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Abstract 

The timing of crop development has significant impacts on management decisions and subsequent yield 

formation. A large intercontinental dataset recording the timing of soybean developmental stages was 

used to establish ensembling approaches that leverage both discrete-time dynamical system models of 

soybean phenology and data-driven, machine-learned models to achieve accurate and interpretable 

predictions. We demonstrate that the knowledge-based, dynamical models can improve machine 

learning by generating expert-engineered features. Combining the predictions of the diverse component 

models via super learning resulted in a mean absolute error of 4.12 and 4.55 days to flowering (R1) and 

physiological maturity (R7), providing an improvement relative to the best benchmark model error of 

6.90 and 15.47 days, respectively. The hybrid intercontinental model applies to a much wider range of 

management and temperature conditions than previous mechanistic models, enabling improved 

decision support as alternative cropping systems arise, farm sizes increase, and changes in the global 

climate continue to accelerate. 
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Introduction 

The timing of the changes in the life stages of a crop, also referred to as the crop’s phenology, represent 

primary determinants of the suitability of a crop for a growing region, its yield, and major management 

decisions such as planting date and agronomic treatments (Shaykewich, 1995). Allelic diversity in genetic 

pathways regulating crop phenology introduce significant variation in how, both within and between 

species, plants integrate environmental information and determine developmental stages. Models built 

to predict phenology for agronomic decision support are often relevant to only a limited set of 

prediction tasks such as a limited range of relative maturities, planting dates, locations, and/or 

photoperiod sensitivities, due to the inherent difficulty of building and training a broadly applicable and 

accurate model (dos Santos et al., 2019; Shaykewich and Bullock, 2018). However, as new sustainability 

practices and climate change motivate adoption of alternative management practices, such as planting 

in new target environments, seed increases in winter nurseries, or later planting of a shorter maturity 

crop in alternative cropping systems, more comprehensive approaches to phenology prediction are 

necessary. 

Soybean is the world’s fourth largest crop as measured by area harvested and an important source of 

protein and oil (FAOSTAT 2016). As in most plants, the soybean life cycle is a well-regulated process that 

integrates environmental cues and internal states to determine the onset of phenological events. The 

timing of these events are the primary drivers of plant performance and reproductive success (Andrés 

and Coupland, 2012). Due to the economic and food security consequences that the timing of these 

events have, the understanding and prediction of soybean phenology has been a focus of research for 

decades (Brown, 1960; Cao et al., 2017; Hesketh et al., 1973; Shaykewich and Bullock, 2018; Wang et al., 

1987). The present study builds off of this work by leveraging existing knowledge-based models of how 

the plant integrates key environmental determinants influencing phenology (Grimm et al., 1993; Jones 

et al., 2003; Salmerón and Purcell, 2016; Setiyono et al., 2007). Ultimately, this research sought to 

generate modeling strategies for predicting soybean phenology across disparate geographies and 

training procedures to generate an intercontinentally useful model.  

Advances in computing and data science have driven massive increases in data availability and a 

concomitant increase in models describing biological systems, and models describing these systems vary 

in their purpose, accuracy, correctness, granularity, and interpretability. Prior to the increase in compute 

power, models of plant phenotypic outcomes given an environment typically existed either as 

parametric statistical models with explicit GxE interactions or as knowledge-based models composed of 

functions explicitly defining plant processes (Prusinkiewicz, 2004; Sinclair, 1986; van Eeuwijk et al., 

2016). More recent efforts have focused on integrating GxE by coupling whole genome prediction with 

dynamical crop growth models, thereby generating phenotypic outcomes via non-linear functions of 

marker effects and environmental inputs (Cooper et al., 2016; Messina et al., 2018; Onogi et al., 2016; 

Technow et al., 2015). Purely data-driven approaches trained via machine learning have also garnered 

considerable attention as data generation continues to become more routine and higher throughput for 

plant systems (Liakos et al., 2018; Shakoor et al., 2019; Taghavi Namin et al., 2018). Parametric statistical 

models and process-based models can provide inferential and predictive ability in relatively data-poor 

environments and bring interpretability and understanding of the system being modeled, whereas in 

data-rich environments, data-driven machine-learned models often yield high predictive accuracy at the 

expense of interpretability. This tradeoff has motivated interest in hybrid modeling approaches in an 
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effort to leverage the strengths of different modeling approaches and mitigate their respective 

weaknesses (Fan et al., 2015; Hamilton et al., 2017; Karpatne et al., 2017b, 2017a; Oyetunde et al., 

2018; Pathak et al., 2018; Roberts et al., 2017).  

While existing knowledge-based models can perform well under specific conditions or with laborious 

calibration, they are not sufficiently generalizable to support agronomic and breeding decisions across a 

variety of environmental conditions and continuous relative maturities (as opposed to discrete maturity 

groups). One possible approach to a general phenology model is the calibration or fitting of existing 

discrete-time dynamical systems models such as CROPGRO’s phenology module (hereafter referred to 

as CROPGRO for brevity) or SOYDEV (Boote et al., 1998; Jones et al., 2003; Salmerón and Purcell, 2016; 

Setiyono et al., 2007). However, re-fitting these models to new data often requires specialized 

experiments whose labor requirements restrict throughput to relatively few assays (Grimm et al., 1993). 

Like many biological models, these models are overparameterized, and they are unidentifiable given 

only the observations of calendar dates to developmental stages that are typically measured in applied 

field settings. This problem of fitting unidentifiable models with non-convex cost landscapes and limited 

data  is not unique to the life sciences; while strategies exist to reparameterize the complex model to 

assist model fitting, crop growth modelers have generally employed various optimization approaches to 

regularize and fit the complex crop growth model (Archontoulis et al., 2014; He et al., 2010; Lamsal et 

al., 2017; Messina et al., 2018; Sexton et al., 2016; Wallach et al., 2001). The best optimization strategy 

will vary with the size and composition of the training dataset, sensitivity of the output to the selected 

set of input parameters, choice of priors and regularization schemes, and model runtime. Inspired by the 

success of machine learning approaches to identify optima (even if not the global optimum) that 

perform well in out-of-sample prediction tasks for models with large numbers of parameters (e.g., 

neural networks for image processing), this work develops a highly parallelized, gradient-free, multi-

modal optimization strategy to explore high-dimensional parameter space and find satisfactory fits to 

available data (Kennedy, 2010; Spall, 1998; Whitley, 1994). This approach is used to recalibrate existing 

knowledge-based models given a large dataset of field observations, and the recalibrated models are 

shown to have improved prediction accuracy.  

As an alternative to knowledge-based models, a second approach to a general phenology model is the 

utilization of advances in time-series modeling and model training made by the machine learning 

community. Specifically, artificial neurons that retain an internal state or memory can modulate their 

output based on past input; artificial neural networks built from such neurons can learn complex 

relationships between temporal sequences and output (e.g., speech to text applications). In other 

words, these networks have the potential to capture the sequence-dependent impact of environmental 

stimuli, such as a period of cool weather, on plant development. As such, network architectures 

including recurrent neural networks (RNN), like the Long Short Term Memory (LSTM) networks and their 

relatives, represent useful tools to model time-series data and predict phenological states (Hochreiter 

and Schmidhuber, 1997). These data-driven models have the potential to learn a mapping between daily 

inputs over time and the output phenological state on a given day, providing a data-driven analogue to 

the knowledge-based models mentioned previously. While the use of artificial neural networks to model 

soybean phenology is not new, the utility of a LSTM network to serve as a daily phenology model has 

not been explored to our knowledge (D. A. Elizondo et al., 1994; Zhang et al., 2009).  

Moreover, it stands to reason that, since knowledge-based models represent a formal encapsulation of 

decades of research into system behavior, providing the prediction of a knowledge-based model as a 
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feature should reduce the training burden on a machine-learned model and improve its predictive skill  

(Pathak et al., 2018). In this sense, knowledge-based models could be used to generate expert-

engineered features from which a data-driven model could learn more effectively, and we explore this 

possibility in this paper.  

The different model training approaches applied herein for the knowledge-based models and for the 

data-driven models do not have any guarantees regarding convergence on a global best fit, and their 

learning process is stochastic by nature. Therefore, instead of assuming that there exists a single “best” 

(i.e. most generalizable) model structure and parameters, model-selection approaches are eschewed for 

an ensembling technique that builds reliable meta-models given the predictions from the component 

models. This meta-model learns from the component model predictions, and is often referred to as a 

super learner. Most any regression procedure can serve as a super learner to stack the model 

predictions, and modern data science has successfully employed a variety of approaches from simple 

linear regression to artificial neural networks as super learners  (Naimi and Balzer, 2018; Polley and van 

der Laan, 2010). In terms of providing uncertainty estimates regarding the prediction, Bayesian model 

averaging (BMA) and related approaches have emerged as practical ensembling techniques with useful 

properties in that it weighs individual models to provide some information on relative importance in the 

final ensemble prediction (Raftery et al., 2005; Yao et al., 2018). 

In this work, an imbalanced, transcontinental soybean phenology dataset consisting of 13,673 records in 

187 unique environments (defined here as unique combinations of planting date, latitude, and 

longitude) was used to demonstrate four concepts: (1) a multi-modal optimization strategy that can be 

used to train a crop growth model with a large dataset, (2) LSTM networks can be trained via machine 

learning to accurately predict soybean phenology, (3) knowledge-based model features can improve 

machine learning processes, and (4) combining the component model predictions via super learning 

reliably generates accurate out-of-sample predictions. The combined model applies to a wide variety of 

environments with an out-of-sample mean absolute error (MAE) of 4.12 and 4.55 days to R1 and R7, 

respectively, representing a 40% and 71% improvement over the best pre-existing model tested (6.90 

and 15.47 days MAE) when averaged across the 10 folds. Accuracy for these and other key phenological 

stages is sufficient to direct management decisions and inform yield formation. We show that this 

approach yields considerable improvements in predictive power while still retaining some 

interpretability via the knowledge-based models to guide future experimentation and better understand 

system behavior underlying soybean phenology. 
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Results 

(1) Dataset collection, evaluation of existing soybean phenology models, and model training 

overview 

Data compilation from different public sources of relevant multi-environment trials and planting date 

experiments across years and a variety of latitudes was carried out and combined with data from trials 

internal to Corteva Agriscience. This resulted in 187 unique environments (defined as unique 

combinations of latitude, longitude, and planting date) with 13,673 records of observations of the 

calendar day of flowering (R1) and physiological maturity (R7) for a range of relative maturity groups 

(Fehr and Caviness, 1977). Of these 13,673 records, a subset also had observations for emergence 

and/or beginning seed filling (R5): 7,043 records had emergence, and 8,212 records had R5. 5,488 

records included all four developmental stages. While additional phenological stages are characterized 

for soybean, the application for this study prioritized accurate predictions of R1 and R7, followed by R5 

and emergence. The sampled environments range from -38.36° to 49.44° in latitude, covering a wide 

range of latitudes in growing regions of North and South America and representing approximately 83% 

of annual global soybean production; sampled lines range in relative maturity groups from -1.5 to 9.2 

(i.e. less than MG 0 to greater than MG IX). Studies from which public data were obtained are listed in 

Supplemental Table 1. 

A variety of soybean phenology models exist which generally serve to convert a time-series of daily 

temperatures and photoperiod to the calendar day of a developmental event, generally conditioned on 

a relative maturity group (Shaykewich and Bullock, 2018). To approximate the state of the art 

performance in soybean phenology modeling in the intercontinental dataset, the soybean phenology 

models described in CROPGRO and SOYDEV were re-implemented and applied without any calibration 

(Grimm et al., 1993; Jones et al., 2003; Salmerón and Purcell, 2016; Setiyono et al., 2007). After 

generalizing the discrete maturity parameters of the respective models to a continuous range of relative 

maturities (i.e. make a model parameter a function of continuous relative maturity instead of a discrete 

maturity group), both models demonstrated acceptable performance in some cases, but failed to 

generalize well across all environments and maturities (Figure 1). This is unsurprising, given that the 

range of photoperiods, temperatures, and maturities in the intercontinental dataset are outside of those 

sampled when the original model developers built their systems of equations and fit their model 

parameters. CROPGRO displayed useful performance for planting to R1 (MAE = 6.90 days), and exhibited 

substantial bias towards underprediction of days from planting to R7 (MAE = 15.47 days); SOYDEV 

displayed substantial error for both planting to R1 and planting to R7 (MAE = 10.59 and 25.14 days, 

respectively), particularly for maturities outside of those originally parameterized by Setiyono et al. 

(2007). As is generally the case, the models would need to be calibrated prior to use for decision support 
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since predictions with their default parameters would be unsuitable for the range of environments and 

relative maturities present in the current prediction task.  

 

 

Figure 1. Performance of state of the art phenology models from CROPGRO and SOYDEV. Black line in scatter plots shows the 
one-to-one line for observed vs predicted for CROPGRO planting to R1 and planting to R7 (A, B) and likewise for SOYDEV (C, D). 

Predictions of zero by SOYDEV occurred due to relative maturities less than 0 failing to ever reach any stage, resulting in a 
prediction assigned as zero. For CROPGRO, default parameters generalized well for planting to R1 and R7 (A), though showed 
consistent underprediction for planting to R7 (B). Mean absolute residual by site using CROPGRO for planting to R1 (E, F, G). 

Residuals were not uniformly distributed with respect to factors like relative maturity, reflecting high model error when 
predicting cases outside of those the model was originally built for (data not shown). 

 

Given the original dataset of 187 environments, ten independent, mutually exclusive Testing sets were 

generated on the basis of these environments. Each Testing set comprised 10% of the entire dataset, 

thereby creating 10 folds; the remaining 90% of environments in each fold were randomly divided into a 

Training and a Tuning set in a 60:40 split (Figure 2). The Training, Tuning, and Testing sets were 

generated on a per-environment basis, where a single environment could contain multiple records of 

phenological observations. Set partitioning was done on the basis of environments rather than records 

because, otherwise, models may have already learned using observations from the target environment; 

this represents the more trivial use case of predicting outcomes in an already observed environment. 

The Training and Tuning sets were used to fit component models and super learners, respectively; final 

prediction accuracy of the model training pipeline was evaluated on records from the Testing set 

environments. 
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Figure 2. Graphical overview of data partitioning, training procedures, and processing pipeline. (A) Each environment comprises 
a unique latitude, longitude, and planting date associated with one or more records; each record corresponds to phenological 
observations or traits of days after planting (DAP) to reach a developmental stage for a soybean cultivar with a known relative 

maturity (RM). (B) 10 folds are generated by building 10 mutually exclusive Testing sets of environments, where each Testing set 
comprises 10% of the entire set of environments; the remaining 90% of the environments for each fold are randomly assigned to 
Training and Tuning sets on a 60:40 basis. (C) Overview of the processing pipeline for a single record. The record’s environment 

and its relative maturity define the matrix of daily inputs that component models receive. Component models, trained using 
environments from the Training set, generate daily outputs that are converted to a prediction of calendar days after planting 

(DAP) that a phenological phase is reached. Predictions made by component models are used as input to per-phase super 
learners that were trained using the Tuning set. The output of the super learners represents the final predictions; prediction 

accuracy was evaluated using the Testing set. Note that this does not depict the input of the crop growth models’ daily 
predictions to the machine-learned models, a process that is described below. 
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(3) Training component models: Fitting knowledge-based phenology models 

Fitting complex biological models to data remains a challenging  problem, and a number of optimization 

strategies have been employed to obtain parameter estimates for crop growth models or their 

phenology models (Archontoulis et al., 2014; He et al., 2010; Lamsal et al., 2017; Messina et al., 2018; 

Sexton et al., 2016; Wallach et al., 2001). The approach used here assumes that there may be more than 

one equivalently good solution given the data (sometimes referred to as equifinality) and employs a 

highly-parallelized, multi-modal optimization strategy (Wong, 2015). In this manner, large populations of 

particles, each representing a parameter vector with a corresponding goodness of fit to the dataset, are 

used to explore the parameter space. Because the observations may fail to constrain the fit to a unique 

solution given the model structure, distinct particles may have similar goodness of fits. While this 

optimization strategy provides the opportunity to examine families of parameters that may cluster 

differently in parameter space but have equivalent fits, a single particle with the best fit (i.e. lowest cost) 

was chosen to represent the best model parameters given the Training set and used for subsequent 

analyses of a given fold. Thus, while the fit model generalizes well for prediction tasks, there are no 

guarantees that the variation explained by the best fitting model is driven by the biologically correct 

parameters, and the fits should either not be used for inference or used with caution. Most every 

parameter in the model, including parameters like optimal temperatures and photoperiod responses for 

different developmental phases, were jointly estimated, for a total of 32 free parameters in CROPGRO 

(Supplemental Methods). Of note, poor performance of both the default SOYDEV model and the re-fit 

SOYDEV model relative to CROPGRO led to subsequently dropping SOYDEV from further analyses. 

Re-fitting the model resulted in improved out-of-sample performance across the 10 folds when 

predicting into the Tuning set, particularly for developmental stages past R1 where bias towards 

underprediction had been observed; the median across-fold MAE for the optimized model were 6.23 

and 5.96 days to R1 and R7, respectively, and 6.59 and 14.69 days to R1 and R7 for the default model 

parameters (Figure 3). While the re-fit model has improved generalization error, it is notable that the 

prediction skill for R1 of the default model is performant, and that the prediction skill for R5 and R7 with 

the default model could be improved by a simple bias correction of the predictions; these suggest that 

the model structure and default parameters, while relatively simple, are capable of capturing large 

components of observed variation in the duration of developmental phases (Figure 1, Figure 3). 

 

Figure 3. Comparison of out-of-sample accuracy for the re-fit CROPGRO with the default CROPGRO across 10 folds. In all cases, 
refitting the model using the Training set improved prediction accuracy in the out-of-sample Tuning set.  
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(3) Training component models: Machine-learned models of soybean phenology using 

knowledge-based features 

Recurrent neural network architectures such as Long Short Term Memory (LSTM) networks have 

demonstrated good performance in learning temporal or sequence dependent structure in data, and 

they could potentially serve as a data-driven analogue to the knowledge-based soybean phenology 

models. Thus, a training strategy was devised to train LSTM networks to predict daily soybean 

developmental stages and identify relevant hyperparameters for network architecture. LSTM networks 

were trained using inputs of minimum daily temperature, maximum daily temperature, solar radiation, 

night length as the complement of photoperiod, and relative maturity, where relative maturity was 

constant with respect to time (Figure 2). Thus, for each day in the sequence, the daily output of the 

LSTM network was a set of probabilities defining which of the discrete phenological phases the plant 

was likely in that day. 

Hyperparameter tuning of neural networks is an outstanding challenge in machine learning, often 

accomplished by grid searches or evolutionary algorithms. A cursory grid search over the number of 

nodes and layers was performed using a Training set (and evaluating accuracy in a held-out subset of the 

Training set). A set of 9 different architectures (i.e. number of nodes and layers), including shallow and 

deep architectures, were retained. Once the architectures were defined, two separate models of each of 

these architectures with different random initializations were trained, generating a pool of 18 trained 

models of various architecture complexity within a fold. Notably, the relative performance for a given 

architecture varied such that there was no architecture that consistently outperformed any other; this 

observation is consistent with the premise of super learning that the combination of a collection of 

diverse models can generate more accurate predictions relative to using a single “best” model. 

Since knowledge-based models represent a formal encapsulation of decades of research into the 

processes governing the system and are capable of explaining considerable variation in outcomes, their 

utility in machine learning was also examined. It stands to reason that providing this expert 

encapsulation of knowledge to a data-driven model as a feature should improve model training and 

generalization, so whether or not providing predictions from knowledge-based models as a feature to 

the data-driven model would improve performance was tested. To test this, the LSTM network 

architectures were trained using the aforementioned inputs only, or with the daily predictions from the 

default and re-fit CROPGRO model as additional features. 

Inclusion of the predictions made by the CROPGRO models as features to the neural network model 

consistently improved the prediction accuracy of the collection of machine-learned models (Figure 4). 

The CROPGRO model outputs are simply functions of the same input data the neural network already 

received, and thus represent an expert-engineered feature. An interpretation of this result is that 

encapsulating prior knowledge as an engineered feature (i.e. the knowledge-based model’s prediction) 

improves the data-driven training process to fit more generalizable model (Figure 4). That is, despite the 

theoretical ability of neural networks to faithfully represent arbitrary mapping functions, an imperfect 

training process identifies a poor local optimum. Expert features in the form of the knowledge-based 

model’s prediction assists the training process to better find improved, more generalizable models. The 

median MAE for models trained without CROPGRO features were 4.84 and 5.92 days for planting to R1 
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and planting to R7, respectively, whereas the median MAE for models trained with CROPGRO features 

were 4.69 and 5.54 days for planting to R1 and planting to R7, respectively. Subsequent analyses were 

performed using the data-driven models that used the knowledge-based models’ predictions as inputs. 

 

Figure 4. Data-driven approaches can learn temporal dynamics to predict phenology, and they are improved by predictions from 
knowledge-based models. (A) Example of a well-performing model for planting to R1 of one initialization of one LSTM network 
architecture from one fold (where the out-of-sample Tuning set MAE corresponds to one “R1 with CROPGRO” point in panel B). 
(B) Comparison of out-of-sample performance in the Tuning set for the collection of machine-learned models trained using the 
base environmental features alone (labeled “without CROPGRO”) or with both the default CROPGRO and optimized CROPGRO 

predictions as additional features (labeled “with CROPGRO”). The median performance of the entire collection of models is 
improved by inclusion of the knowledge-based model predictions during training even though the knowledge-based model is 

simply a transform of the same environmental inputs already provided to the data-driven model. 

 

Unlike the knowledge-based models, the LSTM network models were trained only to predict R1 and R7. 

This was performed in order to maximize the amount of data the networks could be trained on, as there 

were considerably fewer observations containing all stages, and the handling of missing data in the 

context of training a recurrent neural network is not well established. As such, the neural networks were 

not trained to predict emergence or R5; the knowledge-based models generate predictions for those 

stages in subsequent analyses. 

 

(4) Combining component model predictions with super learning 

Given a pool of models, model selection techniques are often used to choose a single “best” model for 

prediction and inference. Alternatively, since the best model for inference may not be the best model 

for prediction, model ensembling approaches such as meta-regression or super learning have gained 
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popularity for prediction tasks; these approaches takes advantage of model diversity to improve 

predictions (Breiman, 1996; Naimi and Balzer, 2018). The simplest ensembling approach is an averaging 

of the predictions of every model in the pool, such that each individual model’s prediction is equally 

weighted in the final ensemble prediction. For applications where the relative utility of individual 

models is of interest, Bayesian model averaging (BMA) has emerged as a useful approach capable of 

weighing models, thereby providing some indication of which models are performing best while also 

leveraging their combined information (Hoeting et al., 1999; Raftery et al., 2005).  

The pool of component models consisted of 18 data-driven and 2 knowledge-based models, all of which 

operated on daily time steps (Figure 2). For each model and for each developmental stage that the 

model predicted, the number of calendar days between planting and the developmental stage (DAP) 

was obtained. All models predicted R1 and R7, whereas only the knowledge-based models predicted 

emergence and R5. In a conceptually similar approach to Raftery et al., (2005), the records from the 

Tuning set were used to regress the observations on the predictions to obtain a bias corrected Bayesian 

linear regression model, generating a pool of Bayesian linear regression models that were then 

ensembled and weighted via stacking of predictive distributions described by Yao et al. (2018). 

For predictions of R1 and R7, the super learner had access to the full pool of 20 models, whereas 

emergence and R5 only contained the default CROPGRO and re-fit CROPGRO models in their pool 

(Figure 2). Median out-of-sample MAE for predictions into the Testing set across the 10 folds were 

compared for (i) the super learner, (ii) the simple ensemble point average of each model’s predictions 

(i.e., all models weighted equally), (iii) CROPGRO with optimized parameters, and (iv) CROPGRO with 

default parameters (Figure 5). For each stage, the median across-fold MAE of the final predictions from 

the super learners was 1.37, 4.12, 5.55, and 4.55 days for planting to emergence, to R1, to R5, and to R7, 

respectively. 
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Figure 5. Comparison of out-of-sample performance across folds for the super learners, the ensemble point average (i.e., all 
models weighted equally), CROPGRO with optimized parameters, and CROPGRO with default parameters. Ensemble models for 
emergence (Em) and R5 only contain the optimized and default CROPGRO, whereas ensemble models for R1 and R7 additionally 
contain the 18 neural network models. In this case, out-of-sample performance is evaluated on only the Testing set of each fold. 

As expected, all approaches that had been trained using a subset of the dataset had improved prediction 

accuracy for the out-of-sample Testing set relative to CROPGRO with default parameters. In all cases, 

the super learners performed at parity or better than the ensemble point averages (i.e. all models’ point 

prediction weighted equally), with the added benefit of identifying which models could be reasonably 

excluded from the ensemble. Because many of the models in the pool are given no weight by the super 

learner, this procedure has the significant benefit of retaining the predictive accuracy of the whole 

ensemble but reducing the number of models that need to be maintained and their deployment 

footprint for production settings. Similarly, in model deployment and production settings, this also 

facilitates the examination of potential tradeoffs between accurate models with larger memory 

footprints and runtimes vs those with smaller footprints and runtimes (e.g., for deployment on a mobile 

device). Ultimately, the super learners resulted in a median out-of-sample MAE of 4.12 and 4.55 days to 

R1 and R7, respectively, providing sufficient accuracy for decision support in a number of applications.  
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Discussion 

Fundamentally, all phenotypes are a consequence of genotype by environment interactions by nature of 

the genome’s integration of environmental signals. Historically, breeding progress has been driven by 

efforts that model genetic effects as largely independent of the environment, and this approach is 

particularly successful when the target population of environments displays relatively little 

environmental variation. However, as data generation and computational capacity continues to 

advance, extensions of these traditional approaches have been made that formalize the knowledge that 

overt phenotypes are non-linear transforms of genetic states and the environment over time (Messina 

et al., 2018). This work further builds on these premises, seeking to maximize the ability to transfer 

information learned about how given genetics interact with environments in one geography (e.g., late 

maturities in Brazil) to another (e.g., the United States).  

Data acquisition in the life sciences will continue to present challenging modeling tasks for the 

foreseeable future, where p >> n due to the complexity of the system and relative inability to 

experimentally sample it (where p is the number of model parameters and n is the number of 

observations). Some measurements can be readily obtained at low costs (e.g., marker genotypes), 

whereas others are more expensive and laborious (e.g., multi-environment trials, longitudinal data), 

generating both data-rich and data-poor settings from which actionable conclusions need to be drawn. 

Moreover, even in data-rich environments where machine-learned models can perform well, there is a 

drive to bring improved interpretability to these models or to constrain them with prior knowledge. 

(Hazard et al., 2019; Marcus, 2018). The current work hybridizes the modeling strategies by training 

data-driven models with using knowledge-based predictions as features, as well as ensembling the 

knowledge-based and data-driven predictions by training a meta-model; considerable work remains to 

create truly hybrid systems that are easily used, capable of providing system understanding and 

inference, and identify novel components of the system (Fan et al., 2015; Hamilton et al., 2017, 2015; 

Karpatne et al., 2017b). These interpretable and adaptive models will enable both understanding and 

enable prescriptive decision support, and may continue to develop in the form of probabilistic 

programming and model-based machine learning (Bishop, 2013; Salvatier et al., 2016). Moreover, as 

super learners become more sophisticated, it stands to reason that they will be able to learn to use the 

signal processing provided by individual component models as abstractions to build hierarchical 

representations of the world, not unlike the human mind (Iten et al., 2018; Marcus, 2018). 

Given that the neural network models outperform the optimized CROPGRO, it suggests that our current 

understanding of the system may need to be adapted to incorporate aspects of the system that the 

data-driven approach captures that the knowledge-based model does not. That said, that the 

performance improvement of the super learner over the default model is not more drastic is a 

testament to the body of knowledge developed regarding soybean phenology over the past decades. 

This body of knowledge helped to define the relevant features used as input to the data-driven model, 

namely temperature and photoperiod. Additionally, it is notable that the addition of CROPGRO 

predictions as features for the data-driven approach enabled the training procedure to generally identify 

better optima than the environmental features alone across an entire collection of tested network 

architectures. This implies that the knowledge-based model provided an informative integration of the 

environmental features that the training procedure for the LSTM was otherwise unable to identify. 
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This work builds on a long history of research into the genetic basis of and modeling of soybean 

phenology, and represents a practical milestone in integrating some of this information. However, the 

current work assumes that the genetic variation in soybean phenology can be compressed into a single 

scalar: the relative maturity. While the model achieves acceptable accuracy for the target applications, 

additional work should examine the utility of additional genetic information, such as markers for the 

soybean E-loci or markers for stem growth habit to distinguish between determinate and indeterminate 

lines (Messina et al., 2006; Tian et al., 2010). Future work will also benefit from advances in remote 

sensing efforts to accurately measure phenological events (Zeng et al., 2016), as well as advances in 

optimization that enable efficient searches over parameter spaces, hyperparameter spaces, and 

optimization strategies for data-driven models (Li and Malik, 2016). 

The end application of the model is to support decisions across a wide variety of geographies by 

enabling growers and agronomists a forecast to plan crop management events, including planting and 

harvest dates, pesticide applications, and irrigation events, as well as to examine how maturities planted 

outside of their typical zone will perform. As the world’s geopolitics and climate continue to change, 

accurate prediction of outcomes for agricultural systems outside of the norm will be critical for rapid 

adaptation.  
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Methods 

(1) Soybean phenology and weather database 

The soybean phenology database used in this study was derived from public and private sources of data, 

with phenology stages based on Fehr and Caviness (1977). Phenology data for North America was 

derived predominantly from Corteva Agriscience’s internal resources. Data from Argentina was obtained 

from publicly available soybean tests coordinated by the National Institute of Agricultural Technology 

(INTA). Data on soybean phenology from Brazil were derived from available technical reports. A list of 

the public sources of observations included in the analysis is available in Supplemental Table 1. A 

proprietary Corteva weather repository and interpolation system was used to acquire daily historical 

weather observations from public and private weather stations for North and South America at the 

experimental coordinates.  

(2) Data harmonization and partitioning 

The data were partitioned on the basis of unique environments, defined as unique latitude, longitude, 

and planting date (defined by month, day, and year) combinations to ensure that trained models were 

not trained using records that shared the same environment with out-of-sample records; here, a record 

is defined as group of phenological observations (i.e. traits) for a relative maturity in an environment. It 

could be argued that different planting dates within a site-year have sufficiently correlated weather to 

cause information leakage between in-sample and out-of-sample records and lead to over-optimistic 

out-of-sample accuracy metrics, but we consider the photoperiods to be sufficiently different to merit 

consideration as unique environments. Some data sources recorded observations of full maturity (R8) 

instead of physiological maturity (R7); while factors like relative humidity, temperature, wind speed, and 

rainfall can introduce variation in the duration between R7 and R8 across different environments, the 

duration can be practicably treated as a constant number of calendar days for this application (Gaspar et 

al., 2017; Martinez-Feria et al., 2017). Thus, observations of R8 were harmonized to R7 prior to any 

analyses by subtracting a constant 9 calendar days, and the harmonized observations were considered 

equivalent to R7 observations. The dataset consisted of 187 unique environments with a total of 13,673 

records. All 13,673 records contained planting date, flowering (R1) date, and physiological maturity (R7) 

date. A subset of 7,043 records also contained emergence date, 8,212 recorded beginning seed filling 

(R5) date, and 5,488 records included all four developmental stages.  

The 187 environments were partitioned in to Training, Tuning, and Testing sets in 10 folds (Figure 2). 

Four environments were permanently assigned to the Training set due to representing outlier 

combinations of environment and relative maturities. For the remaining 183 environments, each fold 

withheld a random selection of 10% of the environments as the Testing set, where the environments in 

each fold’s Testing set were mutually exclusive of all other folds. The Testing set of the first 9 folds 

contained 18 environments, and the final 10th fold contained 21. The remaining environments in a fold 

were then randomly split on a 60:40 basis into a Training and Tuning set, with 103 environments in the 

Training set and 66 in the Tuning set (fold 10 contained 63 in the Tuning set). 

Individual component models in the model pool or library (i.e., the collection of models whose 

predictions were provided to the super learners) were trained using records from the Training set. The 
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super learners were trained using the component models’ predictions and records from the Tuning set. 

The performance of the trained super learners was evaluated using the Testing set (Figure 2). 

(3) Knowledge-based phenology model implementation and optimization 

The phenology models for soybean from CROPGRO and SOYDEV were re-implemented with OpenCL and 

interfaced with PyOpenCL to enable highly parallelized execution of the models (Jones et al., 2003; 

Klöckner et al., 2012; Setiyono et al., 2007; Stone et al., 2010). A swarm of particles, each representing a 

parameter vector, was used to explore the parameter space, where each particle moved down an 

approximated gradient using simultaneous perturbation stochastic approximation (SPSA) in parallel to 

find a satisfactory minimum of the cost function (Spall, 1998). In brief, SPSA takes a random subset of 

the parameters and generates two new parameter vectors, one resulting from a small positive 

adjustment to the subset of parameters and one resulting from a small negative adjustment. The cost of 

both are evaluated, and the parameters are updated in the direction that minimizes cost. For this 

application, the cost was defined as the negative log-likelihood of the parameter vector given the data, 

where missing observations (e.g., missing R5 date) did not contribute to cost. In this manner, all 

observations for a record (e.g., planting to emergence, R1, R5, and R7) could be used simultaneously to 

fit the dynamical model. 

A given parameter vector (i.e. a particle) would be updated according to SPSA using randomized 

minibatches over the records; once all particles finished all minibatches, the worst (i.e. highest cost or 

worst fit) particles were repopulated with parameters that were recombinations of the best particles’ 

parameters. The space searched for each parameter was bounded by a defined range (Supplemental 

Methods). The search was initialized by gridding a swarm of 4,800 particles across the parameter space, 

and performing parameter updates on minibatches of size 500. The bounds of the range a given 

parameter could occupy were manually assigned, and per-parameter learning rates were automatically 

assigned using the magnitude of the range to be searched for the parameter. Forty rounds of evolution 

were performed, meaning that each of the 4,800 particles completed all minibatches and had the 

potential to be recombined 40 times. If a training set had 7,500 records, this would lead to 4,800 * 

(7,500 * 2) * 40 simulations, or 2.88 billion simulations explored during training. While this multi-modal 

optimization strategy allows the exploration of equifinality and similarly behaving families of 

parameters, the parameter vector with the minimum cost found at the end of any round of evolution 

was retained and used as the set of optimized parameters for subsequent analyses. 

 (4) Machine-learned models and super learners 

All machine learned models were varying architectures of LSTM networks trained using Keras and 

Tensorflow (Abadi et al., 2016; Chollet and others, 2015). Models were trained using daily inputs of 

minimum temperature, maximum temperature, night length, solar radiation, relative maturity group 

(which was constant with respect to time), and an indicator variable to indicate whether planting had 

occurred or not to predict the developmental stage reached that day (as an integer). Model 

architectures ranged from shallow architectures with one hidden layer and 64 nodes, to deeper 

architectures with 2 or 3 hidden layers and up to 2,024 nodes using a tanh activation function; the 

output layer used a softmax activation function. Categorical cross entropy was used as the loss function, 

models were trained using Adam as the optimization strategy for up to 50 epochs with early stopping, 
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and the best performing model on the Tuning set out of the epochs was retained for each architecture, 

generating a population of 18 models for each fold. 

Bayesian model averaging as implemented in PyMC3 was used to integrate the predictions of the 

component models (Raftery et al., 2005; Salvatier et al., 2016; Yao et al., 2018). First, for each 

component model, a bias-corrected linear model for each developmental stage was fit using the number 

of calendar days from planting to the developmental stage derived from the model’s predictions as 

input and the observed calendar days as output using the Tuning set to estimate the posterior (Raftery 

et al., 2005). For emergence and R5 this involved only the default and optimized CROPGRO models; for 

R1 and R7 this involved those two models and the additional 18 trained neural network architectures. 

Stacking of predictive distributions given the population of these bias-corrected models was performed 

for each developmental stage to find an optimal weighing of component models for each stage (Yao et 

al., 2018). That is, different stages have different subsets of models contributing to the final predictions. 

Final performance was evaluated on the Testing set (Figure 2).   
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Supplemental Material 
 

Supplemental Table 1 

Public source Country Observations (n)  

Gaspar et al. 2017. Crop Sci. 57:2170–2182 USA 60 

Fundação MS - Resultados de Experimentação e Campos 
Demonstrativos de Soja - Safra 2014/2015 Brazil 204 

Fundação MS - Resultados de Experimentação e Campos 
Demonstrativos de Soja - Safra 2015/2016 Brazil 474 

Avaliação do desempenho produtivo de diferentes 
cultivares de soja em Nova Mutum – MT, na safra 2016 / 
2017 Brazil 95 

Fundação Pro-sementes - Desempenho de cultivares de 
soja indicadas para Rio Grande do Sul - 2017/2018 Brazil 372 

Ensaio de competição de cultivares de soja 2014 to 2016 – 
MT, Estação Rural Tecnica Brazil 257 

Red Nacional de Evaluación de Cultivares de Soja (RECSO) - 
2014/2015 Argentina 2910 

Red Nacional de Evaluación de Cultivares de Soja (RECSO) - 
2015/2016 Argentina 1769 

Red Nacional de Evaluación de Cultivares de Soja (RECSO) - 
2016/2017 Argentina 1156 

Supplemental Table 1. Public data sources from which soybean phenological data were obtained. 
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Supplemental Methods 
 

Phenology model and re-fitting 
 

The CROPGRO phenology model was implemented in OpenCL for parallelized optimization. Briefly, 

each developmental phase (emergence to R1, R1 to R5, R5 to R7) requires a target number of 

cumulative photothermal units to advance to the next phase. Under optimal conditions (i.e. optimal 

temperature and photoperiod), the number of photothermal units accumulated on a day would be 

one; otherwise it is a fraction of a unit.  

 

𝑃𝑇𝐷 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑝ℎ𝑜𝑡𝑜𝑝𝑒𝑟𝑖𝑜𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

 

Where the PTD, fraction of a photothermal day, is the product of the thermal coefficient and 

photoperiod coefficient, graphically shown below. Thus, under optimal development conditions, the 

number of cumulative PTD to advance phases is equal to the number of calendar days; otherwise, 

the number of calendar days needed is greater than the PTD threshold. 

 

 
Supplemental Methods Figure 1. Thermal (A) and photoperiod (B) functions used to determine how many PTD 

would be accumulated on a given day. During optimization, it is possible that some parameters take on values 

that render other parameters irrelevant. For example, if the maximum temperature (Tmax) takes on a value less 

than the optimum high temperature (Topt_high), then Topt_high becomes irrelevant, as the development rate 

becomes zero above Tmax. 

 

For each developmental stage, the number of cumulative PTD required to advance to the next stage 

is a function of maturity group. Based on the relationship between the default values provided by 

CROPGRO and maturity group, the cumulative PTD threshold was modeled as a polynomial to obtain 

PTD as a function of relative maturity. Emergence to R1 was a first order, R1 to R5 was a fourth 

order, and R5 to R7 was a second order polynomial. For refitting parameters, the intercept (i.e. 

number of PTD for relative maturity 0 to advance its phase under optimal conditions) was assigned 

as the minimum number of calendar days observed in the dataset for a relative maturity 0 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.306506doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.306506


observation to advance through the phase. As such, 7 free parameters were estimated to determine 

cumulative PTD thresholds for each phase. 

 

For each developmental stage, the thermal coefficient, calculated as piecewise linear function based 

on a minimum base temperature, an optimal temperature lower bound, an optimal temperature 

upper bound, and a maximum base temperature (graphically depicted above). As such, 16 free 

parameters (Tbase, Topt_low, Topt_high, and Tmax each for each phase: planting to emergence, emergence 

to R1, R1 to R5, and R5 to R7) were fit for temperature responses. 

 

The photoperiod response dictated by the critical short day length (csdl) and photoperiod sensitivity 

(ppsen) were both modeled as third order polynomials with respect to maturity group, and constant 

across developmental phases. The reduction in csdl after anthesis (r1pro) was treated as constant 

across maturity groups and developmental phases, leading to a total of 9 free parameters. Of note, 

planting to emergence was not impacted by the photoperiod response function. 

 

The cost of a parameter vector was calculated as the negative log probability of the parameters 

given the available observations for a record assuming a normal distribution, and this cost was 

minimized.  

Parameter indexing string Default Re-Fit 

Lower bound 

explored 

Upper bound 

explored 

R1PRO 0.279 -1.458581 -2 2 

CSDL_FIRSTORDER_COEF -0.24227 -0.397733 -1 1 

CSDL_SECONDORDER_COEF 0 0.014179 -0.1 0.1 

CSDL_THIRDORDER_COEF 0 0.000377 -0.01 0.01 

CSDL_INTERCEPT 14.07409 14.83173 12 16 

PPSEN_FIRSTORDER_COEF 0.053835 0.02108 -1 1 

PPSEN_SECONDORDER_COEF -0.00683 0.001629 -0.1 0.1 

PPSEN_THIRDORDER_COEF 0.000329 0.000157 -0.001 0.001 

PPSEN_INTERCEPT 0.166189 0.009315 0 1 

PLEM_INTERCEPT 3.6 3.6 Fixed Fixed 

PLEM_MINBASETEMP 7 0.627509 -40 20 

PLEM_MAXBASETEMP 45 78.21355 30 80 

PLEM_MINOPTTEMP 28 53.88043 15 90 

PLEM_MAXOPTTEMP 35 25.22636 20 80 

EMR1_FIRSTORDER_COEF 0.678182 0.898344 -10 10 

EMR1_INTERCEPT 16.42727 16.42727 Fixed Fixed 

EMR1_MINBASETEMP 7 6.635806 -40 20 

EMR1_MAXBASETEMP 45 79.04411 30 80 

EMR1_MINOPTTEMP 28 32.35435 15 90 

EMR1_MAXOPTTEMP 35 47.47038 20 80 

R1R5_FIRSTORDER_COEF -0.44503 0.634236 -1 1 

R1R5_SECONDORDER_COEF 0.449301 -0.174032 -1 1 

R1R5_THIRDORDER_COEF -0.06663 -0.021729 -0.1 0.1 

R1R5_FOURTHORDER_COEF 0.002914 0.003754 -0.01 0.01 
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R1R5_INTERCEPT 13.02098 13.02098 Fixed Fixed 

R1R5_MINBASETEMP 6 -20.23749 -40 20 

R1R5_MAXBASETEMP 45 76.97128 30 80 

R1R5_MINOPTTEMP 26 61.50523 15 90 

R1R5_MAXOPTTEMP 30 78.94601 20 80 

R5R7_FIRSTORDER_COEF 1.001259 0.310288 -2 2 

R5R7_SECONDORDER_COEF -0.02867 -0.006204 -1 1 

R5R7_INTERCEPT 30.61539 30.61539 Fixed Fixed 

R5R7_MINBASETEMP -15 -17.79777 -40 20 

R5R7_MAXBASETEMP 45 39.977 30 80 

R5R7_MINOPTTEMP 26 36.31358 15 90 

R5R7_MAXOPTTEMP 34 74.33067 20 80 

     

cost 527544.8 184794.5   

MAE_target_0 3.17488 1.976063   

MAE_target_1 7.316628 6.050265   

MAE_target_2 14.36696 7.212268   

MAE_target_3 16.33564 6.481427   

numRecords 6784 6784   
 
Supplementary Methods Table 1. Table of default parameters, a set of re-fit parameters corresponding to one 

fold’s best fit, and the parameter boundaries within which the initialized parameter vectors were gridded and 

not permitted to explore beyond. Note that, due to the fitting strategy employed, fitted parameters should 

not be considered reliable for inference; e.g., note that some of the table functions have a maximum base 

temperature that render the maximum optimum temperature irrelevant. 
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