
Deep neural net tracking of human pluripotent stem cells 
reveals intrinsic behaviors directing morphogenesis 
David A. Joy1, 2, Ashley R. G. Libby2, 3, Todd C. McDevitt2, 4 

Affiliations: 1UC Berkeley-UC San Francisco Graduate Program in Bioengineering, 

San Francisco 2Gladstone Institutes, San Francisco 3Developmental and Stem Cell 

Biology PhD Program, University of California, San Francisco 4Department of 

Bioengineering and Therapeutic Sciences, University of California, San Francisco 

Keywords: deep learning, cell tracking, cell migration, human pluripotent stem cells, 

morphogenesis 

Abstract 
Lineage tracing is a powerful tool traditionally used in developmental biology to 

interrogate the evolutionary time course of tissue formation, but the dense, three-

dimensional nature of tissue limits the ability to assemble individual traces into complete 

reconstructions of development. Human induced pluripotent stem cells (hiPSCs) enable 

recapitulation of various aspects of developmental processes, thereby providing an in 

vitro platform to assess the dynamic collective behaviors directing tissue 

morphogenesis. Here, we trained an ensemble of independent convolutional neural 

networks to identify individual hiPSCs imaged via time lapse microscopy in order to 

generate longitudinal measures of individual cell and dense cellular neighborhood 

properties simultaneously on timescales ranging from minutes to days. Our analysis 

reveals that while individual cell parameters are not strongly affected by extracellular 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.307470doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307470
http://creativecommons.org/licenses/by-nd/4.0/


microenvironmental conditions such as pluripotency maintenance regime or soluble 

morphogenic cues, regionally specific cell behaviors change in a manner predictive of 

organization dynamics. By generating complete multicellular reconstructions of hiPSC 

behavior, our cell tracking pipeline enables fine-grained understanding of developmental 

organization by elucidating the role of regional behavior stratification in early tissue 

formation. 

Introduction 

In the developing embryo, individual cells undergo a sequence of cell fate transitions 

and migration events to cooperatively form the tissues and structures of the organism. 

Cell tracking techniques based upon high resolution imaging have been used to trace 

cell lineage and describe the emergent patterns of embryogenesis across multiple 

model organisms,1–3 including the early human pre-implantation embryo.4,5 However, 

automated tracking of cell migration within whole embryos in vivo has been limited to 

small organisms such as C. elegans6 due to the difficulty of identifying and tracking cells 

in the densely crowded multicellular environment of the developing embryo. 

Researchers frequently address the problem of density by employing sparse labeling of 

cells, either by only tracing cells of a single lineage,7,8 or by detecting transcriptional9 or 

morphologic distinctions between cells.10 Similarly, when analyzing cell behavior in vitro, 

experimental limitations such as mechanical confinement to one dimensional tracks, 11 

or sparse labeling12 have been required to accurately track individual cells, limiting the 

ability of these systems to monitor multicellular tissue behaviors with comprehensive 

single cell resolution. 
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Self-organizing developmental processes are often initiated by small founder 

populations within a larger population of physically inter-connected cells, as in the case 

of classic Turing patterns.13 Similar multicellular organizational events have been 

observed in vitro with human induced pluripotent stem cell (hiPSC), revealing their 

heterogeneous differentiation potential due to global positional cues,14 cell population 

boundaries,12 or cell-cell interactions.15 In particular, because cell fate and function are 

strongly impacted by local interactions within multicellular networks,16–18 coordinated 

morphogenic processes exhibit scale-free connectivity (i.e. at multiple scales, cell 

behavior is coordinated through a central hub of influential cells),19 indicating that small 

populations of cells, by establishing highly connected organizing centers, can exert a 

large impact on the final composition of the developing tissue.20,21 Sparse labeling 

approaches inherently under-sample these rare populations, highlighting the need for 

dense cell tracking algorithms to definitively identify the origins and quantify the 

behaviors of organizers. 

Recent advances in machine learning, in particular in deep neural networks, have 

demonstrated superhuman performance at image segmentation, revolutionizing the field 

of computer vision.22,23 Several classes of convolutional neural nets (CNNs) have been 

developed specifically to perform dense cell segmentation24, based upon different 

architectures such as autoencoders,25 U-nets,26–28 or variants of the Inception 

architecture.29,30 Each architecture offers distinct trade-offs between cell segmentation 

accuracy, training efficiency, noise robustness, and computational complexity, with sub-

optimal network choice leading to reduced tracking quality and poor capture of cell 
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behavior. While cell tracking algorithms have historically been assessed through head-

to-head competitions31,32, the potential advantage of combining complementary 

techniques for cell localization and tracking has been rarely employed. 

In this study, we overcame the challenge of dense cell tracking by developing an 

ensemble of three neural networks (FCRN-B,24 Count-ception,30 and a Residual U-

net27) to localize each individual cell nucleus in an hiPSC colony. Nuclei displacements 

were then connected between sequential frames of a time series, enabling high 

spatiotemporal resolution of hiPSC behaviors over relevant developmental time scales 

of hours to days. This dense cell tracking pipeline revealed distinctive cell behaviors 

based on location within the colony, cell heterogeneity, and response to extracellular 

signaling molecules. Long-term cell tracking in combination with immunostaining for 

lineage markers, enabled tracking of the differentiation history of colonies with single-

cell resolution. The whole-colony tracking and analysis pipeline revealed radially 

stratified shifts in cell migration speed and cell packing density in hiPSC colonies in 

reaction to changes in culture conditions. Changes in cellular behavior were detected at 

the local cell neighborhood level in response to differentiation induced by externally 

applied morphogens, enabling real-time identification of local organizing centers (~10-

20 cells) that precede tissue-scale morphogenic events. By detecting rare 

organizational events, our computational cell tracking pipeline allows for a more 

comprehensive dynamic understanding of the multicellular principles of morphogenesis, 

which can empower more refined control of organoid and engineered tissue 

development. 
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Results 

Manual annotation of cell migration in hiPSC colonies 
Human iPSCs form dense, multilayered colonies in vitro with indistinctive boundaries 

between cells when using common phase imaging, pan-cytoplasmic, or pan-nuclear 

staining techniques. To establish a baseline for cell localization quality, a series of 

heterogeneously labeled colonies were generated by mixing wild type hiPSCs with an 

hiPSC-derived cell line expressing a nuclear GFP fluorescent label (Lamin-B::GFP) at 

ratios of 9:1 (10% labeled), 7:3 (30% labeled) or 0:10 (100% labeled). While maintaining 

the cells in pluripotency media, mixtures were force aggregated in microwells,15 allowed 

to reattach to tissue culture plates, and then imaged every five minutes for six hours to 

generate a set of frames for annotation (Figure 1A, B). Seven individual human 

annotators selected the center of every GFP positive cell nucleus in 12 sequential pairs 

of 500-cell colonies containing 10%, 30%, or 100% Lamin-B::GFP iPSCs presented in 

randomized order. A spatial average of all seven annotation sets was calculated using 

k-means clustering to generate a ground truth human consensus segmentation for each 

frame (Figure 1B). 

Human annotators were scored using a ratio of selected nuclei within a 5𝜇𝑚 radius from 

the consensus cell, divided by the total number of expected cells, missing cells, and 

incorrectly selected cells (true positives divided by all positives plus any false positives). 

The average individual rater reliability (IRR) was 88.5% (± 7.9 %) with a minimum of 

83% and a maximum of 93% (Figure 1C). As a second comparison, the individuals and 

human consensus were rated on their ability to select the same cell twice in pairs of 
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sequential frames. Average inter-frame reliability (IFR) was 85.8% (± 7.7%) with a 

minimum of 75% and a maximum of 92% (consensus 90.2% ± 4.8%) (Figure 1D). To 

assess how increasing label density impacted cell detection, performance metrics were 

stratified according to colony labeling density (Figure 1E). As expected, human 

annotators exhibited maximal IRR and IFR when evaluating colonies with the lowest 

percentage of GFP+ cells (i.e. 10%), with performance significantly declining for 

colonies containing higher proportions of GFP+ cells (30% and 100%). 

Ensemble deep neural network segmentation of dense hiPSC 
colonies 
To determine how deep neural networks compare to human segmentation performance, 

a diverse array of independent cell segmentation network architectures was selected 

from recent literature (Figure 2Ai) and compared to the human annotator baseline as 

well as to the prediction of an ensemble of the selected architectures (Figure 2Aii). Five 

different neural net architectures were compared, including two networks with VGG-like 

architecture (FCRN-A and FCRN-B24), two U-net architectures (U-net28 and Residual U-

net27), and an Inception-inspired network (Count-ception30). Each neural network was 

trained to segment the GFP images of 10%, 30%, and 100% labeled colonies by 

predicting a cone-shaped probability around the human annotated center of each 

nucleus. Despite architectural differences, all neural networks exhibited comparable 

average performance, segmenting the data with a receiver operating characteristic 

(ROC) area under the curve (AUC) of 0.86 or better (Figure 2B). Although no individual 

neural network was able to equal human segmentation of 100% GFP-labeled colonies, 
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an ensemble of the three highest performing networks surpassed human cell 

localization of fully-labeled colonies (Figure 2Aii, B-D). The primary variation between 

neural networks was due to spatial performance differences at the center or edge of 

individual colonies (Figure 2E). 

Compared to the human annotator baseline, cell segmentation performance varied 

greatly between networks, with the two U-net architectures agreeing least with human 

annotators, whereas FCRN-B and the ensemble agreed most often (Figure S1). 

However, ROC AUC (Figure 2B) and effect size were often indistinguishable between 

similar architectures such as FCRN-A and FCRN-B (Cohen’s 𝑑 = 0.11) or U-net and 

residual U-net (𝑑 = 0.02). Segmentation speed varied widely between architectures 

(from 23 to 288 milliseconds per frame), but because the ensemble network was 

composed of several of the faster architectures, generating the composite segmentation 

was only 16.0% slower than using U-net only (± 2.5% slowdown; Figure S2). In contrast 

to human annotators, neural net IRR and IFR segmentation accuracy improved with 

increasing label density (3.6%±0.4% and 5.7%±0.4%, Figure 2F,G respectively). 

Individual cell tracking of pluripotent stem cell behavior 
Individual frame segmentations were initially combined using a nearest neighbor linkage 

between frames to create cell tracks covering the center, middle, and edge regions of 

each colony (Figure 3A, blue, gold, and red regions respectively), enabling construction 

of whole colony traces for all cells in 100 % GFP+ colonies over the entire time series 

(Figure 3B). However, segmentation uncertainty at the individual cell level (e.g. a 95% 

accurate classifier will fail to detect a cell approximately once every 20th frame) led to 
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artificially shortened tracks separated by short gaps of 1-5 frames. To reduce random 

breakages, a second linking step was added to combine tails of track fragments across 

gaps of up to 5 frames, using the motion of the local cellular neighborhood to interpolate 

any missing cell positions. Neighborhood interpolation significantly increased track 

fragment lengths (from average coverage of 21.5% of the time series length to 33.5%, 

Figure S3), bringing track fragment counts closer to the expected cell count based on 

cell seeding number and extrapolated growth rate - from 482 to 836 individual cells, with 

1,000 expected (Figure S4). 

To understand how individual cell behavior contributes to colony spreading and density, 

we calculated persistence of cell migration by locating regions of each track where the 

direction of cell motion changed by less than 5 degrees per minute. Most cell tracks 

displayed clear binary switching between persistent migratory and stationary behavior 

(Figure 3C), with a mean active period of 15.7 minutes (±12.7 minutes) followed by a 

quiescent period of 9.2 minutes (±6.8 minutes), similar to the cyclic migration behavior 

observed in E. coli33 and eukaryotic cells34 that can be attributed to the interaction 

between local polarizing cues and global inhibition of directional migration (Figure 3D). 

The active migration period was highest at the edge of colonies, and lowest at the 

center, while the quiescent period did not differ between colony regions (Figure S3-3). 

To measure the extent to which individual cells traveled directionally or diffused 

randomly, we calculated the ratio of track displacement-to-distance, where a value of 

1.0 represents travel in a straight line, lower values an increasingly curved trajectory, 

and 0.0 a path that ultimately returns to its origin. Although cell tracks covered a broad 
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range between purely directional and random diffusion, there was no difference in 

directionality of motion between cells at the center, middle or periphery of the colony 

(Figure 3E, blue, gold and red points respectively). Finally, to identify coordinated 

movement between neighboring cells, we calculated correlation between each cell’s 

velocity profile and its immediate neighbors. In the center of colonies, nearest neighbors 

had uncorrelated velocity profiles (Pearson’s R = 0.00298, std 0.0757), whereas cells 

near the periphery demonstrated much higher correlation (R = 0.118, std 0.383), 

suggesting that observed peripheral spreading results from multi-cellular collective 

migration, as has been shown previously in models of collective migration.35,36 

To analyze the dynamic behavior of iPSC colonies, a graph structure of each colony 

was created using Delaunay triangulation (Figure 3F). Based on the triangulation, 

individual cell area was estimated using the average of all triangles surrounding a cell 

within a maximum link distance threshold of 50 𝜇𝑚 (Figure 3G). The entire colony mesh 

and all cell measurements, such as density or velocity, were mapped onto the unit 

circle, then separated into three rings of equal area corresponding to the center, middle, 

and periphery of the colony (Figure 3G). In pluripotent colonies, cells in the center 

region were packed more densely relative to the middle and peripheral bins (p = 

1.82*10-10 and 1.56*10-11, respectively) (Figure 3H), suggesting local crowding effects 

contribute to radial inhomogeneities in cell packing in hiPSC colonies. In contrast, cells 

in the middle and peripheral bins moved faster than cells in the center (p = 2.28*10-5 

and 2.93-4 respectively, Figure 3H), demonstrating an edge-biased cell migratory 
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phenotype and suggesting that colony compaction may play a role in hiPSC colony 

spreading, as has been reported for migration of other epithelial cells.35,36 

Packing and migratory behaviors of undifferentiated 
pluripotent stem cells 
To interrogate the heterogeneous behavior of hiPSC colonies, we compared standard 

pluripotency maintenance conditions using the CNN tracking algorithm. First, we 

compared the effect of colony size on single cell behavior by forming colonies of either 

100 or 500 cells (Figure 4Ai). The average cell density and travel distance of 100-cell 

colonies were more similar to those of the edge of 500-cell colonies than to the center, 

suggesting that 100-cell colonies uniformly exhibit a similar phenotype to the edge of 

500-cell colonies (Figure 4Aii). At both colony sizes, cells at the edge displayed higher 

travel distance and migration speeds than those at the center (Figure 4Aiii,iv). 100-cell 

colonies were more uniform in both density and cell distance traveled, with both 

measures closer to the cell density and travel values for the edge of 500-cell colonies. 

The transition in phenotype from edge-like to center-like cells as confluency increases 

may account for the observed sensitivity of hiPSC pluripotency and differentiation to cell 

plating density37 and colony size.14 

Next, we explored the effect of pluripotency maintenance media on colony behavior by 

comparing the effect of passaging hiPSCs in mTeSR or E8 media (Figure 4Bi). Colonies 

cultured in mTeSR were more compact with frequent formation of multi-layered 

structures and low-density regions in the center of the colony, while colonies cultured in 

E8 were uniformly flat with lower cell packing density (Figure 4Bii). Individual cells within 
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colonies cultured in E8 traveled less overall (Figure 4Biii). Despite structural differences, 

cell migration velocities between the two conditions only differed slightly (p = 0.012, d = 

9.44*10-3), indicating that the density shift could not be solely attributed to differences in 

cell motility between the two conditions (Figure 4Biv). 

Finally, we interrogated changes in colony phenotype due to commonly used adhesive 

extracellular matrices, which have been shown to have a cell-ECM strain-mediated 

effect on hiPSC morphology, behavior, and differentiation potential.38 hiPSC aggregates 

were allowed to adhere onto either Matrigel, Vitronectin, or recombinant Laminin 521 

(rLaminin, Figure 4Ci). Cell adhesion was much lower on rLaminin, with only 47.2% of 

aggregates adhered after 24 hours vs 91.7% on Matrigel and 97.2% on Vitronectin. 

Cells in adherent colonies on both rLaminin and Vitronectin had higher cell density than 

on Matrigel (Figure 4Cii), while cells on Matrigel and rLaminin spread more than on 

Vitronectin (Figure 4Ciii). Cells on Vitronectin had lower migration velocities, and much 

lower difference between center and edge migration velocities than either Matrigel or 

rLaminin (Figure 4Civ). hiPSC behavior on Matrigel and rLaminin were very similar for 

both cell migration distance and migration velocity, however stratifying the colonies by 

radius revealed that colonies plated on Matrigel were 11.1% less dense in the center. 

hiPSCs at the periphery of colonies grown on Vitronectin traveled only 92.7% of the 

distance for those on the edge of Matrigel or rLaminin colonies, and cells in Vitronectin 

colonies uniformly moved more slowly than those on other matrices, leading to more 

compact colony morphology overall. These results suggest that changes to substrate 

can subtly alter the local strain environment within a pluripotent stem cell colony, 
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providing a mechanism to modulate peripheral migration and cell packing within hiPSC 

colonies. 

Through dynamic characterization of hiPSC behavior, our tracking pipeline revealed that 

hiPSCs display a wide variety of heterogeneous behaviors while maintaining 

pluripotency. In particular, cells at the periphery of colonies exhibit a distinct phenotype 

from those in the center. Media environment and substrate can modulate both static and 

dynamic aspects of the edge and center phenotype. However, static snapshots of 

colony configuration, such as cell density, do not predict dynamic cell behaviors such as 

cell migration distance or velocity. Since both static and dynamic cell behaviors prime 

hiPSCs towards particular differentiation trajectories,14,38–40 dynamic assessment of 

whole colony behavior is necessary to illuminate the scope of hiPSC heterogeneity in 

pluripotency and predict priming during differentiation. 

Lineage tracing of cell fate decisions during early 
morphogenic induction 
We next assessed changes in hiPSC behavior during early lineage specification by 

employing our tracking pipeline to analyze differentiation protocols used to induce 

combinations of all three germ layers. Previous work has shown that multi-cellular 

annular ring patterns form during tri-lineage differentiation,14 but the dynamic changes to 

cell migration behavior during ring formation have not been described. In addition, 

protocols to induce either mesendoderm37 or neuroectoderm41 have been reported, but 

whether those direct differentiation protocols induce similar dynamic transformations to 

those that occur during tri-lineage differentiation is not known. To monitor the transition 
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from pluripotent cells to differentiating germ layers, a critical 24-hour morphogenic 

window was identified for each differentiation protocol for further exploration. 

In the BMP4-induced trilineage protocol (Figure 5Ai), colonies adopted a round 

morphology 24 hours after BMP4 treatment with relatively uniform velocity and cell 

density, consistent with undifferentiated colonies (Figure S5). Approximately 32 hours 

after induction, cells across the colony slowed in migration velocity, except for a ring of 

cells at ~50% of the colony radius which maintained similar velocity to undifferentiated 

cells (Figure S6A). In the center of the colony, cell density was constant for the entire 

period of observation, however, the periphery of the colony also began to rapidly 

decrease in cell density about 32 hours post-induction, with a dense plateau of cells 

forming at approximately 50% of colony radius, consistent with previous 

reports14,42(Figure 5Aiii, Figure S7A). All three germ lineages formed by 48 hours, with 

OCT4+ cells in the center ring (SOX2-, EOMES-, presumptive endoderm), EOMES+ 

cells in the middle (presumptive mesoderm), SOX2+ cells at the colony edge (OCT4-, 

EOMES-, presumptive ectoderm), and the periphery of the colony negative for all three 

markers (Figure 5Aiii). The peak of EOMES expression corresponded with both the 

maximum of cell migration velocity and the transition from high to low cell density, 

suggesting that the mesoderm ring acts as a migratory barrier between ectoderm and 

endoderm, enabling the physical phase separation of the colony into three distinct germ 

layers, analogous to gastrulation14,21,42. 

Treatment with the WNT activator CHIR is commonly used to induce differentiation of 

mesoderm.37 Tall, multilayered colonies (average 61.4 ± 10.7𝜇𝑚) formed after 24 hours 
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of 12 μM CHIR treatment, but by 48 hours a secondary flat epithelial ring expanded 

radially out from the colonies, ultimately forming a stratified colony similar to that 

induced by BMP4 (Figure 5Bi). Unlike in BMP4-treated colonies, CHIR-treated cells at 

the colony periphery increased in migration speed by 50%, with individual cells at the 

periphery of the colony undergoing EMT and traveling beyond the field of view (Figure 

S6B). Similar to BMP4 treatment, the central region maintained cell density similar to 

untreated colonies, while the middle and outer compartments rapidly decreased in 

density (Figure 5Biii, S7B). OCT4, SOX2, and EOMES were detected in all colonies, but 

levels of OCT4 and especially SOX2 were lower with CHIR than in BMP4 treated 

colonies, consistent with early CHIR induction directing differentiation towards 

mesoderm and away from neuroectoderm (Figure 5Biii). Again, the peak of EOMES 

expression occurred at ~50% of the colony radius and corresponded spatially to the 

transitions between low to high velocity and high to low density, respectively. The direct 

comparison of CHIR and BMP4 induced differentiations demonstrates that limited 

numbers of similar static snapshots of colony structure can mask distinctive cell 

behaviors that can indicate divergent differentiation trajectories of pluripotent cells. 

Neuro-ectoderm directed colonies remained behaviorally indistinguishable from 

untreated colonies through the first 48 hours of dual SMAD inhibition. However, starting 

at 60 hours after treatment, small rosettes of approximately 20 cells began to form ring 

structures that expanded continuously for the remaining 12 hours of imaging (Figure 

5Ci). Between 6 and 18 rosettes formed per colony (mean 10.1 ± 2.3) with a mean 

rosette diameter of 64.2 ± 21.1𝜇𝑚. Rings consisting of regions of lower cell density 
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began to appear 36 hours after plating, with ring diameter expanding at a rate of 2.58 ±

0.51𝜇𝑚/ℎ𝑜𝑢𝑟, and a mean center-to-center spacing between rings of 124.0 ± 27.5𝜇𝑚 

(Figure 5Cii). Average cell density was slightly higher at the periphery of colonies, 

corresponding to higher expression of both OCT4 and SOX2 (EOMES-, potentially 

undifferentiated cells), while the center of the colonies expressed high SOX2 and low 

OCT4 (presumptive neuroectoderm, Figure 5Ciii). EOMES expression was slightly 

elevated in the center of the colonies, but overall EOMES was rarely detected 

compared to BMP4 or CHIR differentiation. None of the three lineage markers appeared 

to be specifically localized to the ring structures. Addition of CHIR pre-treatment43 to the 

dual SMAD neuro-ectoderm protocol completely abrogated the formation of rosettes 

(Figure 5Di). CHIR pre-treated neuro-ectoderm colonies were indistinguishable from 

untreated colonies in both their uniform velocities and radial distribution of cell densities 

(Figure 5Dii and S6D, S7D, respectively). CHIR treatment elevated expression of 

EOMES, and suppressed expression of both SOX2 and OCT4, likely delaying the 

commitment of cells to neuroectoderm fates, consistent with its previously reported 

activity.43 By monitoring the trajectories of differentiating colonies at single cell 

resolution, morphogenic signatures were detected at both the local cell neighborhood 

and colony-wide levels, thereby enabling quantitative measurement of the 

comprehensive dynamics of multicellular organization and subtle yet distinctive 

differences in cell behavior that distinguish between independent differentiation 

protocols. 
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Discussion 
Single cell analyses have highlighted the intrinsic heterogeneity present in virtually all 

multi-cellular populations. Complementary approaches, such as automated cell lineage 

tracing and single-cell RNA sequencing, have enabled fine-grained spatio-temporal 

quantification of diverse and robust developmental processes6,7,44. Understanding the 

dynamic behavior(s) of pluripotent stem cells in response to environmental factors can 

similarly clarify the effects of multicellular structure and environmental factors on the 

behavior and ultimate fate of individual cells within developing tissues and organs ex 

vivo. To assess how organization arises from the collective action of individual cells, we 

developed a dense cell tracking platform to analyze time lapse imaging of hiPSC 

colonies with high spatiotemporal precision. Using the resulting quantitative measures 

of cell behaviors, we identified signatures of multicellular organization at the single cell, 

local neighborhood, and whole colony scale, demonstrating that hiPSC behaviors are 

influenced by short distance interactions between neighboring cells that propagate into 

global effects throughout an entire colony of 100’s of cells and more. While many of the 

measured cell-intrinsic properties were relatively constant under pluripotent culture and 

early differentiation conditions, we found that the local cell neighborhood responds in 

characteristic ways to different external stimuli. Changes in cell-cell interactions are 

orthogonal to stem cell pluripotency,12,38 but can impact the sensitivity of hiPSCs to 

morphogenic cues,39 and thus may be a critical determinant in pre-patterning of cells to 

different cell fate decisions. The ability to specifically modulate cell-cell interactions 

through modification of culture conditions or genetic engineering provides new 

strategies to pre-pattern and control colony structure and subsequent differentiation 
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trajectories.39 Furthermore, our live cell monitoring platform during early differentiation 

allows for non-destructive assessment of regional changes in cell fate, providing a 

critical first step towards feedback-control of hiPSC differentiation. 

In this paper, we applied our tracking system to resolve human pluripotent 

morphogenesis evolution at single-cell resolution to the maintenance of hiPSCs and 

early differentiation, but it can be used more generally to quantify multicellular structure 

with either static or time-lapse microscopy of any cell line. Quantitative comprehensive 

characterization of cellular neighborhood dynamics will provide a robust approach to 

interrogate the effects of multicellular interactions among a broad range of cell types 

across many species, and will provide novel metrics to assess the fidelity of stem cell 

models to recapitulate developmental processes in a tissue context ex vivo. Ultimately, 

extracting unbiased cell dynamics from in vitro time-lapse imaging enables new insights 

into the complex processes underlying multicellular organization and morphogenesis. 

Methods 

hiPSC culture 
The hiPSC cell lines Wild-Type C11 was provided by the Conklin Lab and the Allen 

institute Lamin-B1 EGFP line (AICS-0013) was provided by Coriel. Both lines were 

cultured in feeder-free media on growth factor reduced Matrigel (BD Biosciences) and 

fed daily with mTeSRTM-1 medium (STEMCELL Technologies)45. Stem cells were 

dissociated to single cells using Accutase (STEMCELL Technologies) and passaged at 

a seeding density of 12,000 cells per 𝑐𝑚6. Rho-associated coiled-coil kinase 1 (ROCK-
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1) inhibitor, Y-276932 (10 𝜇M; Selleckchem) was added to the media for the first 24 

hours after passaging to promote survival46. Starting with a base cell line cultured in 

mTeSR, cells were migrated to E8 (Gibco) by first culturing for one passage in a 1:1 

mixture of E8 and mTeSR, followed by a minimum of two passages in E8 before 

evaluation. 

Force aggregation of colonies 
Cell aggregates consisting of 250 cells were generated using 400x400 𝜇m PDMS 

microwell inserts in 24-well plates ( 975 microwells per well).15 Dissociated cultures 

were resuspended in their respective maintenance media supplemented with Y-276932, 

mixed at the required cell ratio and concentration (250 cells/well), added to the 

microwells, and centrifuged (200 RCF). After 24 hours of formation, aggregates were 

transferred to ibidi slides (12 uWell format) or optically clear 96-well plates (Corning), 

coated with a substrate, and seeded at  10 aggregates/well or  18 aggregates/𝑐𝑚6 and 

allowed to spread into colonies. 

Substrate coating protocol 
To promote aggregate attachment, ibidi slides were coated with growth factor-reduced 

Matrigel (80 𝜇𝑔/𝑚𝐿, BD Biosciences), vitronectin (10 𝜇𝑔/𝑚𝐿, Sigma Aldrich) or 

recombinant human laminin 521 (10𝜇𝑔/𝑚𝐿 rLaminin, Corning). Wells were uniformly 

coated using 125 𝜇L/well (223 𝜇L/𝑐𝑚6) and incubated at 37 C following manufacturer’s 

recommendations. Matrigel was incubated for 16 hours, while vitronectin and rLaminin 

were both incubated for 1 hour. Following manufacturer recommendation, rLaminin 

wells were additionally washed three times using cell culture grade water. 
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Differentiation protocol 
Recombinant BMP4 (R and D Systems) was added to mTeSR at 50 ng/mL for 24 hours, 

starting 24 hours after aggregate seeding to induce a trilineage differentiation,14 

followed by 24 hours of imaging in mTeSR alone. CHIR differentiation was performed 

by adding 12 𝜇𝑀 CHIR-99021 (Selleck Chemicals) to mTeSR for 24 hours, starting 24 

hours after seeding, followed by 24 hours of imaging in mTeSR only. Dual SMAD 

inhibition was performed by adding both 10 𝜇𝑀 SB-431542 (GlaxoSmithKline) and 0.2 

𝜇𝑀 LDN-193189 (Stemgent) to mTeSR41 during force aggregation, and maintained for 

72 hours through colony adhesion and imaging. CHIR pre-treatment during dual SMAD 

inhibition was achieved by adding 2 𝜇𝑀 CHIR-99021 to mTeSR starting 48 hours before 

force aggregation, and continued through imaging (5 total days of treatment)43. 

Time-lapse imaging 
Initial mixing studies were performed on an incubated inverted Axio Observer Z1 (Zeiss) 

microscope using an AxioCam MRm (Zeiss) digital CMOS camera at 20x magnification 

(NA 0.8, 0.323 𝜇𝑚 x 0.323 𝜇𝑚 per pixel). Colony positions were mapped using ZenPro 

software and approximately 30 colonies were imaged each experiment. Colonies were 

imaged over the course of 6 hours with images taken every 5 minutes. 

All subsequent studies were performed on an incubated spinning disk confocal 

Observer Z1 (Zeiss) using a motorized filter wheel (Yokogawa) and imaged using a 

Prime 95B (Photometrics) digital CMOS camera at 10x magnification (NA 0.45, 0.91 𝜇𝑚 

x 0.91 𝜇𝑚 per pixel). Pluripotent colony studies were imaged over 6 hours with images 
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taken every 3 minutes. Differentiation studies were imaged over 24 hours with images 

taken every 5 minutes. 

Immunofluorescence staining 
Within 15 minutes of the conclusion of imaging, slides and plates were washed once 

with PBS (125 𝜇L/well, 220 𝜇L/𝑐𝑚6), then fixed for 30 minutes with 4% 

paraformaldehyde (100 𝜇L/well, 178 𝜇L/𝑐𝑚6). Cells were permeabilized for 1 hour in 

200 𝜇L/well (357 𝜇L/𝑐𝑚6) of a blocking solution of 5% normal donkey serum, 0.3 % 

Triton X-100 in PBS. Cells were incubated with the primary antibody for 1 hour in 100 

𝜇L/well (178 𝜇L/𝑐𝑚6) of a solution of 1% bovine serum albumin, 0.3 % Triton X-100 in 

PBS. Cells were then incubated with the secondary antibody for 1 hour in 100 𝜇L/well 

(178 𝜇L/𝑐𝑚6) of a solution of 1% bovine serum albumin, 0.3 % Triton X-100 in PBS. 

Human labeling of data set 
To establish baseline human performance on labeling colonies, one annotator labeled 

the first 12 frames of the time series for 8 colonies each of 9:1 (10% labeled), 7:3 (30% 

labeled) or 0:10 (100% labeled) wild type:GFP+ mixed colonies (336 frames total). A 

power analysis was performed, indicating that 8 samples per condition in a 3-way 

balanced design was required to distinguish between annotator performance when 

labeling different colony mixture ratios (p <= 0.05 with 80 % confidence of rejecting the 

null hypothesis). 

To produce a validated human data set, 12 pairs of random sequential frames from the 

original labeled data set were shuffled to obscure the order of the images (for a total of 

24 images, 8 per condition). With 50 % probability, each image was horizontally 
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mirrored (13 mirrored, 11 not mirrored), then with 25 % probability, each image was 

randomly rotated in increments of 90 degrees (6 unrotated, 6 rotated 90 degrees, 9 

rotated 180 degrees, 3 rotated 270 degrees). This data set was presented to seven 

independent annotators using custom software written in Python. 

A consensus segmentation was generated using k-means clustering of all annotations 

on each frame with k equal to the largest number of points selected by any individual 

annotator. Annotations were added to the consensus if they had at least 3 members in a 

cluster from unique annotators. This consensus segmentation was used as ground truth 

to calculate inter-rater reliability (IRR) for each annotator for each frame. 

Each frame to frame segmentation accuracy was measured using each annotator’s 

inter-frame reliability (IFR) on the 12 pairs of images after inverting their transformation. 

IFR was compared between all pairwise two-sided t-tests with the Bonferroni Holm 

correction for multiple comparisons. 

To evaluate the ability for this segmentation architecture to transfer learning to a 

different microscope, a second data set of confocal images was segmented by a single 

human annotator. The first two frames of each of 12 10% labeled colonies, 12 30% 

labeled colonies, and 8 100 % labeled colonies were segmented in sequence with no 

crops, flips, or rotations. Inter-frame reliability on this data set was not significantly 

different from the previous annotations, so this data set was used as a baseline for 

performance for transfer learning. 
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Initial neural net training 
Each neural network architecture was implemented using Keras with the Tensorflow 

back end, with the input field of view for each architecture enlarged to 256x256 to 

enable fully convolutional segmentation of large images. Neural networks were trained 

using two NVidea GeForce GTX 1080 GPUs. 

A training data set was generated from the initial segmentation by first splitting the 

images into 80% training, 10% test, and 10% validation folds. Then each fold was 

expanded by generating all possible 90 degree rotations and horizontal flips for each 

image in each data partition. Output point annotations were converted to cones 

centered on the output with a radius of 4 pixels following.30 Input output pairs were 

generated by selecting random 256x256 crops of each input image, then further 

cropping the output image to match the output detector size (256x256 for Residual U-

net, FCRN-A and FCRN-B, 225x225 for Count-ception, 96x96 for U-net). 

To establish the number of epochs to train each neural net before saturation, we trained 

each net for 500,000 epochs and evaluated performance on the test set at the 10, 50, 

100, 200, 300, 400, and 500 thousandth epoch using the Adam algorithm with a 

learning rate of 1e-4. Each neural net had a slightly different loss behavior, but all nets 

saturated around 100,000 epochs with highest performance on the test data at 50,000 

epochs. Each architecture was then trained three times to 100,000 epochs and 

evaluated at the 10, 25, 50, 75, and 100 thousandth epoch on the test data set. The top 

three highest performing architectures were then ensembled to maximize train and test 

score from compositing the individual net segmentations using grid search to weight 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.307470doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307470
http://creativecommons.org/licenses/by-nd/4.0/


each net over the range 0.0 to 2.0 inclusive in steps of 0.1. All nets receiver operating 

characteristic (ROC) and precision and recall were compared on the validation data set, 

and ranked according to area under the curve (AUC). 

To establish how well each network could transfer segmentations between imaging 

systems, the confocal data set was also split into 80 % training, 10 % test, 10 % 

validation, and then each fold expanded by generating all possible 90 degree rotations 

and horizontal flips for each image in each data partition. Neural nets trained only on the 

inverted data set had poor performance, so each net was additionally trained for 25,000 

epochs with evaluations on the test set at the 1, 2, 5, 10, 15 and 25 thousandth epochs 

using Adam with a learning rate of 1e-5. Weights for the ensemble were recalculated 

using grid search as described above and net performance was again compared to the 

validation data set using AUC. 

Cell correspondence algorithm 
To detect cells in images of arbitrary size, each neural net was convolved with a zero-

padded image to create a final output probability mask with the same size as the 

original image, with a convolution stride of 1, excluding 5 pixels around each border. To 

convert individual neural net predictions to cell point detections, the peak detections of 

each cell center were segmented using non-local maximum suppression with a minimal 

activation level of 0.1 and a minimal distance of 3 pixels. 

Cell correspondence was found by greedily pairing the closest detected cell center in 

each frame to the next, taking the closest match in cases of multiple linkage, with a 

maximal link distance of 8 um. Since on average 5% of cells were not detected each 
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frame, nearest neighbor linkage resulted in many short track fragments with single 

frame breaks that impeded long term cell tracking. To link discontinuous fragments, a 

dense mesh was imposed on colonies in space using Delaunay triangulation, and then 

holes in the mesh were detected by finding points connected to at least 3 other neighbor 

points in one frame, but missing in the next, then imputing their position using the 

average motion of the neighborhood. Finally, track fragments shorter than 15 minutes 

(3-5 frames) were removed from the data set as short fragments were found to not 

correspond to cells. 

Track evaluation 
To calculate individual track metrics, each individual track’s x and y coordinates were 

first interpolated in time by a factor of 4 before smoothing using a rolling average with a 

filter width of 5 samples. Smoothed tracks were then used to calculate track length, total 

cell displacement, and velocity. Track persistence was calculated by analyzing the 

change in direction of travel at each step. A track segment was considered 

instantaneously persistent if the velocity was greater than 0.91 𝜇𝑚/𝑚𝑖𝑛 and did not turn 

more than 3 degrees/min. 

Spatial metrics 
Whole colony metrics were calculated using a Delaunay triangulation after removing 

links longer than 50 𝜇m (5 cell diameters away). The largest completely connected 

region was selected as the colony segmentation, and the perimeter and area of the 

whole region were calculated. To calculate estimates of density at each track point, the 
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area of each triangle surrounding the point was calculated and the density estimated as 

the inverse of the average of those areas. 

To map all colonies to a uniform coordinate system, the colony perimeter was projected 

onto the unit circle by calculating the angular position of each perimeter point, then 

using the distance from that perimeter point to the center as the local radius, and finally 

by gridding these radii onto a radially uniform 500 point grid. All interior points were then 

projected onto the unit circle by normalizing each point’s radius with the average 

perimeter radius at the two nearest angular bins. 

Statistical analysis of colony behavior 
Average colony spatial behavior was assessed by dividing warped colonies into three 

annular rings of equal area: the center, a middle ring, and the periphery. Average 

density, velocity, and persistence were calculated for each bin averaging over all time 

and over each colony in the experimental group. All possible comparisons for each 

group and bin were performed using two-sided t-tests with the Bonferroni-Holm 

correction for multiple comparisons with significance was assessed at p < 0.05. 

Additionally, 95 % confidence intervals around the mean were calculated using 1000 

iterations of bootstrap sampling. Effect size was assessed using Cohen’s d using 

pooled standard deviations as measured using the maximum likelihood estimator. 
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Figure 1 - Quality of Manual Tracking Plateaus with Increasing Density of Labeled Cells 

 

A. WTC11 and LaminB1::GFP cells were seeded into microwells, generating mixed aggregates with defined 
ratios of each population, then the aggregates were re-plated to form colonies. B. Annotators selected all 
cells in the colony, with high consistency in sparse regions, but lower agreement in dense regions. C. 
Individual annotator accuracy for each image was compared to the consensus for all images (n=23) with 
only annotator 7 different from any other rater (* p < 0.05, ** p < 0.01). D. Accuracy segmenting the same 
cell across sequential frames was assessed for all image pairs (n=12) but only annotator 7 was less 
repeatable than other annotators (* p < 0.05, ** p < 0.01). E. Colonies with 10%, 30%, and 100% 
LaminB1::GFP labeled cells were formed with labeled cells dispersed throughout the colony. F. Annotators 
were less accurate as compared to consensus on 100% labeled colonies than on 10% and 30% colonies 
(** p < 0.01, *** p < 0.001). G. Segmenting the same cell across sequential frames was also less repeatable 
in 100% labeled colonies vs 10% 
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Figure 2 - Heterotypic Neural Net Ensembles Generate Human Quality Segmentations 

 

A.i. Individual images were segmented by one of several neural net architectures. producing probability 
maps localizing the center of each LaminB1::GFP labeled nuclei. ii. A weighted average of these maps from 
three different architectures (FCRN-B, Residual U-net, Count-ception) was used to produce the consensus 
segmentation. B. The true positive and false positive rate was calculated for each segmentation over the 
range of probability map thresholds between 0 and 1 and then the area under the curve (AUC) calculated 
for each architecture. C. Repeatability of cell detections between frames was calculated for the entire 
training set (n=3,168, p < 0.001 vs all single neural nets). D. Repeatability of cell detections was stratified 
by percent labeling and compared to the human annotator consensus, (* p < 0.05, 30% and 100% not 
significant). E. Representative image depicting individual and net ensemble detection ability where different 
colored dots indicate the peak probability of a cell as predicted by each neural net architecture. F. The 
agreement between net ensemble predicted labels and the human annotated data set was assessed for 
each label percentage (* p < 0.05, *** p < 0.001) G. The repeatability of the net ensemble detections over 
time was also compared across label percentages (*** p < 0.001). 
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Figure 3 - Spatio-temporal linkage of detections enables long term single cell tracking 

 

A. Individual detections were linked across frames forming long tracks that spanned the entire time series. 
Depiction of example colony where regions were identified as center, middle, edge (colors). B. Dense track 
map created by linking detections covering the entire time series. C. Trace plot of example cell velocity 
tracks across colony locations (colors) D. Proposed two state model of alternating active migration and 
quiescence fit from average active and stopped periods. E. Distribution of the ratio of total track 
displacement to total track distance where colored dots represent individual tracks from the center, middle, 
and edge regions and dotted lines show the theoretical curves for persistent migration (dark green) and 
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random diffusion (dark red) F. Delaunay triangulation depicted across an example colony to calculate cell 
neighborhoods, G. Average inverse area of Delaunay triangles around each cell (cell density) depicted on 
the example colony, and projected onto the unit circle. H. Quantification of cell density and velocity across 
the colony region identified by projecting triangulated cell position onto rings of the unit circle (** p < 0.01, 
*** p < 0.001). 
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Figure 4 - Basal culture conditions change cell packing density and migratory behavior 

 
A.i. Example images of colonies with 100 or 500 starting cells. Comparison of 100 cell and 500 cell 
colonies stratified by colony region for: ii. average cell density (*** p < 0.001), iii. average total cell 
distance traveled in 6 hours (*** p < 0.001) and iv. average instantaneous cell velocity (*** p < 0.001). B.i. 
Example images of colonies generated from cells cultured in mTeSR or E8. Comparison of mTeSR and 
E8 colonies stratified by colony region for: ii. average cell density (*** p < 0.001), iii. average total cell 
distance traveled in 6 hours (*** p < 0.001) and iv. average instantaneous cell velocity (not significantly 
different). C.i. Example images of colonies adhered to either Matrigel, Vitronectin, or rLaminin521 coated 
plates. Comparison of Mtrigel, Virtonectin and rLaminin521 colonies stratified by colony region for: ii. 
average cell density (*** p < 0.001), iii. average total cell distance traveled in 6 hours (*** p < 0.001) and 
iv. average instantaneous cell velocity (*** p < 0.001, Matrigel and rLaminin521 not significantly different) 
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Figure 5 - Whole Colony Analysis Reveals a Density Signature of Multi-lineage 
Differentiation 

 

A.i. Treatment timeline and example time course of colony treated with BMP4 with example images at 24, 
32, and 40 hours post re-seeding (HPR) and fixed and stained image of the same colony at 48 HPR. ii. 
Surface plot of temporal evolution of average instantaneous cell velocity over BMP4-treated colonies 
projected on to the unit circle (n=16 colonies). iii. OCT4, SOX2, and EOMES expression profiles and 
average cell density profile at 48 HPR projected onto the unit circle in BMP4-treated colonies (n=16 
colonies). B.i. Treatment timeline and example time course of colony treated with CHIR with example 
images at 24, 32, and 40 HPR and fixed and stained image of the same colony at 48 HPR. ii. Surface plot 
of temporal evolution of average instantaneous cell velocity over CHIR-treated colonies projected on to 
the unit circle (n=16 colonies). iii. OCT4, SOX2, and EOMES expression profiles and average cell density 
profile at 48 HPR projected onto the unit circle in CHIR-treated colonies (n=16 colonies). C.i. Treatment 
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timeline  and example time course of colony treated with Dual SMAD inhibition at 24, 32, and 40 HPR and 
fixed and stained image of the same colony at 48 HPR with rosettes highlighted (white arrows). ii. 
Temporal evolution of average cell density inside and outside of rosettes (n=16 colonies). iii. OCT4, 
SOX2, and EOMES expression profiles and average cell density profile at 48 HPR projected onto the unit 
circle in Dual SMAD inhibition-treated colonies (n=16 colonies). D.i. Treatment timeline and example time 
course of colonies treated with both Dual-SMAD inhibition and CHIR pre-treatment, at 24, 32, and 40 
HPR with fixed and stained image of the same colony at 48 HPR. ii. Surface plot of temporal evolution of 
average instantaneous cell velocity over DualSmad+CHIR-treated colonies projected on to the unit circle 
(n=16 colonies). iii. OCT4, SOX2, and EOMES expression profiles and average cell density profile at 48 
HPR projected onto the unit circle in Dual SMAD+CHIR-treated colonies (n=16 colonies).   
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Figure S1 - Neural Net Ensemble has Highest Individual Rater Reliability 

 

Individual rater reliability for each neural net architecture compared to human annotated dataset. 
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Figure S2 - Neural Net Ensemble Segmentation Time Comparable to the Slowest 
Neural Net 

 

Average time to segment one image for each neural net architecture. 
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Figure S3 - Track Interpolation Across Frames Increases Track Length and Detected 
Cell Number 

 

A. Mean track length increases with increasing number of interpolated frames (** p < 0.01, *** p < 0.001). 
B. Mean cell number increases with increasing number of interpolated frames (** p < 0.01, *** p < 0.001). 
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Figure S4 - Active Migration Time is Higher at the Colony Edge 

 

A. Average period of active migration is higher at the edge than the center (** p < 0.01, *** p < 0.001). B. 
Average quiescent period between migrations is not different between the edge and center of colonies 
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Figure S5 - Untreated Colonies Exhibit Uniform Dynamic Behaviors over 24 Hours 

 

A. Treatment timeline and example time course of untreated colonies at 24, 32, and 40 HPR with fixed 
and stained image of the same colony at 48 HPR. ii. Surface plot of temporal evolution of average 
instantaneous cell velocity over untreated colonies projected on to the unit circle (n=12 colonies). iii. 
OCT4, SOX2, and EOMES expression profiles and average cell density profile at 48 HPR projected onto 
the unit circle in untreated colonies (n=12 colonies).   
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Figure S6 - Cell Density Bifurcates in Response to Morphogen Treatment 

 
Temporal evolution of average cell density stratified by colony region (n=16 colonies/condition, n=12 
untreated) in A. BMP4 treated colonies, B. CHIR treated colonies, C. Dual SMAD treated colonies, D. 
Dual SMAD colonies pre-treated with CHIR, and E. untreated colonies.   
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Figure S7 - Cell Velocity Magnitude Responds Characteristically to Morphogen 
Treatment 

 

Temporal evolution of average cell velocity magnitude stratified by colony region (n=16 
colonies/condition, n=12 untreated) in A. BMP4 treated colonies, B. CHIR treated colonies, C. Dual 
SMAD treated colonies, D. Dual SMAD colonies pre-treated with CHIR, and E. untreated colonies. 
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Supplementary Tables 

Table S1 - Antibodies 

Gene Target (Symbol) Species Company (cat. #) Dilution 

SRY-box 2 (SOX2) rabbit Invitrogen (48-1400) 1:400 

Octamer-binding 
transcription factor 4 (OCT4)  

goat Santa Cruz Biotechnology (SC-
8629) 

1:400 

Eomesodermin (EOMES) mouse R&D Systems (MAB6166) 1:400 
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