Two Regulators of G-protein signaling (RGS) proteins FlbA1 and FlbA2 differentially regulate fumonisin B1 biosynthesis in Fusarium verticillioides
 Huijuan Yan 1, Zehua Zhou ${ }^{1,2}$ and Won Bo Shim ${ }^{1 *}$
 ${ }^{1}$ Department of Plant Pathology and Microbiology, Texas A\&M University, College Station, TX 77843, USA
 ${ }^{2}$ College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
 * Corresponding author: Won Bo Shim, Email: wbshim@tamu.edu

Abstract

Fumonisins are a group of mycotoxins produced by maize pathogen Fusarium verticillioides that pose health concerns to humans and animals. Yet we still lack a clear understanding of the mechanism of fumonisins regulation during pathogenesis. The heterotrimeric G protein complex, which consists of $\mathrm{G} \alpha, \mathrm{G} \beta$, and $\mathrm{G} \gamma$ subunits, plays an important role in transducing signals under environmental stress. Furthermore, regulators of G-protein signaling (RGS) proteins act as negative regulators in heterotrimeric G protein signaling. Earlier studies demonstrated that $\mathrm{G} \alpha$ and $\mathrm{G} \beta$ subunits are positive regulators of fumonisin B 1 (FB1) biosynthesis and that two RGS genes, FvFlbA1 and FvFlbA2, were highly upregulated in G β deletion mutant $\Delta \mathrm{Fvgbb}$. Saccharomyces cerevisiae and Aspergillus nidulans contain a single copy of FlbA, but F. verticillioides has two putative FvFlbA paralogs, FvFlbA1 and FvFlbA2. Importantly, FvFlbA2 has a negative role in FB1 regulation. In this study, we further characterized functional roles of FvFlbA1 and FvFlbA2. While \triangle FvflbA1 deletion mutant exhibited no significant defects, $\Delta \mathrm{FvflbA} 2$ and $\Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ mutants showed thinner aerial hyphal growth while promoting FB1 production. FvFlbA2 is required for proper expression of key conidia regulation genes, including putative FvBRLA, FvWETA, and $F v A B A A$, while suppressing $F U M 21, F U M 1$, and $F U M 8$ expression. Split luciferase assays suggest that FvFlbA paralogs interact with key heterotrimeric G protein components to impact F. verticillioides FB1 production and asexual development.

Key Words: Fusarium verticillioides, G protein, RGS protein, FlbA, fumonisin B1

1. Introduction

Fusarium verticillioides (teleomorph: Gibberella moniliformis Wineland) is a fungal pathogen responsible for causing ear rot, stalk rot and seedling blight in maize worldwide. The fungus primarily utilizes conidia for dissemination, and the pathogen is capable of infecting and colonizing all developmental stages of maize plants (Blacutt, et al. 2018). Importantly, kernel infections by F. verticillioides lead to the production of fumonisins, a group of carcinogenic mycotoxins. Fumonisin B1 (FB1) is the most abundant and toxic form among fumonisin analogs, and long-term exposure to FB1 is linked to severe human and animal diseases including esophageal cancer and neural tube defects. Structurally, fumonisins contain a 19-20 carbon polyketide backbone, and usually multiple genes are involved in the biosynthesis of this complex group of secondary metabolites. A number of studies have demonstrated that genes involved in microbial secondary metabolite biosynthesis are organized as gene clusters (Alexander, et al. 2009, Kjaerbolling, et al. 2018, Ma, et al. 2010). The fumonisin biosynthesis gene cluster (referred to as the " $F U M$ cluster") was first discovered by Proctor et al (1999), which consists of 16 genes encoding biosynthetic enzymes and regulatory proteins (Proctor, et al. 2013). Inactivation of each of the key genes, e.g. FUM1, FUM6, FUM8, and FUM21, severely disturbed the production of fumonisins. Notably, previous studies demonstrated that these fumonisins-non-producing mutant strains did not significantly reduce maize ear rot in field tests (Desjardins, et al. 2002, Desjardins and Plattner 2000), which demonstrated that fumonisins are not essential for Fusarium ear rot pathogenicity. As we continue to seek strategies to minimize FB1
contamination in infested maize, we still lack a clear understanding on how F. verticillioides sense ambient environmental and host cues to regulate fumonisin biosynthesis.

G protein-coupled receptors (GPCRs) are the largest group of membrane receptors containing seven transmembranes (TMs) that transduce signals from the external environment to the cell, enabling the organism to adjust to its environment (Xue, et al. 2008). The canonical heterotrimeric G protein complex, which consists of α, β and γ subunits, plays important roles in transducing signals from GPCRs. When activated by specific ligands, GPCRs stimulate GDP to GTP exchange on the G α subunit. Then, heterotrimeric G protein complex is dissociated into $\mathrm{G} \alpha$ subunit and $\mathrm{G} \beta \gamma$ dimer, which triggers various downstream signaling pathways. GPCR signaling is known to be attenuated by G-protein-coupled receptor kinases (GRKs) and β-arrestin in animals, which are absent in filamentous fungi (Dohlman 2009). However, studies have shown regulators of G protein signaling (RGS) proteins in fungi act as GTPase-activating proteins, which promotes GTP hydrolysis of G α subunit back to GDP-bound inactive form that terminates GPCR and G protein signaling pathways. RGS proteins typically contain 130-amino-acid RGS domains, which promotes the binding of RGS proteins to the G α subunit. Notably, other than the RGS domain, RGS proteins are known to contain diverse non-RGS domains such as DEP (Dishevelled, Egl-10 and Pleckstrin), PX, PXA, nexin C and TM, which are linked to various signaling pathways. For instance, the DEP domain in Saccharomyces cerevisiae ScSst2 was shown to interact with pheromone sensing Ste2 and mediated regulation of pheromone signaling responses (Ballon, et al. 2006).

Aspergillus nidulans $f l b A$ (for fluffy low brĺA expression) was the first RGS protein identified in filamentous fungi, which is positively associated with conidiophore development and sterigmatocystin accumulation (Hicks, et al. 1997, Lee and Adams 1994). The $f l b A$ deletion mutant was not able to facilitate the transition from vegetative growth to conidiophore development. Conversely, overexpression of $f l b A$ led to premature stc U gene expressions and sterigmatocystin biosynthesis (Hicks, et al. 1997). In Magnaporthe oryzae, an AnFlbA1 ortholog MoRgs1 was shown to be involved in asexual development, pathogenicity, and thigmotropism (Liu, et al. 2007). Additionally, MoRgs1 showed physical interaction with a non-canonical GPCR MoPth11 and colocalized with Rab7, a late endosome marker (Ramanujam, et al. 2013). Another well studied RGS protein, MoRgs7 comprises of a N-terminal GPCR seven-transmembrane domain and a C-terminal RGS domain, which is critical for germ tube growth, cAMP signaling, and virulence in M. oryzae (Zhang, et al. 2011a).

Our earlier studies showed that functions of F. verticillioides $G \beta$ and $G \beta$-like proteins are positively associated with FB1 production (Sagaram and Shim 2007, Yan and Shim 2020). Furthermore, transcription levels of four RGS genes FLBA1, FLBA2, RGSB, and RGSC1 were significantly altered in $G \beta$ deletion mutant $\Delta \mathrm{Fvgbb} 1$ when compared to the wild-type F. verticillioides strain (Mukherjee, et al. 2011). Unlike A. nidulans, F. verticillioides contains two putative FvFlbA paralogs, which were designated FvFlbA1 and FvFlbA2. Intriguingly, FvFlbA2 deletion mutation showed a drastic increase in FB1 production (Mukherjee, et al. 2011). Also, FlbA1 and FlbA2 were important for regulating host response during the fungal infection in surface-sterilized viable maize kernels. In this study, our aim
was to further examine the regulatory mechanisms of the two FlbA genes in F. verticillioides and show how each gene plays unique roles and their relationship in FB1 biosynthesis.

2. Material and methods

2.1 Fungal strains and growth study
F. verticillioides M3125 was used as the wild-type strain in this study (Yan and Shim 2020). For growth and conidia production, all strains were grown on $0.2 \times$ PDA, myro, YEPD and V8 agar plates as described previously (Yan, et al. 2019). Spore germination assay was performed following our previously described methods (Yan and Shim 2020). For carbon utilization assay, Czapek-Dox agar was modified with various carbon sources such as sucrose $(10 \mathrm{~g} / \mathrm{L})$, dextrose $(10 \mathrm{~g} / \mathrm{L})$, fructose $(10 \mathrm{~g} / \mathrm{L})$ and xylose $(10 \mathrm{~g} / \mathrm{L})($ Yan, et al. 2019). Fungal growth was determined by measuring colony diameter on agar plates after 8 days of incubation at room temperature. For mycelial weight assay, we inoculated 0.5 ml of WT and mutant conidia $\left(10^{6} / \mathrm{ml}\right)$ into 100 ml YEPD broth, incubated in room temperature with constant shaking, and harvested at indicated time points. For stress assays, $4 \mu l$ spore suspension $\left(10^{6} / \mathrm{ml}\right)$ was inoculated on $0.2 \times$ PDA agar plates and were grown with various stressors including $0.01 \% \mathrm{SDS}, 2 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}, 0.6 \mathrm{M} \mathrm{NaCl}$. All experiments were performed with at least three replicates. Inhibition rate was calculated as described previously (Yan and Shim 2020).
2.2 Gene deletion and complementation

Both $\triangle \mathrm{FvflbA} 1$ and $\triangle \mathrm{FvflbA} 2$ knockout mutants were generated in the wild-type strain via split-marker approach (Yan and Shim 2020). Briefly, partial hygromycin B phosphotransferase gene $(H P H)$ designated as $P H(929 \mathrm{bp})$ and $H P(765 \mathrm{bp})$ were used to fuse with left and right flanking regions of the targeted gene with joint-PCR approach. All knockout constructs were amplified using Q5 High-Fidelity DNA Polymerase (New England Biolabs) except the second step of joint PCR using Taq enzyme (New England Biolabs) (Yu, et al. 2004). To further characterize the function of two FvFlbA paralogs in F. verticillioides, we generated the $\Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ double mutants in the $\Delta \mathrm{FvflbA} 2$ background; partial geneticin resistance gene ($G E N$) designated as $G E(1183 \mathrm{bp})$ and $E N(1021 \mathrm{bp})$ were used to fuse with left and right flanking regions of $F v F L B A 1$ gene, and these constructs were transformed into with $\Delta \mathrm{FvflbA} 2$ protoplast. Complementation fragments were amplified by Phusion Flash High-Fidelity PCR Master Mix (Thermo Scientific) and transformed into designated mutant protoplasts. All transformants were screened by PCR using Phire Plant Direct PCR Kit (Thermo Scientific) and verified by qPCR (Thermo Scientific). All primers are listed in Table 1.
2.3 Fumonisin B1, virulence, and gene expression assays

To study the FB1 production, cracked autoclaved kernels (2 g) and four surface sterilized kernels were used as described previously (Christensen, et al. 2012, Yan and Shim 2020). Briefly, once kernels were prepared in scintillation vials, fungal spore solutions ($200 \mu \mathrm{~L}$, $106 / \mathrm{mL}$) were inoculated in each vial and cultivated at room temperature for eight days. FB1
and ergosterol extraction and HPLC analyses were performed as described previously (Christensen, et al. 2012, Shim and Woloshuk 1999). FB1 levels were normalized to ergosterol contents. These experiments were performed with three biological replicates. Seedling rot was assayed by inoculating fungal spore suspension ($5 \mu \mathrm{~L}, 10^{6} / \mathrm{mL}$) and imaged after one-week growth in the dark room as described previously (Yan, et al. 2019). For qPCR analysis of conidiation-related genes and key FUM genes, mycelia were harvested from 7-day-old culture grown in myro liquid medium at 150 rpm . Primers for three conidia related genes, as well as FUM1, FUM8 and FUM21, were described in previous studies (Yan, et al. $\underline{2019}$, Zhang, et al. 2011b). Relative expression levels of each gene were calculated using a $2^{-\Delta \Delta C T}$ method and normalized with F. verticillioides β-tubulin gene (FVEG_04081). All qPCR assays were performed with three replicates.

2.4 Split luciferase complementation activity analysis

The coding sequences of PCR products were amplified by Q5 High-Fidelity DNA Polymerase and introduced to pFNLucG or pFCLucH by Gibson Assembly (New England Biolabs) (Kim, et al. 2012). Specifically, cDNAs of $F v F L B A 1$ and $F v F L B A 2$ were cloned into pFNLucH vector. cDNAs of FvRAB5 (FVEG_00504), FvRAB7 (FVEG_04809), $F v R A B 11$ (FVEG_11336), FvVPS36 (FVEG_06233), FvTLG2 (FVEG_07363), FvPEP12 (FVEG_11540) were cloned into pFCLucH vector. CLuc-FvGPA1, CLuc-FvGPA2, CLuc$F v G P A 3, C L u c-F v G P B 1$, and CLuc-FvGBB1 were from our previous study (Yan and Shim 2020). Transformation, selection and luciferase activity determination were performed as described previously (Zhang, et al. 2018).

3. Results

3.1 Sequence analyses of FlbA1 and FlbA2 in F. verticillioides

Our previous study identified two FvFlbA paralogs in F. verticillioides including FvFlbA1 (FVEG_08855) and FvFlbA2 (FVEG_06192) (Mukherjee, et al. 2011). The new annotation in FungiDB (www.fungiDB.org) predicted that FvFlbA1 and FvFlbA2 encode a 499-aminoacid and 517-amino-acid protein, respectively. FvFlbA1 and FvFlbA2 share 52\% identity at the amino-acid level. To identify FlbA orthologs in other fungi, F. verticillioides FvFlbA2 protein sequence was used in a BlastP query. Among fungal species we searched, only Fusarium species showed multiple copies of FlbA homologs. Both F. verticillioides and F. graminearum have two FlbA genes, and surprisingly, F. oxysporum has five putative FlbA paralogs. All FlbA orthologs are predicted to contain both DEP and RGS domains except that FvFlbA2 does not contain the RGS domain in the new annotation. Notably, FvFlbA1 and FvFlbA2 belong to different branches in our phylogenetic tree analysis (Fig. 1), which suggested that they may have diverged early and evolved to perform distinct functions in F. verticillioides. Phylogenetic tree and domain analysis followed a previous description (Yan and Shim 2020).
3. $2 \Delta \mathrm{FvflbA} 1$ and $\Delta \mathrm{FvflbA} 2$ mutants exhibit limited defects in vegetative growth

The two FvFlbA gene knockout mutants were generated by the split-marker approach (Fig. S2A). To confirm null mutations, $F v F L B A 1$ and $F v F L B A 2$ transcription levels in the mutants were tested by qPCR where expression of these target genes was not detectable when compared to the wild-type progenitor (Fig. S2D). The mutant Δ FvflbA1 showed no observable defect in terms of mycelial growth and conidiation on three different agar media. However, $\Delta \mathrm{FvflbA} 2$ mutant showed slower growth on these media and also produced less conidia when compared to the wild type (Fig. 2). To further understand the relationship of two FvFlbA paralogs in F. verticillioides, we generated a Δ FvflbA2/A1 double mutant. Δ FvflbA2/A1 exhibited more severe defects in aerial hyphae (Fig. 2). In particular, the double mutant showed almost non-detectable level of conidia production when compared to the wild type and single gene mutants (Fig. 3A). Surprisingly, we discovered that $\Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ conidia, albeit the lower number of production, showed precocious conidial germination which was not observed in wild type or other mutants (Fig. 3B). Gene complementation strain \triangle FvflbA2-Com demonstrated full recovery of growth defects observed in \triangle FvflbA2 strain.
3.3 FvFlbA2 is negatively associated with FB1 production

Our previous studies showed that RGS protein FvFlbA2 is negatively associated with FB1 production, while $\mathrm{G} \beta$ and one of the $\mathrm{G} \alpha$ proteins positively regulate FB 1 biosynthesis (Mukherjee, et al. 2011, Yan and Shim 2020). To further understand the impact and relationship of the two FvFlbA genes in FB1 production, we analyzed FB1 levels by inoculating mutant strains on autoclaved cracked kernels and surface-sterilized living
kernels (Fig. 4A and B). The results showed that $\Delta \mathrm{FvflbA} 2$ and $\Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ produced significantly higher levels of FB1 compared with wild-type and \triangle FvflbA1 strains (Fig. 4C and D). Surprisingly, Δ FvflbA2/A1 produced a drastically higher FB1 level $(>300 \%)$ in contrast to \triangle FvflbA2 strain when FB1 assay was performed using surface-sterilized maize kernels (Fig. 4D). Meanwhile, $\Delta \mathrm{FvflbA} 1$ produced similar levels of FB 1 as the wild-type and complemented strains. This result suggested that FvFlbA2 serves as a negative regulator of FB1 production, but the impact was more dramatic with double deletion of two FvFlbA paralogs and when viable host factors are associated with triggering FB1 biosynthesis.
3.4 Expression levels of genes associated with conidiation and FB1 biosynthesis

The expression of brlA mRNA was not detectable in A. nidulans flbA mutant, which indicated that $f l b A$ is indispensable for $b r l A$ gene activation (Lee and Adams 1994). In our study, $\Delta \mathrm{FvflbA} 2$ produced a lower count of conidia and germinated atypically in water in comparison to the wild type. To understand the impact of FvFlbA2 on asexual development at the molecular level, we analyzed the transcriptional expression of putative $B R L A, A B A A$ and WETA genes in F. verticillioides wild-type and mutant strains. Our results showed that these three conidia-related genes were highly down-regulated in \triangle FvflbA2 and Δ FvflbA2/A1 but not in \triangle FvflbA1 (Fig. 5A). This result partially explains why FvFlbA2 function did not completely correlate with typical conidia production levels seen in F. verticillioides. To verify the role of the two paralogs in FB1 biosynthesis, we carried out qPCR analysis of three key FUM genes FUM1, FUM8 and FUM21. Consistent with our FB1 results in myro liquid cultures (Fig. S3), key FUM genes were significantly up-regulated
in $\Delta \mathrm{FvflbA} 2$ and $\Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ (Fig. 5B). Importantly, our results suggested that FvFlbA1 and FvFlbA2 regulate distinct signaling pathways, but with FlbA2 playing a critical role in FB1 biosynthesis regulation.
3.5 F. verticillioides two FlbA paralogs are not required for stress responses, carbon utilization and virulence

To elucidate the roles of two FvFlbA proteins in response to environmental cues, we used various carbon sources including sucrose, dextrose, fructose and xylose to test if there are deficiencies in carbon sensing and utilization. Only minor vegetative growth defects were observed in \triangle FvflbA2 and Δ FvflvA2/A1 mutants, suggesting that two FvFlbA paralogs are not critical for utilization of different carbon nutrients (Fig. 6A). Additionally, to test whether FvFlbA1 and FvFlbA2 are involved in cell wall integrity and various stress response signaling, we investigated the vegetative growth of mutants in the presence of $\mathrm{SDS}, \mathrm{H}_{2} \mathrm{O}_{2}$, and osmotic (NaCl) stress agents in Czapek-Dox agar. We found that $\Delta \mathrm{FvflbA} 2$ and Δ FvflvA2/A1 mutants exhibited trivial defects in growth in all media tested compared to the wild-type progenitor (Fig. 6B). However, Δ FvflbA2 and Δ FvflvA2/A1 mutants showed no significant differences in terms of inhibition rate compared to regular Czapek-Dox medium growth. Lastly, we found no difference in wild type and all mutant strains when tested for capacities to cause seedling rot (Fig. 7A and B). These results suggest that both FvFlbA1 and FvFlbA2 are dispensable for stress response, carbon utilization and virulence in F. verticillioides.
3.6 FvFlbA1 physically interacts with FvFlbA2 and heterotrimeric G proteins components

The defects in growth and higher accumulation of FB1 production observed in \triangle FvflvA2/A1 mutant raised a question whether FvFlbA 1 and FvFlbA 2 regulate other G protein signaling components in F. verticillioides through direct interaction. To test this, we performed split luciferase complementation assay in F. verticillioides in vivo (Kim, et al. 2012). We first tested FvFlbA1-NLuc interaction with FvFlbA2, canonical G protein components, as well as other proteins that are known to interact with RGS proteins. For instance, S. cerevisiae RGS protein Sst1 N-terminus showed interaction with multiple proteins involved in stress response signaling (ScVps36, ScTlg2, and ScPep12) and M. oryzae RGS protein MoRgs1 showing colocalization with a late endosome marker MoRab7 (Burchett, et al. 2002, Ramanujam, et al. 2013). Figure 8 shows FvFlbA1 interacting with all selected proteins in F. verticillioides, with particularly strong associations with FvGpa1, FvGbb1 and FvRab11. Luciferase activity was detected with FvVps36, FvTlg2 and FvPep12, but these were not strong. CLuc-FvFlbA2 showed interaction with FvFlbA1-NLuc. When we made FvFlbA2NLuc to test interaction with these set of proteins, we did not observe luciferase activity. However, we acknowledge that this outcome must be further verified by other methods before concluding that FvFlbA2 does not directly associate with G protein signaling components in F. verticillioides.

Discussion

Our previous study demonstrated that heterotrimeric G proteins and non-canonical G β components positively regulate the virulence and secondary metabolism (Yan and Shim 2020). However, in addition to these core components, RGS proteins are well known as negative regulators of G protein signaling pathway to orchestrate this intricate cellular signal transduction mechanism. A further investigation showed that transcription levels of four putative RGS genes $F v F L B A 1, F v F L B A 2, F v R G S B$ and $F v R G S C 1$ were significantly altered in $\Delta \mathrm{Fvgbb} 1$ deletion mutant when compared to the wild-type progenitor (Mukherjee, et al. 2011). Further characterizations of F. verticillioides FvFlbA1 and FvFlbA2, the two FvFlbA paralogs, showed FvFlbA2 is negatively associated with FB1 production (Mukherjee, et al. 2011). Both FvFLBA1 and FvFLBA2 mRNA transcription levels are relatively low (data not shown), which suggests that there could be rapid degradation of mRNA after regulating G α subunits or that the function of these RGS proteins are not transcription dependent. In this study, our aim was to test the hypothesis that two FvFlbA paralogs play unique roles and perhaps complement each other in F. verticillioides. Our study revealed that FvFlbA1 function is not critical for FB1 production, whereas the deletion mutants $\triangle \mathrm{FvflbA} 2$ and Δ FvflbA2/A1 exhibited elevated mycotoxin production and defects in aerial growth.

BrlA is a critical transcription factor involved in activating conidiophore development in both A. nidulans and A. niger. FlbA was demonstrated to be required for BrlA activation (Lee and Adams 1994). The mutation of flbA in A. nidulans and A. niger resulted in the fluffier hyphal colony (Krijgsheld, et al. 2013). But in F. verticillioides, the deletion mutant $\Delta \mathrm{FvflbA} 2$ showed a less fluffy phenotype similar to that observed in M. oryzae Δ Morgs 1 whereas \triangle FvflbA1 did not exhibit defects in growth (Ramanujam, et al. 2012). Δ FvflbA2
mutant showed reduced conidia production while conidiation was completely hindered in A. nidulans flbA mutant. Both \triangle FvflbA2 and \triangle FvflbA2/A1 deletion mutants showed precocious germination. One possible explanation for this difference in two fungi could be due to distinct asexual production mechanisms between A. nidulans and F. verticillioides. Conidia in F. verticillioides are formed through monophialidic conidiophore that typically develops a single long conidia chain (Leslie and Summerell 2008). A. nidulans conidiophore development is drastically different where conidiophore vesicle harbors a layer of metulae and phialides that can each produce a chain of approximately 100 conidia (Yu 2010). A. nidulans conidiophore development is one of the most extensively studied models in Ascomycetes. As described earlier, fungal asexual development is proposed to be regulated by BrlA-AbaA-WetA transcription factor cascade (Yu 2010). However, our results in F. verticillioides raise the question of whether putative BrlA-AbaA-WetA cascade follows the same expression pattern in two FvFlbA paralogs deletion mutants. Our transcription study showed that expression of these three genes was significantly lower but not completely abolished. This result shows a strong correlation with actual conidia production.

In A. nidulans, the $f l b A$ mutant showed reduced sterigmatocystin production (Hicks, et al. 1997). Interestingly, A. niger is known to harbor the putative FUM gene cluster and is capable of synthesizing fumonisins (Aerts, et al. 2018). Transcriptome analysis of flbA mutant in A. niger demonstrated markedly down-regulated expression of FUM21 which positively corresponds with other $F U M$ genes expression and fumonisins production (Aerts, et al. 2018). In F. verticillioides, FUM21 also functions as a putative $\mathrm{Zn}(\mathrm{II})_{2} \mathrm{Cys}_{6}$ transcription factor that controls expression of genes in the FUM cluster, including FUM1
and FUM8 (Brown, et al. 2007). FUM21 locus is located adjacent to FUM1 that encodes a polyketide synthase responsible for the first step of FB1 production. To further understand how FvFlbA paralogs regulate $F U M$ genes expression, we tested transcription levels of FUM1, FUM8 and FUM21 in the mutants. Our results showed that these three key FUM genes were highly up-regulated in $\Delta \mathrm{FvflbA} 2$ and $\Delta \mathrm{FvflbA} / \mathrm{A} 1$ mutants, which was consistent with our observation of elevated FB 1 production in $\triangle \mathrm{FvflbA} 2$ and $\Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ mutants. The same pattern of FlbA impacts on mycotoxin productions was also reported in the deletion mutants of FlbA paralogs in F. graminearum (Park, et al. 2012). FgflbA mutant strain produced significantly higher levels of mycotoxins including DON and ZEA compared to the wild-type progenitor. However, FgFlbB mutant showed no obvious deficiencies in mycotoxin production similar to what we observed in \triangle FvflbA1 mutant strain (Park, et al. 2012).

Inactivation of Rgs1 in M. oryzae led to precocious appressorium formation on both noninductive and inductive surfaces, which negatively impacted the pathogen's ability to cause rice blast disease (Liu, et al. 2007, Zhang, et al. 2011a). Similar outcomes were also observed when DEP or RGS domain were used to complement the Δ Morgs1 mutation that failed to restore virulence on barley and rice (Ramanujam, et al. 2012). This study demonstrated that the DEP or the RGS domain alone could not rescue the infection ability in M. oryzae. In addition, F. graminearum FgFlbA was shown to play an important role in wheat scab virulence, where Δ FgflbA mutant showing very limited infection limited to inoculated spikelets (Park, et al. 2012). However, our seedling rot assay revealed that FvFlbA1 and FvFlbA2 are not directly associated with virulence in F. verticillioides, similar to the G β
deletion mutant $\Delta \mathrm{Fvgbb} 1$ that did not have influence on stalk rot virulence. This result was consistent with our analyses of stress response and carbon utilization assays, in which both FvflbA1 and FvFlbA2 deletion mutants did not show any defects.

FlbA is well known as a negative regulator of the G protein signaling pathway. One important question we wanted to test was the interactions between two FvFlbA paralogs with canonical G protein components in Ferticillioides. Our split luciferase complementation assay demonstrated that FvFlbA1 interact with not only FvFlbA2 but also canonical G protein components. In our experiment, we failed to detect luciferase activity in transformants containing FvFLBA2-NLuc with select CLuc constructs. We also performed yeast two-hybrid assays but no interaction between these components were observed (data not shown). With these outcomes, we propose that FvFlbA2 does not directly interact with F. verticillioides canonical G protein components, and perhaps we can hypothesize that FvFlbA2 regulates FvFlbA1 and canonical heterotrimeric G protein components indirectly through yet-to-be determined signaling mechanisms. When we tried to test the cellular localization of two FlbA in F. verticillioides, we failed to detect the GFP signal in our tested conditions (data not shown). This may be due to the low level of RGS proteins in the cell or that these interactions may be transient under certain developmental or physiological stages of F. verticillioides. The mechanisms of how FlbA paralogs are important for FB1 biosynthesis regulation while showing relatively low transcription levels remain unclear. While we predict that two FvFlbA paralogs share same localization with canonical heterotrimeric G protein components, e.g. FvGbb1 and FvGpa2 localized to the cell
membranes and vacuoles, respectively (Yan and Shim 2020), further study of FvFlbA cellular functions are necessary to answer these questions.

Acknowledgements

This research was supported in part by the Agriculture and Food Research Initiative Competitive Grants Program Grant (2013-68004-20359) from the USDA National Institute of Food and Agriculture. The authors declare no conflict of interest.

References

Aerts D, Hauer EE, Ohm RA, Arentshorst M, Teertstra WR, Phippen C, Ram AFJ, Frisvad JC, Wosten HAB (2018) The FlbA-regulated predicted transcription factor Fum 21 of Aspergillus niger is involved in fumonisin production. Antonie Van Leeuwenhoek 111: 311-322 doi: 10.1007/s10482-017-0952-1
Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin reviews 28: 198-215 doi:10.3390/toxins11010036
Ballon DR, Flanary PL, Gladue DP, Konopka JB, Dohlman HG, Thorner J (2006) DEP-Domain-Mediated Regulation of GPCR Signaling Responses. Cell 126: 1079-1093 doi: 10.1016/j.cell.2006.07.030
Blacutt AA, Gold SE, Voss KA, Gao M, Glenn AE (2018) Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize. Phytopathology 108: 312-326 doi: 10.1094/PHYTO-06-17-0203-RVW

Brown DW, Butchko RA, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a $\mathrm{Zn}(\mathrm{II}) 2 \mathrm{Cys} 6$ protein that affects $F U M$ gene expression and fumonisin production. Eukaryot Cell 6: 1210-1218 doi: 10.1128/EC.00400-06
Burchett SA, Flanary P, Aston C, Jiang L, Young KH, Uetz P, Fields S, Dohlman HG (2002) Regulation of stress response signaling by the N -terminal dishevelled/EGL10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. J Biol Chem 277: 22156-22167 doi: 10.1074/jbc.M202254200
Christensen S, Borrego E, Shim WB, Isakeit T, Kolomiets M (2012) Quantification of fungal colonization, sporogenesis, and production of mycotoxins using kernel bioassays. J Vis Exp doi: 10.3791/3727
Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1--a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant Microbe Interact 15: 1157-1164 doi: 10.1094/MPMI.2002.15.11.1157

Desjardins AE, Plattner RD (2000) Fumonisin B_{1}-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J Agric Food Chem 48: 5773-5780 doi: 10.1021/jf000619k
Dohlman HG (2009) RGS proteins the early days. Prog Mol Biol Transl Sci 86: 1-14 doi: 10.1016/S1877-1173(09)86001-8

Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J 16: 4916-4923 doi: 10.1093/emboj/16.16.4916
Kim HK, Cho EJ, Jo S, Sung BR, Lee S, Yun SH (2012) A split luciferase complementation assay for studying in vivo protein-protein interactions in filamentous ascomycetes. Curr Genet 58: 179-189 doi: 10.1007/s00294-012-0375-5
Kjaerbolling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, Bowyer P, Matsuda Y, Mondo S, Lyhne EK, Kogle ME, Clum A, Lipzen A, Salamov A, Ngan CY, Daum C, Chiniquy J, Barry K, LaButti K, Haridas S, Simmons BA, Magnuson JK, Mortensen UH, Larsen TO, Grigoriev IV, Baker SE, Andersen MR (2018) Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Natl Acad Sci U S A 115: E753-E761 doi: 10.1073/pnas. 1715954115

Krijgsheld P, Nitsche BM, Post H, Levin AM, Muller WH, Heck AJ, Ram AF, Altelaar AF, Wosten HA (2013) Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. J Proteome Res 12: 1808-1819 doi: 10.1021/pr301154w
Lee BN, Adams TH (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14: 323-334 doi: 10.1111/j.1365-2958.1994.tb01293.x
Leslie JF, Summerell BA 2008 The Fusarium laboratory manual John Wiley \& Sons, pp. Pages.
Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI (2007) Rgs1 regulates multiple Galpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J 26: 690-700 doi: 10.1038/sj.emboj. 7601536
Ma LJ, van der Does HC, Borkovich KA, et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464: 367-373 doi: 10.1038/nature08850

Mukherjee M, Kim JE, Park YS, Kolomiets MV, Shim WB (2011) Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. Mol Plant Pathol 12: 479-491 doi: 10.1111/j.1364-3703.2010.00686.x

Park AR, Cho AR, Seo JA, Min K, Son H, Lee J, Choi GJ, Kim JC, Lee YW (2012) Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 49: 511-520 doi: 10.1016/j.fgb.2012.05.006
Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Moretti A, Ward TJ (2013) Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 90: 290-306 doi: $10.1111 / \mathrm{mmi} .12362$
Ramanujam R, Calvert ME, Selvaraj P, Naqvi NI (2013) The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae. PLoS Pathog 9: e1003527 doi: 10.1371/journal.ppat. 1003527
Ramanujam R, Xu Y, Hao L, Naqvi NI (2012) Structure-Function Analysis of Rgs1 in Magnaporthe oryzae: Role of DEP Domains in Subcellular Targeting. Plos One 710.1371/journal.pone. 0041084

Sagaram US, Shim WB (2007) Fusarium verticillioides GBB1, a gene encoding heterotrimeric G protein beta subunit, is associated with fumonisin B biosynthesis and hyphal development but not with fungal virulence. Mol Plant Pathol 8: 375-384 doi: $10.1111 / \mathrm{j} .1364-3703.2007 .00398 . \mathrm{x}$
Shim WB, Woloshuk CP (1999) Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett 177: 109-116 doi: 10.1111/j.15746968.1999.tb13720.x

Xue C, Hsueh Y-P, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS microbiology reviews 32: 10101032 doi:

Yan H, Huang J, Zhang H, Shim WB (2019) A Rab GTPase protein FvSec4 is necessary for fumonisin B1 biosynthesis and virulence in Fusarium verticillioides. Curr Genet 10.1007/s00294-019-01013-6

Yan H, Shim WB (2020) Characterization of non-canonical G beta-like protein FvGbb2 and its relationship with heterotrimeric G proteins in Fusarium verticillioides. Environ Microbiol 22: 615-628 doi: 10.1111/1462-2920.14875
Yu JH (2010) Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology 38: 229-237 doi: 10.4489/MYCO.2010.38.4.229
Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C (2004) Doublejoint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41: 973-981 doi: 10.1016/j.fgb.2004.08.001
Zhang H, Mukherjee M, Kim JE, Yu W, Shim WB (2018) Fsr1, a striatin homologue, forms an endomembrane-associated complex that regulates virulence in the maize pathogen Fusarium verticillioides. Mol Plant Pathol 19: 812-826 doi: 10.1111/mpp. 12562
Zhang H, Tang W, Liu K, Huang Q, Zhang X, Yan X, Chen Y, Wang J, Qi Z, Wang Z, Zheng X, Wang P, Zhang Z (2011a) Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae. PLoS Pathog 7: e1002450 doi: 10.1371/journal.ppat. 1002450
Zhang Y, Choi YE, Zou X, Xu JR (2011b) The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Fungal Genet Biol 48: 71-79 doi: 10.1016/j.fgb.2010.09.004

Figure legends

Fig. 1 Phylogenetic and domain analysis of FlbA proteins in select fungal species. Organism names and NCBI locus tag: FvFlbA2 (FVEG_06192, 100\% identify), FvFlbA1 (FVEG_08855, 52\% identify), FoFlbA1 (FOXG_08482, 98\% identity), FoFlbA2 (FOXG_06495, 74\% identity), FoFlbA3 (FOXG_17640, 64\% identity), FoFlbA4 (FOXG_09613, 53\% identity), FoFlbA5 (FOXG_07099, 53\% identity) in F. oxysporum f. sp. lycopersici 4287, FgFlbA (FGSG_06228, 98\% identity), FgFlbB (FGSG_03597, 50\% identity) in F. graminearum, MoRgs1 in Magnaporthe oryzae (MGG_14517, 63\% identity), NcFlbA in Neurospora crassa OR74A (NCU08319, 74\% identity), AnFlbA in Aspergillus nidulans FGSC A4 (An5893, 66\% identity), AfFlbA in A. fumigatus Af293 (AFUA_2G11180,77\%), SpRgs1 in Schizosaccharomyces pombe (SPAC22F3.12c, 31\% identity), ScSst2 in Saccharomyces cerevisiae S288C (YLR452C, 36\% identity). FoFlbA5 was not included in this phylogenetic analysis.

Fig. 2 Hyphal growth of Δ FvflbA1, Δ FvflbA1-Com, Δ FvflbA2, Δ FvflbA2-Com, $\mathbf{\Delta F v f l b A 2 / A 1}$ strains. Colonies of the wild-type (WT), Δ FvflbA1, Δ FvflbA1-Com, Δ FvflbA2, Δ FvflbA2-Com, Δ FvflbA2/A1 strains were incubated on V8, $0.2 \times \mathrm{PDA}$, myro and YEPD agar at room temperature for 8 days.

Fig. 3 FvFlbA2 impacts on conidiation and germination. (A) Conidia were harvested from V8 agar plates after 8-day-incubation at room temperature. (B) WT, \triangle FvflbA1, Δ FvflbA1-Com, Δ FvflbA2, Δ FvflbA2-Com, Δ FvflbA2/A1 strains were cultured in
0.2 xPDB liquid medium with gentle shaking. Conidial germination rate was counted under a microscope. All experiments were performed with at least three biological replicates. The letters suggest statistically significant differences analyzed by Ordinary One-way ANOVA Fisher's LSD test ($\mathrm{p}<0.05$).

Fig. 4 Colonization of two FvFlbA deletion mutants in kernels and FB1 assay. F. verticillioides wild-type (WT), Δ FvflbA1, Δ FvflbA1, Δ FvflbA2, Δ FvflbA2/A1 and complemented strains were cultivated in (A) 2-g cracked autoclaved kernels and (B) four surface-sterilized kernels for seven days at room temperature. (C) FB1 production in WT, mutants and complemented strains cultured on nonviable kernels and (D) viable kernels after seven days incubation at room temperature. The relative FB1 production levels were normalized to fungal ergosterol. All experiments were performed with at least three biological replicates. The letters suggest statistically significant differences analyzed by Ordinary One-way ANOVA Fisher's LSD test ($\mathrm{p}<0.05$).

Fig. 5 Effects of FvFlbA1 and FvFlbA2 on conidia-related genes and key FUM genes transcription. (A) Relative expression levels of putative FvBRLA (FVEG_09661), FvABAA (FVEG_00646) and FvWETA (FVEG_02891) in wild-type, Δ FvflbA1, Δ FvflbA2, Δ FvflbA2/A1 strains were normalized to F. verticillioides β-tubulin gene (FVEG_04081). (B) Relative mRNA expression level of three key $F U M$ genes in deletion mutant strains in contrast to wild type. All experiments were performed with at least three biological replicates. The letters suggest statistically significant differences analyzed by Ordinary One-way ANOVA Fisher's LSD test ($\mathrm{p}<0.05$).

Fig. 6 The influence of FvFlbA1 and FvFlbA2 on carbon utilization and stress response.
(A) The colony of wild-type, $\Delta \mathrm{FvflbA} 1, \Delta \mathrm{FvflbA} 2, \Delta \mathrm{FvflbA} 2 / \mathrm{A} 1$ and complemented strains grown on modified Czapek-Dox agar plates with different carbon sources for 8 days. (B) Strains were cultured on Czapek-Dox agar plates with various stress agents for 8 days. The letters suggest statistically significant differences analyzed by Ordinary One-way ANOVA Fisher's LSD test $(\mathrm{p}<0.05)$.

Fig. 7 The pathogenicity of FvFlbA mutant strains in corn seedling rot assay. (A) A syringe needle was used to created wounds on one-week old silver queen seedlings. Spore suspensions ($5 \mu \mathrm{l}, 10^{6} / \mathrm{ml}$) were inoculated on the wound sites. (B) The lesion size was quantified by Image J software after one-week incubation. All experiments were performed with at least three biological replicates.

Fig. 8 Interaction study between FvFlbA1 and FvFlbA1 in F. verticillioides. We used a split luciferase complementation assay to study the luminescence activity between FvFlbA1 and FvFlb2. Additionally, FvFlbA1 also exhibited significantly luminescence activity with FvVps36, FvTlg2 and FvPep12, FvRab5, FvRab7, and FvRab11 compared to negative controls. Negative controls included FvFlbA1 + CLuc, NLuc + CLuc, and no vector (NA) + (NA). Luminescence activity was gained from three replicates.

Supplementary information

Fig. S1. Sequence alignment FlbA ortholog proteins in select fungal species. We aligned protein sequences of Fusarium verticillioides FvFlbA1, F. verticillioides FvFlbA2, Saccharomyces cerevisiae ScSst2, A.nidulans AnFlbA, Neurospora crassa NcFlbA, and Magnaporthe oryzae MoRgs1. Identical and similar sequences were displayed in the box.

Fig. S2. Split marker approach employed in $F L B A$ generating gene deletion mutants in \boldsymbol{F}. verticillioides. (A) \triangle FvflbA1 mutant was generated by replacing FLBA1 gene with a hygromycin B phosphotransferase gene ($H P H$). (B) $F v F L B A 2$ gene was replaced by a hygromycin gene to generate a $\triangle \mathrm{FvflbA} 2$ mutant. (C) $\triangle \mathrm{FvflbA} 2 / \mathrm{A} 1 F v F L B A 1$ was generated by replacing FLBA1 gene with a geneticin gene (GEN) in \triangle FvflbA2 background. (D) Mutants $\triangle \mathrm{FvflbA} 1, \Delta \mathrm{FvflbA} 1-\mathrm{Com}, \triangle \mathrm{FvflbA} 2 / \mathrm{A} 1$ were subject to qPCR using $F v F L B A 1$ gene primer. Relative expression was normalized to F. verticillioides β-tubulin gene (FVEG_04081). (E) FvFLBA2 gene transcription level was examined in WT, \triangle FvflbA2, Δ FvflbA2-Com, Δ FvflbA2/A1 strains.

Fig. S3. Relative FB1 expression in wild-type and FvflbA mutants. FB1 was extracted from supernatant (2 ml) of 7-day incubation at 150 RPM in myro liquid culture. In details, YEPD mycelial samples (3 dpi) were harvested through Miracloth (EMD Millipore). Subsequently, mycelia (0.3 g) were inoculated into 100 ml myro liquid medium at room temperature.

Yan et al. Fig. 1

Yan et al. Fig. 2

Yan et al. Fig. 3

Yan et al. Fig. 4

Yan et al. Fig. 5

Yan et al. Fig. 6

Yan et al. Fig. 7

Yan et al. Fig. 8

Yan et al. Fig. S1

Yan et al. Fig. S2

A

C

Yan et al. Fig. S3

