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Abstract 

Amphicarpaea edgeworthii, an annual twining herb, is a widely distributed species 

and an ideal model for studying complex flowering types and evolutionary 

mechanisms of species. Herein, we generated a high-quality assembly of A. 

edgeworthii by using a combination of PacBio, 10× Genomics libraries, and Hi-C 

mapping technologies. The final 11 chromosome-level scaffolds covered 90.61% of 

the estimated genome (343.78 Mb), which is the first chromosome-scale assembled 

genome of an amphicarpic plant. These data will be beneficial for the discovery of 

genes that control major agronomic traits, spur genetic improvement of and functional 

genetic studies in legumes, and supply comparative genetic resources for other 

amphicarpic plants. 
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Introduction 

In nature, the distribution of key resources required for plant growth is often 

uneven. Plants growing in unstable habitats, with limited supplies of mineral nutrients, 

water, or light, frequent soil interferences, and large environmental fluctuations, 

undergo adaptive evolution to improve their survival(Jackson and Caldwell, 1993; 

Pearcy and Caldwell, 1994). Some plant species that bear 2 or more heteromorphic 

flowers also bear heteromorphic fruits (seeds). Amphicarpy is a phenomenon in which 

a plant produces both aerial and subterranean flowers and simultaneously bears both 

aerial and subterranean fruits (seeds) on aerial- and subterranean- stems, respectively 

(Cheplick, 1987; Koontz et al., 2017; Schnee and Waller, 1986). This phenomenon is 

observed in at least 67 herbaceous species (31 in Fabaceae) in 39 genera and 13 

families of angiosperms, as reported by Zhang et al(Zhang et al., 2020a). Amphicarpy 

is an important part of plant adaptive evolution, in which angiosperms generally 

display a special type of fruiting pattern and different fruit (seed) types also exhibit 

various dormancy and morphological features. This type of fruiting mode is crucial 

for the ecological adaptation of plants that have evolved through natural selection 

because it reduces competition among siblings within the population, maintains and 

increases the population size in situ, and increases the adaptability and evolutionary 

plasticity of the species(Hidalgo et al., 2016; Sadeh et al., 2009). 

Amphicarpaea edgeworthii, an annual twining herb, belongs to the Fabaceae 

family, which is a large and economically valuable family of flowering plants(Zhang 

et al., 2017; Zhang et al., 2006). In this plant species, 3 types of flowers (fruits) can 
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grow in the same plant, and aerial chasmogamous flowers are produced only during 

summer( Zhang et al., 2006; Zhang et al., 2005). This species may offer an attractive 

model for examining gene regulatory networks that control chasmogamous and 

cleistogamous flowering in plants. However, the mechanism of flower development in 

amphicarpic plants, particularly in legumes, is sparsely known. The present study was 

an attempt to enhance our understanding on the reproductive biology and the ultimate 

evolutionary mechanism in amphicarpic plants. We performed whole-genome 

sequencing of A. edgeworthii, which is the first plant in the legume family and also 

the first amphicarpic species subjected to sequencing. This reference genome 

represents a precious foundation for further understanding on agronomics and 

molecular breeding in A. edgeworthii. 
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Result 

A. edgeworthii has a diploid genome (2n = 2x = 22) (Supplementary Figure 1). 

We estimated the genome size of A. edgeworthii to be 360.91 Mb using 

17-mer(Supplementary Table 1 and Figure 2). We sequenced the genome of A. 

edgeworthii by using a combination of PacBio, Illumina, and 10× Genomics libraries 

that resulted in the generation of a 343.78-Mbp genome (contig N50 length = 1.44 Mb, 

scaffold N50 length = 2.4 Mb; Table 1 and Supplementary Table 2, 3 and 4). Finally, 

we assembled a chromosome-level genome by using Hi-C technology. We used a 

total of 5.27 million reads from Hi-C libraries and mapped approximately 90.61% of 

the assembled sequences to 11 pseudochromosomes, with the longest scaffold length 

of 32.05 Mb (Table 1 and Figure 1). Results indicate that the A. edgeworthii genome 

was adequately covered by the assembly.  

We evaluated the completeness of the genome assembly by mapping the Illumina 

paired-end reads to our assembly through Burrows–Wheeler Alignor (BWA) (Li and 

Durbin, 2009) with 98.70 % of mapping rate and 94.04 % of coverage 

(Supplementary Table 5). Then, we used both Core Eukaryotic Gene Mapping 

Approach (CEGMA) (Parra et al., 2007) and Benchmarking Universal Single-Copy 

Orthologs (BUSCO) (Simão et al., 2015) to access the integrity of the assembly. In 

the CEGMA assessment, 238 (95.97%) of 248 core eukaryotic genes were assembled 

(Supplementary Table 6). Furthermore, 93.4% complete single-copy BUSCOs were 

detected, which indicates that the assembly was complete (Supplementary Table 7). 

Overall, the results indicate that a high-quality assembly was generated. 
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Repeat sequences comprise 51.28% of the assembled genome, with transposable 

elements (TEs) being the major component (Supplementary Table 8). Among the TEs, 

long terminal repeats (LTRs) were the major component (29.32%) (Supplementary 

Table 9). We combined de novo prediction, homology search, and mRNA-seq 

assisted prediction to predict genes in the A. edgeworthii genome, and we obtained 

28,372 protein-coding genes (97.2% were annotated) (Supplementary Tables 10 and 

11). Additionally, we identified 2,260 non-coding RNAs, including 471 miRNAs, 701 

transfer RNAs, 266 ribosomal RNAs, and 822 small nuclear RNAs (Supplementary 

Table 12). 

 

Table 1 Statistics of the A. edgeworthii genome assembly 

Total assembly size (Mb) 343.78 

Total number of contigs 1,475 

Total number of scaffolds 1,082 

Contig N50 length (Mb) 1.44 

Maximum contig length (Mb) 7.65 

Maximum scaffold length (Mb) 32.05 

Scaffold N50 length (Mb) 28.47 

Scaffold N90 length (Mb) 23.07 

GC content (%) 32.04 

Gene number 28,372 

Repeat content (%) 51.28 
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Discussion 

In this study, we constructed a high-quality chromosome-level genome assembly 

for A. edgeworthii by combining the long-read sequences from PacBio with highly 

accurate short reads from Illumina sequencing and using Hi-C technology for 

super-scaffolding. The assembly of A. edgeworthii adds to the growing genomic 

information on the Fabaceae family. As the first species in the Amphicarpaea genera 

of the Fabaceae family to be sequenced, A. edgeworthii exhibits a range of specific 

biological features, such as 3 types of flowers and 3 types of fruit (seed) 

simultaneously in the same plant. It has maintained an essential evolutionary position 

in the tree of life(Goodwillie et al., 2005; Silvertown et al., 2001). According to our 

analysis, these genomic data will serve as valuable resources for future genomic 

studies on amphicarpic plants and molecular breeding of soybean. 

To date, no genomic data for the amphicarpic plants are available. Therefore, the 

sequencing of the entire A. edgeworthii genome will facilitate future investigations on 

the phylogenetic relationships of the flowering (seed) plants. The accessibility of the 

A. edgeworthii genome sequence makes feasible the investigation of deep 

phylogenetic questions on angiosperms and the determination of genome evolution 

signatures and the genetic basis of interesting traits.  
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Method 

Plant material and genome survey 

For genome sequencing, we collected fresh young leaves of A. edgeworthii 

species distributed in Heilongjiang Province (45.80°N, 126.53°E), China. The 

karyotype analysis of the plant species revealed a karyotype of 2n = 2x = 22, with 

uniform and small chromosomes(Wolny et al., 2013) (Supplementary Figure 1). 

We extracted DNA from the fresh leaves of A. edgeworthii by using a DNAsecure 

Plant Kit(TIANGEN, Biotech, China) and then purified and concentrated, 

high-quality DNA was broken into random fragments, and Illumina paired-end library 

with 350-bp size was constructed and was sequenced using a Illumina HiSeq X-ten 

platform. 

To estimate the A. edgeworthii genome size, high-quality short-insert reads 

(350-bp size) were used to extract the 17-k-mer sequences by using sliding windows. 

The frequency of each 17-k-mer was calculated and is presented in Supplementary 

Figure 2. Genome size was calculated by using the following formula: 

Genome size = total k-mer numbers/k-mer depth 

The revised genome size was calculated after excluding the erroneous k-mers 

(Supplementary Tables 1). 

Library construction, genome sequencing, assembly, and evaluation 

To construct long-insert libraries, the SMRTbell libraries were constructed by 

following the standard protocol as per the manufacturer’s instructions (PacBio 
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Biosciences). Genomic DNA was broken into fragments of 15 kb–40 kb in size and 

the large fragments were enriched and enzymatically repaired and converted into 

SMRTbell libraries. The SMRTbell libraries were sequenced using a PacBio Sequel 

platform. 

The linked read sequencing libraries of 10× Genomics GemCode 

platform(Weisenfeld et al., 2017) were sequenced with 350-bp size by using an 

Illumina HiSeq X-ten platform. 

Fresh leaves were plucked from the plant and chromatin in the samples were 

cross-linked to DNA and fixed. A chromatin interaction mapping (Hi-C) library with 

350-bp size was constructed for sequencing using Illumina HiSeq X-ten. 

We used FALCON software(Chin et al., 2016) for de novo assembly of PacBio 

SMRT reads (Supplementary Tables 2 and 3). The longest coverage of subreads were 

selected as seeds for assembly after pairwise comparisons of all reads for error 

correction with default parameters. The error-corrected SMRT reads were aligned to 

each other to construct string graphs. After initial assembly, the produced contigs 

were polished using Quiver(Chin et al., 2013) with default parameters. The first round 

of error correction was performed using Illumina paired-end reads by Pilon(Walker et 

al., 2014). Subsequently, the scaffolding was performed using 10× Gscaff v2.1 with 

10× genomics data, and the genome was upgraded by PBjelly(English et al., 2012). 

The second round of error correction was performed using Illumina paired-end reads 

by Pilon(Walker et al., 2014). The Hi-C data were mapped to the original scaffold 

genome by using BWA v0.7.7(Li and Durbin, 2009), and only the reads with unique 
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alignment positions were extracted to construct a chromosome-scale assembly by 

using the Ligating Adjacent Chromatin Enables Scaffolding In Situ(LACHESIS) 

tool(Burton et al., 2013) (Supplementary Table 3). 

Genome annotation 

We used RepeatModeler, RepeatScout(Tarailo and Chen, 2009), Piler(Edgar and 

Myers, 2005), and LTR_FINDER(Xu and Wang, 2007) to develop a de novo 

transposable element library. RepeatMasker(Tarailo and Chen, 2009) was used for 

DNA-level identification in the Repbase and de novo transposable element libraries. 

Tandem repeats were ascertained in the genome by using Tandem Repeats 

Finder(Benson, 1999). RepeatProteinMask(Tarailo and Chen, 2009) was used to 

conduct WU-BLASTX searches against the transposable element protein database. 

Overlapping TEs belonging to the same type of repeats were integrated 

(Supplementary Tables 8 and 9). 

To predict protein-coding genes in the A. edgeworthii genome, we used 

homolog-based prediction (using A. duranensis, C. arietinum, G. max, M. truncatula, 

P. vulgaris, and T. pratense gene sets), de novo prediction (using Augustus 

v.3.0.2(Stanke and Morgenstern, 2005), Genescan v.1.0(Aggarwal and Ramaswamy, 

2002), GeneID(Parra et al., 2000), GlimmerHMM v.3.0.2(Majoros et al., 2004), and 

SNAP(Korf, 2004) programs) and transcriptome-based prediction (using 5 tissue 

RNA sequencing data). A weighted and non-redundant gene set was generated using 

EVidenceModeler (EVM) (Brian et al., 2008), which merged all the genes models 

that were predicted using the aforementioned approaches. Along with the transcript 
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assembly, the Program to Assemble Spliced Elements(Haas et al., 2003) was used to 

adjust the gene models generated using EVM (Supplementary Table 10). 

Functional annotation of protein-coding genes was evaluated using BLASTP 

(E-value ≤ 1E-05) against 2 integrated protein sequence databases, SwissProt(Bairoch 

and Apweiler, 2000) and NCBI non-redundant protein database. Protein domains 

were annotated by searching InterPro v.32.0, which included Pfam, PRINTS, 

PROSITE, ProDom, and SMART databases, by using InterProScan v.4.8(Mulder and 

Apweiler, 2007). GO(Ashburner et al., 2000) terms for each gene were obtained from 

the corresponding InterPro descriptions. The pathways in which the gene might be 

involved were assigned using BLAST searches against the KEGG database(Kanehisa 

and Goto, 2000), with an E-value cutoff of 1E-05 (Supplementary Table 11). 

The tRNA genes were predicted using tRNAscan-SE software(Lowe and Eddy, 

1997). The miRNA and snRNA fragments were identified using INFERNAL 

software(Nawrocki et al., 2009) against the Rfam(Griffiths et al., 2005) database. The 

rRNA were identified using BLASTN searches (E-value ≤ 1E-10) against the plant 

rRNA database (Supplementary Table 12). 
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Figure 1. Characteristics of the A. edgeworthii genome: a. Chromosome length; b. 

Gene density per chromosome; c. Repeat density; d. LTR_Copia density; e. 

LTR_Gypsy density; f. SNP density in 5 populations; g. Distribution of GC content; h. 

Intra-genome collinear blocks connected. All statistics are computed for windows of 

200 kb. 
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