugin for inspection and
processing of TB sized image data

Christian Tischer1-3,*, Ashis Ravindran4, Sabine Reither2,3, Rainer Pepperkok2,3 & Nils
Norlin3,5,6*

1Centre for Bioimage Analysis, European Molecular Biology Laboratory (EMBL),
Heidelberg, Germany
2Advanced Light Microscopy Facility, EMBL, Heidelberg, Germany
3Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
4University of Heidelberg, Germany
5Department of Experimental Medical Science, Lund University, Sweden
6Lund University Bioimaging Centre, Lund University, Sweden

*Corresponding authors: christian.tischer@embl.de, nils.norlin@med.lu.se

Summary: Modern bioimaging and related areas such as sensor technology has
seen tremendous development the last years allowing several contemporary imaging
techniques, electron microscopy (EM) and light sheet microscopy in particular, to
generate datasets frequently reaching the size of several terabytes (TB). As a
consequence, even seemingly simple data operations such as cropping, chromatic-
and drift-corrections and even visualisation, poses challenges when applied to
thousands of time points or tiles. To address this we developed BigDataProcessor2
– a Fiji plugin facilitating processing workflows for TB sized image datasets.
Availability and implementation: BigDataProcessor2 is available as a Fiji plugin via
the BigDataProcessor update site. The application is implemented in Java and the
code is publicly available on GitHub
(https://github.com/bigdataprocessor/bigdataprocessor2).
Contact: christian.tischer@embl.de, nils.norlin@med.lu.se

1. Introduction

Inspection and processing of TB sized image data as produced by state-of-the-art
light-sheet and volume electron microscopy poses several practical challenges
(Power and Huisken, 2017). Even image inspection can be burdensome, because
loading the entire dataset from disk into RAM, as it is usually done for conventional
MB to GB sized data, is not feasible due to the limitations of a standard computer’s
RAM. In addition, pixel wise image processing operations on the whole dataset can
take hours and requires data duplication on disk as the processed images cannot be
held in RAM.
The challenges of big image data inspection can be addressed by lazy-loading
schemes where only the portion of the data is loaded into RAM that is needed to
render the current view on the computer monitor. There are several commercial and
open source solutions that adopt this strategy to interactively render big data. The
rendering modes include fixed plane 2D slicing (Schneider et al., 2012), arbitrary
plane 2D slicing and 3D volume rendering: Imaris (Oxford Instruments), Arivis
Vision4D (Arivis AG), Amira (Thermo Fisher Scientific) , BigDataViewer (Pietzsch et
al., 2015), Vaa3D (Bria et al. , 2015), TDat (Li et al. , 2017). However, except for the
fixed plane 2D slicing mode, these solutions require the data to be saved in specific
blocked multi-resolution file formats that enable efficient loading of arbitrary (random
access) data portions from disk into RAM and onto the GPU. Due to write

1

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

performance considerations, raw microscopy data is typically not saved in a format
that is compatible with those requirements. It is thus usually necessary to re-save the
data in a specific file format that works with the respective image visualisation and
analysis platform. Re-saving TB sized image data requires a significant amount of
additional disk space and can take many hours and should thus ideally be only done
once. In addition to the file format, raw microscopy data can have further issues. For
example, only part of the acquired data may be of actual interest, either because
larger fields of view have been acquired to compensate for unpredictable sample
motion, or scientifically interesting phenomena have only occurred in specific parts of
the imaged sample. Also, pixel density and bit-depth can be unnecessarily high,
because camera-based microscope systems with fixed pixel size and bit-depth have
been used. Moreover, there may be chromatic aberrations or other shifts between
acquired data channels.
Taken together, to render raw microscopy data amenable for analysis it typically
needs to be re-saved in a suited file format and a number of processing operations
such as cropping, binning, bit-depth conversion, channel shift, and drift correction
might need to be applied. It is important to realize that, if performed sequentially,
each of these processing steps requires loading, processing, and re-saving of the
entire (initially TB sized) dataset, which, taken together, could take several hours or
even days. It would be much more efficient to load the raw data, apply all processing
steps in RAM and then re-save the data only once.
To this end, we developed BigDataProcessor2 to facilitate interactive browsing and
initial processing of microscopy raw data, before, in one go, re-saving the processed
data, ready for image visualisation and further analysis.

2. Implementation and Application

Our first implementation (BigDataProcessor1) was written in Java, making use of
ImageJ’s VirtualStack class (Schneider et al., 2012) for lazy-loading of big image
data. Here, we focus on our new implementation (BigDataProcessor2, in short
BDP2), which is built on a more recent Java library for image processing, namely
ImgLib2 (Pietzsch et al ., 2012). The source code for both implementations is publicly
available on GitHub (https://github.com/bigdataprocessor) and the applications can
be installed via a Fiji (Schindelin et al., 2012) update site “BigDataProcessor”. All
functionality is accessible to users without the need for programming via a graphical
user interface (GUI).
Currently, BDP2 supports inspection and processing of 5-D (x, y, z, channel and
time) data from collections of single- and multi-plane Tiff as well as HDF5 (The HDF
Group, 1997) based file formats, thereby accommodating a majority of raw data
formats currently occurring in light sheet and volume electron microscopy (see
Supplementary Information). The loading can be freely configured using regular
expressions and, for convenience, some frequently occurring loading schemes are
preconfigured already. BDP2 employs Imglib2’s CachedCellImg class for
lazy-loading of image data from files into memory. The CachedCellImg partitions
an image into small blocks (cells), where a cell’s content is read from disk only when
the application requests access to this part of the image. For image visualisation,
BDP2 employs BigDataViewer, BDV in short (Pietzsch et al., 2015), which provides
arbitrary plane slicing of volumetric, multi-channel time-lapse image data. As one
microscopy camera image typically contains only a few MB of data, it fits readily into
RAM and can be loaded within (sub-)seconds, given a data access bandwidth larger
than or equal to a few MB/s. These bandwidths are nowadays typically available and
as such BDP2’s lazy-loading scheme allows for interactive browsing of TB sized
image data on a standard computer.

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1. Schematic representation of a lazy-processing workflow in BigDataProcessor2 (BDP2).
Dashed arrows represent lazy-computation, where only the pixels needed to render the currently
viewed image plane are loaded and processed. The complete data browsing, data selection and data
processing workflow can be configured in a few minutes even for TB-sized image data. Only the final
saving to disk requires processing of the whole dataset and will take a correspondingly long time (up
to hours).

Importantly, all image processing operations are performed lazily, using Imglib2’s
Views and Converter classes. This limits computations to the pixels needed to
render the currently viewed image plane. At present we support the following lazy
processing operations: affine transformed viewing, cropping, binning, bit-depth
conversion, and channel alignment (e.g., chromatic shift correction, split chip
acquisition). The compute times for these operations are in the sub-second range
such that the user can interactively configure all image processing steps while
inspecting arbitrary locations in the sample (see Supplementary Figure 1 and
Supplementary Movie 1,2). All operations are accessible via a GUI, but can also be
recorded and executed as ImageJ macro scripts making it possible to readily share
and publish the processing workflow. A detailed description of all available menu
items can be found in the Supplementary Information. Once all processing steps
have been configured, the dataset can be re-saved in a format suitable for further
analysis. We currently provide saving in open-source Tiff and Hdf5 based formats,
where we save one file for each 3D volume. For TIFF, we also support saving each
plane to a separate file. This is useful, e.g., for EM data where already a single 3D
volume can be several TB. For HDF5, we save the data in a chunked pyramidal
format allowing for efficient viewing with both BDV and Imaris (Imaris v9.0, Bitplane
AG). In all cases we support lossless compression algorithms (see Supplementary
Information).

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2. Overview of the user interface and an example workflow in BigDataProcessor2 (BDP2). (a)
Image browsing. Left: The main BDP2 window with the Open and Process dropdown menus
expanded. Right: BigDataViewer's user interface. (b) Binning and channel alignment. Left: Original
data (zoomed in). Middle: 3 x 3 binning in X & Y, reducing noise, and the size of the dataset by a
factor of 3 x 3 = 9. As all processing operations, also the binning is performed by means of lazy
computation and can thus configured interactively even for TB sized datasets. Right: Channel
alignment, correcting a shift between the green and magenta channel (note the difference to the
middle panel). (c) Cropping. Left: First time point of the dataset with interactive cropping user
interface. Middle: Last timepoint of the dataset with enlarged cropping area to include all relevant data.
Right: Cropped data, showing again the first timepoint. Thanks to BDP2’s lazy-loading and
lazy-processing the above steps (a-c) can be executed in a few minutes. Finally, the data could be
re-saved using the Save menu (not shown). In this example, binning and cropping helped to reduce
the size of the data from 244 GB to 4.8 GB without loss of biologically relevant information.

4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

3. Discussion and Conclusions

Data bandwidth limitations are an issue of rising importance designing modern
bioimage analysis pipelines, especially with increasing computer virtualisation and
non-local data storage. Therefore, the benefits of optimised data transfer to only
deliver the data in use and minimise excessive reading from files or parts of files
cannot be underestimated. Recognising this current bottleneck sparked the work on
BigDataProcessor2. Even at a bandwidth of 100 MB / s loading just a typical sized
single time-point light sheet volume (~1 GB) from disk into RAM would take ~10 s,
which is impractical for data inspection. However, at the same bandwidth a 4
megapixel 16-bit image plane can be loaded in less than 1 s. Thus, a plane-wise
lazy-loading scheme (such as implemented in BigDataProcessor2) allows for
interactive browsing through a TB sized microscopy raw dataset. Importantly, using
Imglib2, BDP2 also provides lazy processing steps that do not noticeably increase
the latency, because computations are only performed on pixels needed to render
the currently viewed image plane. Thereby data can be inspected and a processing
pipeline can be interactively configured within a few minutes. However, the actual
processing and re-saving of a large dataset can take up to several hours. This is
generally not a problem in practice, since all processing steps have been configured
and no more human interaction is required during the saving. In our experience
resaving has most often resulted in a significant (up to 100 fold) data size reduction
and has allowed us to tape backup the raw data in favour of a resaved processed
version of the data.
In conclusion, we consider the BigDataProcessor2 Fiji plugin to significantly simplify
the inspection and processing of big image data. As big image data is becoming
increasingly prevalent we are positive that the already existing user base (e.g. Alladin
et al. 2020, Villani et al. 2019, Wolny et al. 2020) will grow even further in the future.

Acknowledgements
We thank the EMBL IT-department for support, Tobias Pietzsch (MPI CBG, Dresden)
for help related to BigDataViewer, Ashna Alladin, Matthew Boucher, Isabell
Schneider (EMBL Heidelberg), Gustavo Quintas Glasner de Medeiros (FMI Basel),
Alexis Maizel (University Heidelberg), Marion Louveaux (Institut Pasteur), Jan
Rhoden (Bruker), Bjoern Eismann (Bruker) and the Francesca Peri lab (University of
Zürich), for testing, reading the manuscript and/or providing suggestions.

Funding
This work was supported by Åke Wiberg foundation, Per-Eric and Ulla Schyberg’s
foundation and a Corbel II grant (N.N.).

Competing financial interests
The authors declare no competing financial interests.

5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

References

Alladin A., Chaible L., Garcia del Valle, L., Reither S., Loeschinger M., Wachsmuth

M., Hériché JK., Tischer C. and Jechlinger M. (2020). Tracking cells in
epithelial acini by light sheet microscopy reveals proximity effects in breast
cancer initiation. Elife 2020;9:e54066

Bria A., Iannello G., Onofri L. and Peng H . (2016) TeraFly: real-time

three-dimensional visualization and annotation of terabytes of
multidimensional volumetric images. Nature Methods, 13, 192–194.

Imaris v9.0 Bitplane AG.

Li Y., Gong H., Yang X., Yuan J., Jiang T., Li X., Sun Q., Zhu D., Wang Z., Luo Q.

and Li A. (2017) TDat: An Efficient Platform for Processing Petabyte-Scale
Whole-Brain Volumetric Images. Front. Neural Circuits, 11 , 51.

Pietzsch T., Saalfeld S., Preibisch S. and Tomancak P. (2015). BigDataViewer:

visualization and processing for large image data sets. Nature Methods, 12,
481–483.

Pietzsch T., Preibisch S., Tomancak P. and Saalfeld S. (2012). ImgLib2 – generic

image processing in Java. Bioinformatics, 28 , 3009–3011.

Power R.M. and Huisken, J. (2017) A guide to light-sheet fluorescence microscopy

for multiscale imaging. Nat. Methods, 14 , 360–373.

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T.,

Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez JY., James White
D., Hartenstein V., Eliceiri K., Tomancak P. and Cardona A. (2012) Fiji: an
open-source platform for biological-image analysis. Nat. Methods, 9 , 676–682.

Schneider C., Rasband W. and Eliceiri K. (2012) NIH Image to ImageJ: 25 years

of image analysis. Nat. Methods, 9 , 671–675.

The HDF Group (1997) The HDF Group. Hierarchical Data Format, version 5,

1997-NNNN.

Villani A., Benjaminsen J., Moritz C., Henke K., Hartmann J., Norlin N., Richter K.,

Schieber N., Franke T., Schwab Y. and Peri F. (2019) Neuronal clearance by
microglia depends on packaging of phagosomes into a unique cellular
compartment. Dev. Cell, 49 77-88

Wolny A., Cerrone L., Vijayan A., Tofanelli R., Vilches Barro A., Louveaux M.,

Wenzl C., Steigleder S., Pape C., Bailoni A., Duran-Nebreda S., Bassel G.,
Lohmann J., Hamprecht F., Schneitz K., Maizel A. and Kreshuk A. (2020)
Accurate and Versatile 3D Segmentation of Plant Tissues at Cellular
Resolution. bioRxiv 10.1101/2020.01.17.910562v1

6

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://ieeexplore.ieee.org/author/38267434800
https://ieeexplore.ieee.org/author/37269141300
https://ieeexplore.ieee.org/author/37273792700
https://ieeexplore.ieee.org/author/37273792700
https://pubmed.ncbi.nlm.nih.gov/?term=Li+Y&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Gong+H&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Yang+X&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Yuan+J&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Jiang+T&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Li+X&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Sun+Q&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Zhu+D&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Wang+Z&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Luo+Q&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Li+A&cauthor_id=28824382
https://pubmed.ncbi.nlm.nih.gov/?term=Pietzsch+T&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Preibisch+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Tomancak+P&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Pietzsch+T&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Preibisch+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Tomancak+P&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=26020499
https://pubmed.ncbi.nlm.nih.gov/?term=Schindelin+J&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Schindelin+J&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Arganda-Carreras+I&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Arganda-Carreras+I&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Frise+E&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Frise+E&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Kaynig+V&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Kaynig+V&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Longair+M&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Pietzsch+T&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Preibisch+S&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Rueden+C&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Saalfeld+S&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Schmid+B&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Tinevez+JY&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=White+DJ&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Hartenstein+V&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Eliceiri+K&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Tomancak+P&cauthor_id=22743772
https://pubmed.ncbi.nlm.nih.gov/?term=Cardona+A&cauthor_id=22743772
http://orcid.org/0000-0001-6688-0539
https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Information

Supplementary Note 1: Menu items

Supplementary Figure 1: Screenshot of the main user interface.

BDP2 comes with its own user interface (UI) where all functionality can be accessed

(the menus in the ImageJ UI will typically not work here). The UI shows information
about the currently active image as well as the current and average image data

reading speed. It is possible to have multiple images (BigDataViewer windows) open
at the same time. Following the usual ImageJ convention, the "active" image is the

one that you clicked on last.

7

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Figure 2: Screenshot of the Record menu.

Record > Record Macro…
Enable/ disable macro recording. This is equivalent to [Plugins > Macros > Record]

in the ImageJ menu.
Motivation: Macro recording is one of ImageJ’s greatest features as it allows users

without programming experience to record reusable scripts. It can be used for
automation but also for documentation.

Supplementary Figure 3: Screenshot of a recorded macro.

8

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Figure 4: Screenshot of the Open menu.

Open > Open Custom…
Open datasets consisting of a collection of Tiff or Hdf5 volumes. The assignment of
each file (volume) to a channel and time point can be specified by a regular

expression.

Open > Open Custom Help...
Shows and explains a number of regular expressions that can be used in the [Open
> Open Custom…] menu item.

Open > Open EM Tiff Planes...
Opens a single folder with Tiff single plane files. Each file will be assigned to one

z-plane in a dataset with one color and one time point.
Motivation: This is a typical format for volume EM data to be stored in.

Open > Download and Open Sample Data...
Download and open sample data stored in the BioStudies archive

(https://www.ebi.ac.uk/biostudies/studies/S-BSST417?query=bigdataprocessor2).
Motivation: Conveniently accessible example data is useful to explore/teach

BigDataProcessor2 without the need to prepare suitable input data.

Open > Open Luxendo Hdf5...
Open datasets acquired with Luxendo light sheet microscopes.
Motivation: Luxendo uses an open-source hdf5 based file format. We added

convenience functionality for opening those files without the need to enter a complex
regular expression.

9

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://www.ebi.ac.uk/biostudies/studies/S-BSST417?query=bigdataprocessor2
https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Open > Open Leica DSL Tiff Planes...
Open datasets acquired with Leica DSL microscopes, choosing “Auto-Save, Data

type: Tif, Compression: Uncompressed” as an option (Leica’s proprietary file format is
called .lif, which we do not currently support).

Motivation: While the Tiff file format is open source, Leica’s naming scheme would

require entering a complex regular expression and we thus implemented this
convenience opening functionality.

10

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Figure 5: Screenshot of the Process menu.

Process > Rename…
Rename the dataset.

Process > Set Voxel Size…
Change the voxel size image properties.
Motivation: The voxel size may not always be read correctly from the dataset, thus it

is useful to have the option to set it manually.

Process > Correct Drift
Correct sample motion by interactively creating a 3D track, which will be applied such
that the image is stationary relative to the track positions.

Motivation: For time lapse data there is a risk that a sample moves during acquisition.

To accommodate for either sample or microscope drift it is common to choose a field
of view to encompass expected drift at the expense of larger data footprint. This can

be compensated by cropping the data. However, applying a static volumetric crop
over the whole time lapse is suboptimal. Therefore an ideal crop would be on drift

corrected data (see Supplementary Movie 2). Additional applications can be, e.g.,

tracking motile cells in tissues.

Process > Correct Drift > Create Track…
Create a 3D track by manually placing anchor points in a subset of time points (track

positions in the other time-points will be automatically added by linear interpolation).

When done, save the track as a Json file to disk, to be used in [Process > Correct
Drift > Apply Track…].

11

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Process > Correct Drift > Apply Track…
Load a 3D track from a file (created with [Process > Correct Drift > Create Track…])
and apply it to the dataset. This will cause the dataset to be displayed with each

timepoint shifted according to the track positions (no data duplication).

Process > Crop…
Interactively specify a 4D (x,y,z,t) subset of the data to be displayed in a new viewer
window.

Motivation: Imaging processes in living samples require setting up imaging

parameters before knowing exactly when and where the process of interest takes
place. Therefore the imaging field of view (x,y,z) and temporal extent (t) are usually

set generously to accommodate sample drift, motion, or growth. Using the crop
function one can reduce the dataset to the necessary spatial and temporal

dimensions.

Process > Bin…
Performs arbitrary binning along x y and z coordinates.
Motivation: For camera-based microscopy systems the effective pixel size often

cannot be freely chosen during acquisition. Thus, the user may be forced to

oversample, leading to large data volumes and potentially significantly increased
image processing times. Thus, binning the data post-acquisition can be very useful

as it both reduces data size (and noise), often without compromising scientific
accuracy.

Process > Convert to 8-bit…
Convert the dataset from 16 to 8-bit depth.

Motivation: Cameras typically produce image data at 12, 14, or 16 bit-depths. For
many image analysis tasks, 8-bit depth is sufficient affording the user to reduce data

size by a factor of 2. However, converting 16-bit to 8-bit data is not trivial as it entails

deciding on a specific mapping from the higher to the lower bit-depth, which will lose
information. Choosing a mapping of 65535 to 255 and 0 to 0 can lead to a low

dynamic range in the 8-bit range especially when the input contains only a subset of
the full 16-bit range. Also mapping max(image) to 255 and min(image) to 0 can be

sub-optimal if there are spurious pixels with very high values, again leading to a low

dynamic range for the relevant grey values in the 8-bit converted data. We thus

12

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

provide the possibility to interactively specify a mapping while browsing the dataset to
inspect the result of the applied conversion.

Process > Align Channels…
Shift one channel in relation to the other to compensate pixel offsets e.g. due to

chromatic shifts.
Motivation: Chromatic shifts either due to optics being corrected only for a given

wavelength range, or parallel acquisition of two channels on two cameras can lead to
offsets between the two channels/ images. We, therefore, provide the functionality to

correct for such channel shifts in x,y and z.

Process > Align Channels Split Chip…
Specify two crop regions in one channel and convert those regions into two channels,
i.e. the number of channels of the resulting image is increased by one.

Motivation: For the sake of acquisition speed, some fluorescence microscope

systems acquire the signal of several fluorescence channels simultaneously on the
same camera chip. Thus, we provide the functionality to convert such data into a

conventional multi-channel dataset by aligning the channels from a “split chip”.

Process > Transform...
Renders an affine view of the data.
Motivation: Useful when data is warped due to an acquisition process that renders

x-y-z non-orthogonal. Examples are when a stage movement is not orthogonal to the
field of view. Also useful in single objective light sheet microscopy.

13

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Figure 6: Screenshot of the Save menu.

Save > Save as Imaris Volumes…

Save dataset as an hdf5 based pyramidal Imaris file (http://open.bitplane.com/ims),

with each channel and time point saved as an individual .h5 file and one .ims header

file that can be used to view the data both in Fiji’s BigDataViewer and in the

commercial Imaris software.

Motivation: The low data overhead of a pyramidal scheme (in 3D for binning 2 x 2 x 2

at each pyramidal level ~14%) is a marginal cost for a substantially improved user
experience when viewing the data. We, therefore, provide saving data in an open file

format that offers this functionality based on hdf5, which means that it can be
handled with all common programming languages.

Save > Save as Tiff Volumes...
Save the dataset as a series of Tiff stacks with each channel and time point saved

as an individual .tif file.

Motivation: Tiff stacks are still the most used and compatible file format that can be
easily opened by all software for downstream analysis.

Save > Save as Tiff Planes...
Save the dataset as a series of Tiff planes, where each z-slice, channel and time

point are saved as an individual .tif file.
Motivation: Saving a volume as a series of Tiff planes is popular e.g. in the EM

community.

14

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

http://open.bitplane.com/ims
https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

Supplementary Figure 7: Screenshot of the Misc menu.

Misc > Show in Hyperstack Viewer
Opens the current image virtually in the “classic” ImageJ hyperstack viewer.

Motivation: BigDataViewer is a relatively recent addition to the ImageJ ecosystem
and many users like to use the classical ImageJ hyperstack viewer. In addition, with

the data being displayed in the hyperstack viewer, one has access to many useful
inspection tools such as intensity histograms and intensity line profiles.

Supplementary Movie 1: BigDataProcessor2 Workflow

https://www.youtube.com/embed/OixZ0ILbkvc ?vq=hd1440

Opening, browsing and preprocessing of a 250GB Hdf5 based raw dataset.
Movie shows a screen recording of a basic preprocessing workflow of a 250 GB Hdf5
image dataset acquired by light-sheet microscopy. The following steps are

demonstrated: Open Luxendo HDF5 -> Brightness & Color adjustment -> Set Voxel

Size -> Align Channels -> Crop -> Bin -> Save. The 2 color early mouse embryo data
were provided by Manuel Eguren, Ellenberg group EMBL Heidelberg.

Supplementary Movie 2: Drift Correction
https://www.youtube.com/embed/7SCZlToxY9E?vq=hd1440

Drift correction of a 250 GB HDF5 dataset.
The movie shows a screen recording of the drift correction of a 250 GB Hdf5 image

dataset acquired by light-sheet microscopy. The following steps are shown in the
movie: Correct Drift -> Create Track -> Apply Track. The single color mouse

mammary gland organoid data were provided by Ashna Alladin, Jechlinger group,
EMBL Heidelberg.

15

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.23.244095doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.23.244095
http://creativecommons.org/licenses/by-nc/4.0/

