
 1 

HiCRes: a computational method to estimate and predict the resolution of HiC libraries 1 

 2 

Claire Marchal, Nivedita Singh, Ximena Corso-Díaz, Anand Swaroop 3 

 4 

Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National 5 

Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA 6 

 7 

*Correspondence should be addressed to Claire Marchal (claire.marchal@nih.gov) or Anand 8 

Swaroop (swaroopa@nei.nih.gov)  9 

 10 

 11 

Key words: Hi-C; 3D chromatin; resolution prediction; docker 12 

 13 

  14 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.307967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.307967
http://creativecommons.org/licenses/by-nd/4.0/


 2 

Abstract:  15 

 16 

Three-dimensional (3D) conformation of the chromatin is crucial to stringently regulate gene 17 

expression patterns and DNA replication in a cell-type specific manner. HiC is a key technique for 18 

measuring 3D chromatin interactions genome wide. Estimating and predicting the resolution of a 19 

library is an essential step in any HiC experimental design. Here, we present the mathematical 20 

concepts to estimate the resolution of a library and predict whether deeper sequencing would 21 

enhance the resolution. We have developed HiCRes, a docker pipeline, by applying these concepts 22 

to human and mouse HiC libraries. 23 

  24 
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 3 

Background:  25 

 26 

Within mammalian nuclei, chromatin is compacted following a well-defined three-dimensional 27 

(3D) organization. Chromosomes remain separated into distinct territories that can be labeled and 28 

observed by microscopy [1, 2]. Within each chromosome, the chromatin can be organized into 29 

megabase-size domains, called topologically associated domains (TADs) [3, 4]. At the kilobase 30 

level, two genomic loci can join together to form chromatin loops [4-6]. This organization is 31 

dynamic and changes during distinct stages of a cell’s life including cell cycle [7-9], differentiation 32 

[5, 10, 11] and senescence [12, 13]. 3D chromatin organization is associated with gene expression 33 

regulation [14-19] and DNA replication timing [7, 20-24], but the relationship between these 34 

features is still poorly known. Chromosome Conformation Capture technologies, such as HiC, 35 

have permitted access to 3D chromatin interactions genome-wide [25-27] and are among the most 36 

common techniques used to explore the relationship between the 3D genome and chromatin 37 

associated processes. 38 

 39 

HiC libraries are generated by in-nuclei enzymatic digestion of cross-linked chromatin. Digested 40 

chromatin is then ligated producing chimeric fragments of neighbor chromatin loci, whichare 41 

purified and sequenced pairwise. Interactions between loci, separated by a restriction digestion 42 

site, are kept for further analysis [25]. Many laboratories are implementing HiC to examine 3D 43 

chromatin interactions to get a better insight into a biological process. “How deep do I need to 44 

sequence my HiC library?” is one of the first questions when deciding to perform HiC experiments. 45 

The answer is far from being trivial and depends on the chromatin structures to be observed, such 46 

as compartments, TADs or loops, as well as the quality of the HiC library [4]. Compartments are 47 
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very robust across sequencing depths and can be called on small HiC libraries [20, 28]. On the 48 

contrary, loops calling requires high resolution HiC obtained by deep sequencing of good quality 49 

libraries [6, 28]. High sequencing depth represents a big expense; thus, the first step is usually to 50 

sequence the HiC library at low depth (e.g. 100M read pairs), which allows one to evaluate its 51 

quality and assess the usefulness of deeper sequencing that is needed for a higher resolution. 52 

Accurately predicting the future resolution of a HiC library would allow a user to then choose how 53 

deep the library need to be sequenced to obtain a given resolution. While sequencing depth is the 54 

main determinant of the resolution, it is important to note that the resolution of HiC data is limited 55 

by the restriction enzyme used in the assay [27, 28]. For example, HindIII restriction enzyme 56 

produces an average fragment length of 4 kb on the human genome, and thus the best possible 57 

resolution will be around 4 kb [26]. For assays using MboI or DpnII, one can achieve a resolution 58 

of around 500 bp [26]. 59 

 60 

A useful definition of the resolution for HiC library was set up by Rao and colleagues [6]. This 61 

definition sets the resolution of a HiC experiment as the minimum size window which, when used 62 

to calculate the genome coverage, leads to 80% of the windows covered by at least 1000 reads [6, 63 

27]. Mathematically, the resolution is the window size for which 20th percentile of the reads per 64 

window equals 1000. This definition is based on the global distribution of the coverage and allows 65 

an estimation of the range of interactions that can be observed in a given library, providing an 66 

excellent standard for comparison among multiple datasets. 67 

 68 

Nevertheless, the relationship between the resolution of a HiC experiment and the size of its library 69 

is non-linear [27].  This relationship depends on: 1) the complexity of the library, which can be 70 
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predicted using published tools such as preseq [29], 2) the percentage of uniquely mapped valid 71 

read pairs, directly proportional to the number of de-duplicated reads, and 3) the distribution of 72 

uniquely mapped valid read pairs, which can be estimated and predicted by the model presented 73 

in this study. We included all these steps within a single pipeline and developed a docker image, 74 

called HiCRes. This is the first method to estimate the resolution of a given HiC library and to 75 

predict its resolution at a specific sequencing depth. 76 

 77 

Results:  78 

 79 

Modeling the HiC fragments distribution on the genome. 80 

Elucidation of relationship between the resolution and the quantity of HiC interactions means 81 

understanding the relationship between the read coverage distribution, the window size used to 82 

calculate the coverage, and the number of read pairs. To model the relationship between these 83 

parameters, we used a large high resolution HiC library from human cells GM12878 [6]. We first 84 

explored the association of the read coverage distribution to the window size and the number of 85 

read pairs. We observed that the distribution of uniquely mapped valid read pairs on the genome 86 

varies perfectly linearly with the window’s size used to assess the coverage (Figure 1 A). Similarly, 87 

this distribution varies linearly with the number of valid reads (Figure 1 B). Thus, the 20th 88 

percentile of coverage can be considered as a linear function of the window size for a given number 89 

of reads, as well as a linear function of the number of valid reads for a given window size. From a 90 

mathematical point of view, these two functions are partial derivatives of a third function 91 

describing the 20th percentile of coverage versus the window size and the number of valid read 92 

pairs. Here, we show that this last function can be written as Eq. (1), where x is the window size, 93 
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y the number of valid read pairs and a, b, c and d are some constants to be determined for each 94 

library (see methods). Under the hypothesis that the 20th percentile of the coverage only depends 95 

on the read number and the window size, Eq. (1) should be sufficient to predict the 20th percentile 96 

of the read of coverage given any read number and window size pairs. To confirm this hypothesis, 97 

we manually assessed the 20th percentile of the coverage for several read number / window size 98 

pairs in the GM12878 HiC library. The function described by Eq (1) perfectly overlaps the 99 

observed 20th percentile coverages from different subsamples and window sizes used for the 100 

coverage assessment of a high resolution Hi-C from GM12878 cells (Figure 1 C). We realized that 101 

Eq (1) accurately describes the relationship between the 20th percentile of the coverage, the read 102 

number and the window size. From this equation, the resolution, i.e. the window size for which 103 

the 20th percentile is equal to 1000 reads, can be written as Eq. (2). 104 

 105 

Eq. (1): 20th percentile coverage relation to the window size (x) and the valid read pairs (y) 	106 

𝑝(𝑥, 𝑦) = 𝑎𝑥𝑦 + 𝑏𝑥 + 𝑐𝑦 + 𝑑 107 

 108 

Eq. (2): Resolution relation to the valid read pairs (y) 109 

𝑟(𝑦) =
1000 − 𝑐𝑦 − 𝑑

𝑎𝑦 + 𝑏  110 

 111 

Validation of the model using published datasets. 112 

To validate our model, we used several subsamples of high-resolution HiC datasets that were 113 

publicly available (see methods) [6, 30]. We predicted the resolution versus the number of valid 114 

read pairs using a 100M sequenced read pairs subsample of the library. We then randomly 115 

subsampled the GM12878 HiC library into several subsamples. For each subsample, we assessed 116 
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the number of valid read pairs and measured the interval including the observed resolution (see 117 

method). For each subsample, the predicted resolution is within the interval comprising the 118 

observed resolution (Figure 1 D). We reproduced this result using two others public HiC libraries, 119 

in HMEC and NHEK cell lines (Supplementary Figure 1). For all these three datasets tested, our 120 

predictions overlapped perfectly with the observed intervals, thereby validating our model of HiC 121 

resolution prediction from the number of valid read pairs. 122 

 123 

Implementation of the pipeline HiCRes. 124 

Our model successfully links the number of valid HiC interactions to the resolution. Nevertheless, 125 

to predict the sequencing depth required for a library to reach a given resolution, the number of 126 

valid interactions needs to be linked to the sequencing depth. To do so, we developed HiCRes, a 127 

user-friendly pipeline associating our model to the published tools for measuring any HiC 128 

resolution from raw or analyzed data (Figure 2 A). HiCRes is able to predict the resolution versus 129 

the sequencing depth of any HiC library of 100M read pairs or more. For this purpose, our pipeline 130 

measures the library complexity and predicts future yields using the preseq algorithm [29], which 131 

we confirmed to be accurate on HiC libraries (Supplementary Figure 2). After estimating the future 132 

yield of the library, the percentage of uniquely mapped valid read pairs is evaluated using bowtie2 133 

[31] and HiCUP [32]. Next, the constants a, b, c and d of Eq. (1) are calculated using our model. 134 

Finally, the predicted resolution can be calculated for different sequencing depths. For inter-135 

operability, our tool is available as a docker image and can be run on any system where either 136 

docker or singularity is installed.  137 

 138 
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To validate the accuracy of the pipeline to predict the resolution of HiC libraries from raw 139 

sequenced reads, we tested HiCRes pipeline on public HiC datasets. We subsampled the 140 

GM12878, HMEC and NHEK HiC libraries to 100M sequenced read pairs. We then used HiCRes 141 

to predict the resolution each subsampled library will reach for various sequencing depths. To test 142 

the accuracy of our predictions, we measured the resolution interval, which is an interval 143 

comprising the observed resolution for the whole public library. For each library tested, the 144 

prediction of the resolution corresponded with the observed resolution interval (Figure 2 B-D). 145 

These analyses confirm the accuracy of HiCRes to predict HiC library resolutions at different 146 

sequencing depths based on 100M sequenced read pairs. 147 

 148 

Validation of HiCRes pipeline on diverse HiC conditions 149 

HiCRes has been developed using HiC data from MboI digested chromatin in human cell lines. 150 

The use of different restriction enzymes leads to different fragments sizes (Supplementary Figure 151 

3) and could influence the accuracy of our model. To test whether our model and this pipeline can 152 

be extended to other species and HiC conditions, we used several public and lab produced datasets. 153 

First, we tested HiCRes on HindIII digested chromatin HiC using a public GM12878 HiC library 154 

[6] performed using HindIII digestion. We subsampled the library to 100M sequenced read pairs 155 

and used HiCRes pipeline to estimate the resolution at various sequencing depths as described 156 

above. We then compared the predictions to the observed resolution interval of the full library. 157 

The prediction perfectly overlapped with the observed resolution interval (Figure 3 A). Similarly, 158 

we tested HiCRes on postmitotic cell types including HiC libraries from MboI digested chromatin 159 

of mouse retina [30] (Figure 3 B) and those performed using a kit from Arima technology on 160 
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 9 

purified mouse rod photoreceptors generated in our Laboratory (Figure 3 C). For all these various 161 

samples, the predictions perfectly corroborated the observed resolution intervals. 162 

 163 

Using cis-interactions to calculate the resolution. 164 

Most tools employed to call 3D chromatin structures use contact maps generated on each 165 

chromosome [15, 33]. Thus, only the interactions occurring within the same chromosome, i.e. the 166 

cis-interactions, are usually informative for calling compartments, TADs or loops. Accordingly, 167 

we added the prediction of the resolution using cis-interactions only to our pipeline output. 168 

Because cis-interactions represent a sub-fraction of all interactions, a lower resolution is expected 169 

when using cis-interactions only to estimate the resolution, compared to all interactions. For each 170 

library tested, our predictions are in accordance with this (Figure 4 A-B, Supplementary Figure 4 171 

A-D). As it would be intuitively expected, we observe a stronger difference between the 172 

predictions using cis versus all interactions in a library with a high proportion of trans-interactions 173 

(Figure 4 B), compared to a library with a lower proportion (Figure 4 A). 174 

 175 

Discussion:  176 

 177 

Here, we present HiCRes, a tool to estimate and predict the resolution a given HiC library will 178 

reach when sequenced deeper. We demonstrate that HiCRes accurately predicts the resolution of 179 

HiC libraries obtained from distinct human and mouse cell types generated using different 180 

restriction digestion enzymes. HiCRes is available as a docker image, making it possible to 181 

perform different steps of the pipeline using one simple command line. 182 

 183 
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 10 

Two conditions need to be satisfied to apply our model; these are the linear relationships between 184 

the 20th percentile of the read coverage with the window size used to calculate the coverage and 185 

between the 20th percentile read coverage, and the number of valid interactions. Our pipeline tests 186 

whether these two conditions are met and will not produce any estimation or prediction if these 187 

conditions are not satisfied. In that scenario, the resolution can be manually measured as described 188 

in the method section and by Rao and colleagues [6], but no prediction can be calculated . 189 

 190 

HiCRes uses sequenced reads as input to produce a prediction of the resolution versus the 191 

sequencing depth or already processed HiC data to realize a prediction of the resolution versus the 192 

number of valid interactions. Using 40 CPUs, HiCRes predicts the resolution of a 200M read pair 193 

library in approximatively 5h. Alternatively, processed data can be used as an input for HiCRes. 194 

In this case, using 40 CPUs, HiCRes will take approximatively 30 minutes to produce the 195 

predictions. Nevertheless, when starting with already analyzed data, the predictions will be done 196 

only in relation to the number of valid interactions, not to the library size. Thus, we recommend 197 

running HiCRes on raw sequenced reads to predict the resolution that small libraries can reach at 198 

deeper sequencing levels. To simply estimate the resolution of a given library (with no need for 199 

prediction at different sequencing depths), we recommend running HiCRes directly on processed 200 

data. 201 

 202 

An important parameter to consider when estimating the resolution of any HiC experiment is the 203 

inclusion of trans-interactions (i.e., inter-chromosomal interactions) in the count. The original 204 

definition of the resolution by Rao and colleagues included the trans-interactions in the valid read 205 

count [6]. Nevertheless, in their data, trans-interactions represented around 20% of the valid reads 206 
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 11 

and did not influence drastically the final resolution at high sequencing depths. However, HiC 207 

libraries may have a high level of trans-interactions when samples (such as tissues) are harder to 208 

process. For example, the published mouse retina dataset that we selected possesses a high level 209 

of trans-interactions [30]. Whether we include these interactions or not in calculating the 210 

resolution would have a significant impact on the final result. Given that HiC contact maps are 211 

generated usually by chromosome with cis-interactions only and are used as input for many tools 212 

to perform further analysis (compartments, TADs or loop calling) [15, 33], we recommend using 213 

the resolution estimated from the cis-interactions only. 214 

 215 

The resolution calculated by this approach is a powerful way to estimate the size limit of the 216 

chromatin structures to be observed. This prediction can be used to compare different libraries and 217 

will help on deciding the sequencing depth needed for a given library. Nevertheless, this number 218 

does not directly reflect the quality of the HiC experiment and other quality indicators should be 219 

used in complement, such as the proportion of valid interactions, the cis- versus trans-interactions 220 

ratio, the distance-dependent decay of interaction frequency [28] or the reproducibility among 221 

replicates [34]. Moreover, the resolution is an average value for the whole genome while local 222 

resolutions can be impacted by the read mappability, the presence of restriction digestion sites and 223 

the accessibility of such sites to the restriction digestion enzymes. Thus, the measured resolution 224 

does not replace the statistical analysis for assessing the local significance of any observed 225 

enrichment in a HiC experiment [27]. 226 

 227 

Methods: 228 

 229 
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 12 

Datasets used in this study 230 

Sample Specie Restriction 
enzyme 

Size (read 
pairs) Ref.* SRA number Reference 

GM12878 Human MboI 486,848,168 HIC003 SRR1658572 Rao et al., 
2014 [6] 

Retina Mouse MboI 1,433,302,476 - SRR9906313 Norrie et al., 
2019 [30] 

HMEC Human MboI 456,577,382 HIC058 SRR1658680 Rao et al., 
2014 [6] 

NHEK Human MboI 536,747,653 HIC067 SRR1658691 Rao et al., 
2014 [6] 

GM12878 Human HindIII 1,195,923,990 HIC035 SRX764970 Rao et al., 
2014 [6] 

Rods Mouse Arima 194,604,167 - GSE152491 This study 
 231 

* Reference in the study from which the dataset comes from. 232 

 233 

Subsampling libraries 234 

Libraries are downloaded from SRA and fastq files are extracted using SRAtoolkit 235 

(ncbi.github.io/sra-tools/). These files are converted in text files with one complete read pair 236 

(sequence and quality) per line. Random lines are then selected using awk bash function and its 237 

internal function rand. Seeds for the random extraction are set up as the script running date and 238 

time. This method allows the fast extraction of a chosen proportion of reads, while not using the 239 

computer RAM. Libraries are subsampled to approximatively 100M, 200M, 300M, 400M and 240 

500M (or the maximum size of the library) read pairs. 241 

 242 

Mapping and filtering 243 

Subsampled libraries are mapped and filtered using bowtie2 [31] and HiCUP [32], on hg38 (human 244 

samples) or mm10 (mouse sample), using genomes digested in silico by MboI, HindIII or the 245 

Arima kit enzymes (Supplementary Figure 3). Proportions of reads pairing, mapping and filtering 246 
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 13 

are calculated with HiCUP. These proportions are constant and independent of the library 247 

sequencing depth. Similarly, the proportion of cis- versus trans-interaction is independent of the 248 

library sequencing depth (data not shown). 249 

 250 

Measuring the observed resolution interval 251 

The final HiCUP output for each subsample is processed through bedtools [35] to calculate the 252 

read coverage per window using several window sizes ranging from 100 bp to 100 kb. Then the 253 

20th percentile of the coverage is calculated using R. With these analyses, the 20th percentile of the 254 

coverage is measured for each window size. An interval containing the HiC resolution of each 255 

subsample is inferred from these values: the minimum of this interval is the larger window size for 256 

which the 20th percentile of the coverage is bellow 1000 reads, while the maximum of this interval 257 

is the smallest window size for which the 20th percentile of coverage is higher than 1000 reads. 258 

 259 

Combining observed resolution to an equation 260 

The 20th percentile is depending on the number of valid read pairs and on the window size used to 261 

calculate the coverage. Thus, it can be written as a function f(x,y) where x is the window size and 262 

y the number of valid read pairs. We observed that for a given x value, the 20th percentile is varying 263 

linearly with y, which mathematically can be written as Eq. (3). 264 

 265 

Eq. (3): 266 

𝜕𝑓
𝜕𝑦 = 𝛼𝑥 + 𝛽 267 

 268 
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Similarly, for a given y value, the 20th percentile is varying linearly with x, which can be written 269 

as Eq. (4). 270 

 271 

Eq. (4): 272 

𝜕𝑓
𝜕𝑥 = 𝛾𝑦 + 𝛿 273 

 274 

The function f(x,y) satisfying these two equations can be written as Eq. (1). 275 

 276 

Calculating the coefficient of Eq. (1) 277 

The coefficients of Eq. (1) are calculated using a 100M read pairs subsample. The linearity of the 278 

distribution of the uniquely mapped valid read pairs with the windows size is controlled using the 279 

20th percentiles from 20 kb, 50 kb and 100kb window size coverage of a 20M valid read pairs 280 

subsample. The linearity of the distribution of the uniquely mapped valid read pairs with the read 281 

pairs number are controlled by calculating the correlation between 20M, an intermediate number 282 

of read pairs and the maximum number of valid read pairs in the sample. Data tested are considered 283 

to be linear if the correlation between the 3 points is superior or equal to 0.98. If the linearity is 284 

confirmed, 4 distinct datapoints are used to solve the equation for a given library. Here, the 285 

measure of the 20th percentile from 20M, an intermediate number of valid read pairs and from 20 286 

kb or 50 kb window sizes are used. Equation (1) is solved using R [36]. From Eq (1), the resolution 287 

can be extrapolated as Eq. (2), where x is the number of valid read pairs. 288 

 289 

Estimating and predicting the library complexity 290 
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Library complexity is estimated from a 100M read pairs subsample of the library, which will be 291 

the minimum size required for the library provided by the user. The library complexity is estimated 292 

on the raw mapped read pairs (see mapping and filtering). When both ends of two pairs are mapped 293 

on the same position, they are considered as duplicate. Preseq tool is used to predict the library 294 

yield at higher sequencing depths from the duplicate distribution. To evaluate the accuracy of 295 

preseq on these data, the full GM12878 SRR1658572 library and several subsamples are also 296 

analyzed. For each subsample, the non-duplicated reads are counted and compared to the data 297 

predicted by preseq based on the 100M read pairs subsample. The perfect overlap between preseq 298 

prediction and the observed duplicate rates proves the accuracy of preseq on these data 299 

(Supplementary Figure 2). 300 

 301 

Extracting and plotting the resolution versus the sequencing depth 302 

Library complexity at several sequencing depths and the associated confidence intervals predicted 303 

with preseq are combined with HiCUP statistics to estimate the number of valid read pairs, and 304 

valid read pairs in cis for various library sizes. These values and their confidence intervals are then 305 

used to calculates the predicted resolution based on Eq. (2). 306 

 307 

HiC on mouse rods 308 

Mouse rods were purified from the Nrlp-EGFP C57BL/6J strain as described [37]. All 309 

procedures were approved by the Animal Care and Use Committee (NEI-ASP#650). Rods were 310 

fixed with 1% formaldehyde for 15 min followed by 5 min incubation with Glycine (125 mM) 311 

before cell sorting. Two million purified rods were used for HiC, per instructions from the Arima 312 

kit (Arima, # A510008). Libraries were sequenced using Illumina HiSeq 2500. 313 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.307967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.307967
http://creativecommons.org/licenses/by-nd/4.0/


 16 

 314 

 315 

Code availability: 316 

 317 

HiCRes pipeline is available as a docker image on hub.docker.com/r/marchalc/hicres. All the 318 

scripts used to produce the figures in this study are available on GitHub, as well as the 319 

benchmarking for HiCRes docker (github.com/ClaireMarchal/HiCRes). The dockerfile used to 320 

generate the image is also available on GitHub. 321 

 322 

Data accessibility: 323 

 324 

The HiC dataset on mouse rods generated in this study is available on the GEO database 325 

(www.ncbi.nlm.nih.gov/geo/) under the accession number GSE152491. 326 
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Legend to figures: 451 

Figure 1. 452 

A. Variation of 20th percentile of the coverage with the window size (A) and the subsample size 453 

(B) used to calculate the coverage. For each data subsample (A) and each window size (B), this 454 

variation is linear. The grey lines represent the limit used to determine the resolution. C. 3D plot 455 

showing the prediction of the 20th  percentile of window coverage by our model versus the window 456 

size and the number of valid read pairs. The surface represents the function predicting the 20th 457 

percentile for any window size and valid read number, while the dots are the observed 20th 458 

percentile for each window size / valid read pairs. The color scale represents the 20th percentile. D. 459 

Predicted resolution versus the number of valid read pairs. Predictions are computed using a 100M 460 

sequenced read pairs subsample. Observed resolutions of several subsamples are plotted as an 461 

interval containing the observed resolution (red segment). 462 

 463 

Figure 2. 464 

A. The HiCRes pipeline combines preseq which predicts library complexity, bowtie2 and HiCUP 465 

which map reads and calculate the percentage of valid read pairs, and HiCRes, which predicts the 466 

HiC resolution. This pipeline predicts the resolution of a given HiC library at different sequencing 467 

levels. B. Predicted resolution versus the sequencing depth in GM12878 used for the model. 468 

Predictions are calculated using a 100M read pairs (grey dotted line) subsample. Observed 469 

resolution of the total library is plotted as an interval containing the observed resolution (red 470 

segment). C. Predicted resolution versus the sequencing depth in datasets not used for the model: 471 

HMEK (left panel) and NHEK (right panel). Predictions are calculated using a 100M read pairs 472 
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(grey dotted line) subsample. Observed resolutions of the total library are plotted as an interval 473 

containing the observed resolution (red segment). 474 

 475 

Figure 3. 476 

A-C. Predicted resolution versus the sequencing depth in datasets from various species / HiC 477 

protocols: GM12878 using HindIII restriction (A), Mouse retina using MboI digestion (B) and 478 

Mouse rods using Arima kit (C). Predictions are calculated using a 100M read pairs (grey dotted 479 

line) subsample. Observed resolutions of the total library are plotted as an interval containing the 480 

observed resolution (red segment). 481 

 482 

Figure 4 483 

A. Predicted resolution versus the sequencing depth for a HiC datasets in GM12878 with a low 484 

proportion of trans-interactions (A) and with a higher proportion of trans-interactions (B) using 485 

all interactions (red) or cis-interactions only (blue). 486 

 487 

 488 
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